On the Concept of the Triangulation

Beata Madras Warsaw University Białystok

MML Identifier: TRIANG_1.

WWW: http://mizar.org/JFM/Vol7/triang_1.html

The articles [13], [7], [22], [17], [23], [24], [12], [2], [5], [6], [14], [9], [4], [8], [20], [18], [3], [21], [10], [11], [15], [16], and [19] provide the notation and terminology for this paper.

1. Introduction

In this paper A denotes a set and k, m, n denote natural numbers.

The scheme Regr1 deals with a natural number \mathcal{A} and a unary predicate \mathcal{P} , and states that:

For every k such that $k \leq \mathcal{A}$ holds $\mathcal{P}[k]$

provided the parameters meet the following conditions:

- $\mathcal{P}[\mathcal{A}]$, and
- For every k such that $k < \mathcal{A}$ and $\mathcal{P}[k+1]$ holds $\mathcal{P}[k]$.

Let *n* be a natural number. Note that Seg(n+1) is non empty.

Let *X* be a non empty set and let *R* be an order in *X*. Note that $\langle X, R \rangle$ is non empty.

The following proposition is true

(1)
$$0|^2 A = 0$$
.

Let *X* be a set. Observe that there exists a subset of Fin *X* which is non empty.

Let X be a non empty set. One can check that there exists a subset of Fin X which is non empty and has non empty elements.

Let X be a non empty set and let F be a non empty subset of Fin X with non empty elements. Note that there exists an element of F which is non empty.

Let I_1 be a set. We say that I_1 has a non-empty element if and only if:

(Def. 1) There exists a non empty set X such that $X \in I_1$.

One can verify that there exists a set which has a non-empty element.

Let X be a set with a non-empty element. Note that there exists an element of X which is non empty.

Let us observe that every set which has a non-empty element is also non empty.

Let X be a non empty set. Note that there exists a subset of Fin X which has a non-empty element.

Let X be a non empty set, let R be an order in X, and let A be a subset of X. Then $R \mid^2 A$ is an order in A.

The scheme SubFinite deals with a set \mathcal{A} , a subset \mathcal{B} of \mathcal{A} , and a unary predicate \mathcal{P} , and states that:

 $\mathcal{P}[\mathcal{B}]$

provided the following conditions are met:

- B is finite,
- $\mathcal{P}[\emptyset_{\mathcal{A}}]$, and
- For every element x of \mathcal{A} and for every subset B of \mathcal{A} such that $x \in \mathcal{B}$ and $B \subseteq \mathcal{B}$ and $\mathcal{P}[B]$ holds $\mathcal{P}[B \cup \{x\}]$.

One can prove the following proposition

(2) Let F be a non empty poset and A be a subset of F. Suppose A is finite and $A \neq \emptyset$ and for all elements B, C of F such that $B \in A$ and $C \in A$ holds $B \leq C$ or $C \leq B$. Then there exists an element m of F such that $m \in A$ and for every element C of F such that $C \in A$ holds $C \in A$

Let X be a non empty set and let F be a subset of Fin X with a non-empty element. Note that there exists an element of F which is finite and non empty.

Let P be a non empty poset, let A be a non empty finite subset of P, and let x be an element of P. One can check that InitSegm(A,x) is finite.

The following proposition is true

(3) For all finite sets A, B such that $A \subseteq B$ and card A = card B holds A = B.

Let X be a set, let A be a finite subset of X, and let R be an order in X. Let us assume that R linearly orders A. The functor $\operatorname{Sgm}X(R,A)$ yielding a finite sequence of elements of X is defined by the conditions (Def. 2).

- (Def. 2)(i) $\operatorname{rng} \operatorname{SgmX}(R,A) = A$, and
 - (ii) for all natural numbers n, m such that $n \in \text{dom SgmX}(R,A)$ and $m \in \text{dom SgmX}(R,A)$ and n < m holds $(\text{SgmX}(R,A))_n \neq (\text{SgmX}(R,A))_m$ and $((\text{SgmX}(R,A))_n, (\text{SgmX}(R,A))_m) \in R$.

We now state the proposition

(4) Let X be a set, A be a finite subset of X, R be an order in X, and f be a finite sequence of elements of X. Suppose rng f = A and for all natural numbers n, m such that $n \in \text{dom } f$ and $m \in \text{dom } f$ and n < m holds $f_n \neq f_m$ and $\langle f_n, f_m \rangle \in R$. Then f = SgmX(R, A).

2. ABSTRACT COMPLEXES

Let C be a non empty poset. The functor symplexes (C) yields a subset of Fin (the carrier of C) and is defined as follows:

(Def. 3) symplexes $(C) = \{A; A \text{ ranges over elements of Fin (the carrier of } C): the internal relation of Clinearly orders <math>A\}$.

Let C be a non empty poset. Note that symplexes (C) has a non-empty element.

In the sequel *C* is a non empty poset.

One can prove the following propositions:

- (5) For every element x of C holds $\{x\} \in \text{symplexes}(C)$.
- (6) \emptyset ∈ symplexes(C).
- (7) For all sets x, s such that $x \subseteq s$ and $s \in \text{symplexes}(C)$ holds $x \in \text{symplexes}(C)$.

Let X be a set and let F be a non empty subset of Fin X. Observe that every element of F is finite.

Let X be a set and let F be a non empty subset of Fin X. We see that the element of F is a subset of X.

Next we state three propositions:

(8) Let X be a set, A be a finite subset of X, and R be an order in X. If R linearly orders A, then $\operatorname{Sgm}X(R,A)$ is one-to-one.

- (9) Let *X* be a set, *A* be a finite subset of *X*, and *R* be an order in *X*. If *R* linearly orders *A*, then $\operatorname{lenSgmX}(R,A) = \overline{\overline{A}}$.
- (10) Let C be a non empty poset and A be a non empty element of symplexes (C). If $\overline{A} = n$, then dom SgmX(the internal relation of C, A) = Seg n.

Let C be a non empty poset. One can check that there exists an element of symplexes (C) which is non empty.

3. Triangulations

A set sequence is a many sorted set indexed by \mathbb{N} .

Let I_1 be a set sequence. We say that I_1 is lower non-empty if and only if:

(Def. 4) For every n such that $I_1(n)$ is non empty and for every m such that m < n holds $I_1(m)$ is non empty.

Let us note that there exists a set sequence which is lower non-empty.

Let X be a set sequence. The functor FuncsSeq(X) yielding a set sequence is defined as follows:

(Def. 5) For every natural number *n* holds (FuncsSeq(X))(n) = $X(n)^{X(n+1)}$.

Let X be a lower non-empty set sequence and let n be a natural number. One can check that $(\operatorname{FuncsSeq}(X))(n)$ is non empty.

Let us consider n and let f be an element of $(\operatorname{Seg}(n+1))^{\operatorname{Seg}n}$. The functor ${}^{@}f$ yields a finite sequence of elements of \mathbb{R} and is defined as follows:

(Def. 6) ${}^{\tiny @}f = f$.

The set sequence NatEmbSeq is defined by:

(Def. 7) For every natural number n holds $(NatEmbSeq)(n) = \{f; f \text{ ranges over elements of } (Seg(n+1))^{Segn}: {}^{@}f \text{ is increasing}\}.$

Let us consider n. One can verify that (NatEmbSeq)(n) is non empty.

Let n be a natural number. Observe that every element of (NatEmbSeq)(n) is function-like and relation-like.

Let X be a set sequence. A triangulation of X is a many sorted function from NatEmbSeq into FuncsSeq(X).

We introduce triangulation structures which are systems

⟨ a skeleton sequence, a faces assignment ⟩,

where the skeleton sequence is a set sequence and the faces assignment is a many sorted function from NatEmbSeq into FuncsSeq(the skeleton sequence).

Let T be a triangulation structure. We say that T is lower non-empty if and only if:

 $(Def. 9)^1$ The skeleton sequence of T is lower non-empty.

One can check that there exists a triangulation structure which is lower non-empty and strict.

Let T be a lower non-empty triangulation structure. Note that the skeleton sequence of T is lower non-empty.

Let *S* be a lower non-empty set sequence and let *F* be a many sorted function from NatEmbSeq into FuncsSeq(*S*). Observe that $\langle S, F \rangle$ is lower non-empty.

¹ The definition (Def. 8) has been removed.

4. RELATIONSHIP BETWEEN ABSTRACT COMPLEXES AND TRIANGULATIONS

Let T be a triangulation structure and let n be a natural number. A symplex of T and n is an element of (the skeleton sequence of T)(n).

Let n be a natural number. A face of n is an element of (NatEmbSeq)(n).

Let T be a lower non-empty triangulation structure, let n be a natural number, let x be a symplex of T and n+1, and let f be a face of n. Let us assume that (the skeleton sequence of T) $(n+1) \neq \emptyset$. The functor face(x, f) yielding a symplex of T and n is defined by:

(Def. 10) For all functions F, G such that F = (the faces assignment of T)(n) and G = F(f) holds face(x, f) = G(x).

Let C be a non empty poset. The functor Triang(C) yields a lower non-empty strict triangulation structure and is defined by the conditions (Def. 11).

- (Def. 11)(i) (The skeleton sequence of Triang(C))(0) = { \emptyset },
 - (ii) for every natural number n such that n > 0 holds (the skeleton sequence of Triang(C)) $(n) = \frac{\{\text{SgmX}(\text{the internal relation of } C, A); A \text{ ranges over non empty elements of symplexes}(C): <math>\overline{\overline{A}} = n\}$, and
 - (iii) for every natural number n and for every face f of n and for every element s of (the skeleton sequence of Triang(C))(n+1) such that $s \in (the skeleton sequence of <math>Triang(C)$)(n+1) and for every non empty element A of symplexes(C) such that SgmX(the internal relation of <math>C, A) = s holds face(s, f) = SgmX(the internal relation of <math>C, $A) \cdot f$.

REFERENCES

- [1] Grzegorz Bancerek. Cardinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/card_1.html.
- [2] Grzegorz Bancerek. The fundamental properties of natural numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/nat_1.html.
- [3] Grzegorz Bancerek. The well ordering relations. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/wellordl.html.
- [4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/finseg_1.html.
- [5] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_1.html.
- [6] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_2.html.
- [7] Czesław Byliński. Some basic properties of sets. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Voll/zfmisc_1.html.
- [8] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/finseq_2.html.
- [9] Agata Darmochwał. Finite sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/finset_1.html.
- [10] Krzysztof Hryniewiecki. Relations of tolerance. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/toler_ 1.html.
- [11] Jarosław Kotowicz and Yatsuka Nakamura. Introduction to Go-Board part I. Journal of Formalized Mathematics, 4, 1992. http://mizar.org/JFM/Vol4/goboard1.html.
- [12] Beata Padlewska. Families of sets. Journal of Formalized Mathematics. 1. 1989. http://mizar.org/JFM/Vol1/setfam 1.html.
- [13] Andrzej Trybulec. Tarski Grothendieck set theory. *Journal of Formalized Mathematics*, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [14] Andrzej Trybulec. Function domains and Frænkel operator. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/fraenkel.html.
- [15] Andrzej Trybulec. Many-sorted sets. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/Vol5/pboole.html.
- [16] Andrzej Trybulec. Many sorted algebras. Journal of Formalized Mathematics, 6, 1994. http://mizar.org/JFM/Vol6/msualg_1. html.
- [17] Andrzej Trybulec. Subsets of real numbers. Journal of Formalized Mathematics, Addenda, 2003. http://mizar.org/JFM/Addenda/numbers.html.

- [18] Andrzej Trybulec and Agata Darmochwał. Boolean domains. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Voll/finsub_1.html.
- [19] Wojciech A. Trybulec. Partially ordered sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/orders_ 1.html.
- [20] Wojciech A. Trybulec. Pigeon hole principle. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/finseq_ 4.html.
- [21] Wojciech A. Trybulec and Grzegorz Bancerek. Kuratowski Zorn lemma. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/orders_2.html.
- [22] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.
- [23] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relat_1.html.
- [24] Edmund Woronowicz and Anna Zalewska. Properties of binary relations. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/relat_2.html.

Received October 28, 1995

Published January 2, 2004