On Kolmogorov Topological Spaces¹ ## Zbigniew Karno Warsaw University Białystok **Summary.** Let X be a topological space. X is said to be T_0 -space (or Kolmogorov space) provided for every pair of distinct points $x, y \in X$ there exists an open subset of X containing exactly one of these points; equivalently, for every pair of distinct points $x, y \in X$ there exists a closed subset of X containing exactly one of these points (see [1], [6], [2]). The purpose is to list some of the standard facts on Kolmogorov spaces, using Mizar formalism. As a sample we formulate the following characteristics of such spaces: X is a Kolmogorov space iff for every pair of distinct points $x, y \in X$ the closures $\overline{\{x\}}$ and $\overline{\{y\}}$ are distinct There is also reviewed analogous facts on Kolmogorov subspaces of topological spaces. In the presented approach T_0 -subsets are introduced and some of their properties developed. MML Identifier: TSP_1. WWW: http://mizar.org/JFM/Vol6/tsp_1.html The articles [8], [10], [7], [9], [3], [4], [11], and [5] provide the notation and terminology for this paper. ### 1. SUBSPACES Let *Y* be a topological structure. We see that the subspace of *Y* is a topological structure and it can be characterized by the following (equivalent) condition: - (Def. 1)(i) The carrier of it \subseteq the carrier of Y, and - (ii) for every subset G_0 of it holds G_0 is open iff there exists a subset G of Y such that G is open and $G_0 = G \cap$ the carrier of it. Next we state the proposition (2)¹ Let Y be a topological structure, Y_0 be a subspace of Y, and G be a subset of Y. Suppose G is open. Then there exists a subset G_0 of Y_0 such that G_0 is open and $G_0 = G \cap$ the carrier of Y_0 . Let *Y* be a topological structure. We see that the subspace of *Y* is a topological structure and it can be characterized by the following (equivalent) condition: - (Def. 2)(i) The carrier of it \subseteq the carrier of Y, and - (ii) for every subset F_0 of it holds F_0 is closed iff there exists a subset F of Y such that F is closed and $F_0 = F \cap$ the carrier of it. ¹Presented at Mizar Conference: Mathematics in Mizar (Białystok, September 12–14, 1994). ¹ The proposition (1) has been removed. Next we state the proposition (4)² Let Y be a topological structure, Y_0 be a subspace of Y, and F be a subset of Y. Suppose F is closed. Then there exists a subset F_0 of Y_0 such that F_0 is closed and $F_0 = F \cap$ the carrier of Y_0 . #### 2. KOLMOGOROV SPACES Let *T* be a topological structure. Let us observe that *T* is discernible if and only if the conditions (Def. 3) are satisfied. (Def. 3)(i) T is empty, or (ii) for all points x, y of T such that $x \neq y$ holds there exists a subset V of T such that V is open and $x \in V$ and $y \notin V$ or there exists a subset W of T such that W is open and $x \notin W$ and $y \in W$. We introduce T is T_0 as a synonym of T is discernible. Let Y be a topological structure. Let us observe that Y is T_0 if and only if the conditions (Def. 4) are satisfied. (Def. 4)(i) Y is empty, or (ii) for all points x, y of Y such that $x \neq y$ holds there exists a subset E of Y such that E is closed and $x \in E$ and $y \notin E$ or there exists a subset F of Y such that F is closed and $x \notin F$ and $y \in F$. Let us note that every non empty topological structure which is trivial is also T_0 and every non empty topological structure which is non T_0 is also non trivial. Let us mention that there exists a topological space which is strict, T_0 , and non empty and there exists a topological space which is strict, non T_0 , and non empty. One can check the following observations: - * every non empty topological space which is discrete is also T_0 , - * every non empty topological space which is non T_0 is also non discrete, - every non empty topological space which is anti-discrete and non trivial is also non T₀, - * every non empty topological space which is anti-discrete and T_0 is also trivial, and - * every non empty topological space which is T_0 and non trivial is also non anti-discrete. Let X be a non empty topological space. Let us observe that X is T_0 if and only if: (Def. 5) For all points x, y of X such that $x \neq y$ holds $\overline{\{x\}} \neq \overline{\{y\}}$. Let X be a non empty topological space. Let us observe that X is T_0 if and only if: (Def. 6) For all points x, y of X such that $x \neq y$ holds $x \notin \overline{\{y\}}$ or $y \notin \overline{\{x\}}$. Let X be a non empty topological space. Let us observe that X is T_0 if and only if: (Def. 7) For all points x, y of X such that $x \neq y$ and $x \in \{y\}$ holds $\{y\} \not\subseteq \{x\}$. One can verify the following observations: - * every non empty topological space which is almost discrete and T_0 is also discrete, - * every non empty topological space which is almost discrete and non discrete is also non T_0 , and - * every non empty topological space which is non discrete and T_0 is also non almost discrete. A Kolmogorov space is a T_0 non empty topological space. A non-Kolmogorov space is a non T_0 non empty topological space. Let us mention that there exists a Kolmogorov space which is non trivial and strict and there exists a non-Kolmogorov space which is non trivial and strict. ² The proposition (3) has been removed. #### 3. T_0 -SUBSETS Let Y be a topological structure and let I_1 be a subset of Y. We say that I_1 is T_0 if and only if the condition (Def. 8) is satisfied. (Def. 8) Let x, y be points of Y. Suppose $x \in I_1$ and $y \in I_1$ and $x \neq y$. Then there exists a subset V of Y such that V is open and $x \in V$ and $y \notin V$ or there exists a subset W of Y such that W is open and $x \notin W$ and $y \in W$. Let Y be a non empty topological structure and let A be a subset of Y. Let us observe that A is T_0 if and only if the condition (Def. 9) is satisfied. - (Def. 9) Let x, y be points of Y. Suppose $x \in A$ and $y \in A$ and $x \neq y$. Then - (i) there exists a subset E of Y such that E is closed and $x \in E$ and $y \notin E$, or - (ii) there exists a subset F of Y such that F is closed and $x \notin F$ and $y \in F$. Next we state two propositions: - (5) Let Y_0 , Y_1 be topological structures, D_0 be a subset of Y_0 , and D_1 be a subset of Y_1 . Suppose the topological structure of Y_0 = the topological structure of Y_1 and $D_0 = D_1$. If D_0 is T_0 , then D_1 is T_0 . - (6) Let Y be a non empty topological structure and A be a subset of Y. Suppose A = the carrier of Y. Then A is T_0 if and only if Y is T_0 . In the sequel *Y* is a non empty topological structure. One can prove the following propositions: - (7) For all subsets A, B of Y such that $B \subseteq A$ holds if A is T_0 , then B is T_0 . - (8) For all subsets A, B of Y such that A is T_0 or B is T_0 holds $A \cap B$ is T_0 . - (9) Let A, B be subsets of Y. Suppose A is open or B is open. If A is T_0 and B is T_0 , then $A \cup B$ is T_0 . - (10) Let A, B be subsets of Y. Suppose A is closed or B is closed. If A is T_0 and B is T_0 , then $A \cup B$ is T_0 . - (11) For every subset A of Y such that A is discrete holds A is T_0 . - (12) For every non empty subset A of Y such that A is anti-discrete and A is not trivial holds A is not T_0 . Let X be a non empty topological space and let A be a subset of X. Let us observe that A is T_0 if and only if: (Def. 10) For all points x, y of X such that $x \in A$ and $y \in A$ and $x \neq y$ holds $\overline{\{x\}} \neq \overline{\{y\}}$. Let X be a non empty topological space and let A be a subset of X. Let us observe that A is T_0 if and only if: (Def. 11) For all points x, y of X such that $x \in A$ and $y \in A$ and $x \neq y$ holds $x \notin \overline{\{y\}}$ or $y \notin \overline{\{x\}}$. Let X be a non empty topological space and let A be a subset of X. Let us observe that A is T_0 if and only if: (Def. 12) For all points x, y of X such that $x \in A$ and $y \in A$ and $x \neq y$ holds if $x \in \overline{\{y\}}$, then $\overline{\{y\}} \not\subseteq \overline{\{x\}}$. In the sequel X denotes a non empty topological space. Next we state two propositions: - (13) Every empty subset of X is T_0 . - (14) For every point x of X holds $\{x\}$ is T_0 . #### 4. KOLMOGOROV SUBSPACES Let Y be a non empty topological structure. One can verify that there exists a subspace of Y which is strict, T_0 , and non empty. Let Y be a topological structure and let Y_0 be a subspace of Y. Let us observe that Y_0 is T_0 if and only if the conditions (Def. 13) are satisfied. #### (Def. 13)(i) Y_0 is empty, or (ii) for all points x, y of Y such that x is a point of Y_0 and y is a point of Y_0 and $x \neq y$ holds there exists a subset V of Y such that V is open and $x \in V$ and $y \notin V$ or there exists a subset W of Y such that W is open and $x \notin W$ and $y \in W$. Let Y be a topological structure and let Y_0 be a subspace of Y. Let us observe that Y_0 is T_0 if and only if the conditions (Def. 14) are satisfied. #### (Def. 14)(i) Y_0 is empty, or (ii) for all points x, y of Y such that x is a point of Y_0 and y is a point of Y_0 and $x \neq y$ holds there exists a subset E of Y such that E is closed and $x \in E$ and $y \notin E$ or there exists a subset E of E such that E is closed and E are E and E and E are E are E are E are E are E and E are E are E are E are E are E are E and E are and E are and E are In the sequel Y denotes a non empty topological structure. Next we state two propositions: - (15) Let Y_0 be a non empty subspace of Y and A be a subset of Y. Suppose A = the carrier of Y_0 . Then A is T_0 if and only if Y_0 is T_0 . - (16) Let Y_0 be a non empty subspace of Y and Y_1 be a T_0 non empty subspace of Y. If Y_0 is a subspace of Y_1 , then Y_0 is T_0 . In the sequel *X* is a non empty topological space. We now state three propositions: - (17) Let X_1 be a T_0 non empty subspace of X and X_2 be a non empty subspace of X. If X_1 meets X_2 , then $X_1 \cap X_2$ is T_0 . - (18) For all T_0 non empty subspaces X_1 , X_2 of X such that X_1 is open or X_2 is open holds $X_1 \cup X_2$ is T_0 . - (19) For all T_0 non empty subspaces X_1 , X_2 of X such that X_1 is closed or X_2 is closed holds $X_1 \cup X_2$ is T_0 . Let X be a non empty topological space. A Kolmogorov subspace of X is a T_0 non empty subspace of X. The following proposition is true (20) Let X be a non empty topological space and A_0 be a non empty subset of X. Suppose A_0 is T_0 . Then there exists a strict Kolmogorov subspace X_0 of X such that A_0 = the carrier of X_0 . Let *X* be a non trivial non empty topological space. Observe that there exists a Kolmogorov subspace of *X* which is proper and strict. Let X be a Kolmogorov space. One can verify that every non empty subspace of X is T_0 . Let X be a non-Kolmogorov space. Note that every non empty subspace of X which is non proper is also non T_0 and every non empty subspace of X which is T_0 is also proper. Let X be a non-Kolmogorov space. Observe that there exists a subspace of X which is strict and non T_0 . Let X be a non-Kolmogorov space. A non-Kolmogorov subspace of X is a non T_0 subspace of X. We now state the proposition (21) Let X be a non empty non-Kolmogorov space and A_0 be a subset of X. Suppose A_0 is not T_0 . Then there exists a strict non-Kolmogorov subspace X_0 of X such that A_0 = the carrier of X_0 . #### REFERENCES - [1] P. Alexandroff and H. H. Hopf. Topologie I. Springer-Verlag, Berlin, 1935. - [2] Ryszard Engelking. General Topology, volume 60 of Monografie Matematyczne. PWN Polish Scientific Publishers, Warsaw, 1977. - [3] Zbigniew Karno. Separated and weakly separated subspaces of topological spaces. Journal of Formalized Mathematics, 4, 1992. http://mizar.org/JFM/Vol4/tsep_1.html. - [4] Zbigniew Karno. Maximal discrete subspaces of almost discrete topological spaces. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/Vol5/tex_2.html. - [5] Zbigniew Karno. Maximal anti-discrete subspaces of topological spaces. Journal of Formalized Mathematics, 6, 1994. http://mizar.org/JFM/Vol6/tex_4.html. - [6] Kazimierz Kuratowski. Topology, volume I. PWN Polish Scientific Publishers, Academic Press, Warsaw, New York and London, 1966. - [7] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/pre_topc.html. - [8] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html. - [9] Andrzej Trybulec. A Borsuk theorem on homotopy types. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/ Vol3/borsuk_1.html. - [10] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html. - [11] Mariusz Żynel and Adam Guzowski. To topological spaces. Journal of Formalized Mathematics, 6, 1994. http://mizar.org/JFM/Vol6/t_Otopsp.html. Received July 26, 1994 Published January 2, 2004