Replacement of Subtrees in a Tree

Oleg Okhotnikov Ural University Ekaterinburg

Summary. This paper is based on previous works [1], [2] in which the operation replacement of subtree in a tree has been defined. We extend this notion for arbitrary non empty antichain.

MML Identifier: TREES_A.

WWW: http://mizar.org/JFM/Vol7/trees_a.html

The articles [5], [7], [6], [8], [4], [3], [1], and [2] provide the notation and terminology for this paper.

For simplicity, we follow the rules: T, T_1 denote trees, P denotes an antichain of prefixes of T, p, q, r denote finite sequences of elements of \mathbb{N} , and t denotes an element of T.

The following proposition is true

(1) For all finite sequences p, q, r, s such that $p \cap q = s \cap r$ holds p and s are \subseteq -comparable.

Let us consider T, T_1 and let us consider P. Let us assume that $P \neq \emptyset$. The functor T, P, T_1 yielding a tree is defined as follows:

(Def. 1) $q \in T, P, T_1$ iff $q \in T$ and for every p such that $p \in P$ holds $p \not\prec q$ or there exist p, r such that $p \in P$ and $p \in T_1$ and $p \in T_2$ and $p \in T_3$ and $p \in T_4$ and $p \in T_$

We now state several propositions:

- (2) Suppose $P \neq \emptyset$. Then $T, P, T_1 = \{t_1; t_1 \text{ ranges over elements of } T: \bigwedge_p (p \in P \Rightarrow p \not\prec t_1)\} \cup \{p \cap s; p \text{ ranges over elements of } T, s \text{ ranges over elements of } T_1: p \in P\}.$
- (3) $\{t_1; t_1 \text{ ranges over elements of } T: \bigwedge_p (p \in P \Rightarrow p \npreceq t_1)\} \subseteq \{t_1; t_1 \text{ ranges over elements of } T: \bigwedge_p (p \in P \Rightarrow p \npreceq t_1)\}.$
- (4) $P \subseteq \{t_1; t_1 \text{ ranges over elements of } T: \bigwedge_p (p \in P \Rightarrow p \not\prec t_1)\}.$
- (5) $\{t_1; t_1 \text{ ranges over elements of } T: \bigwedge_p (p \in P \Rightarrow p \not\prec t_1)\} \setminus \{t_1; t_1 \text{ ranges over elements of } T: \bigwedge_p (p \in P \Rightarrow p \not\prec t_1)\} = P.$
- (6) For all T, T_1 , P holds $P \subseteq \{p \cap s; p \text{ ranges over elements of } T$, s ranges over elements of T_1 : $p \in P\}$.
- (7) Suppose $P \neq \emptyset$. Then $\widehat{T,P,T_1} = \{t_1;t_1 \text{ ranges over elements of } T \colon \bigwedge_p (p \in P \Rightarrow p \nleq t_1)\} \cup \{p \cap s; p \text{ ranges over elements of } T, s \text{ ranges over elements of } T_1 \colon p \in P\}.$

$$(9)^1$$
 If $p \in P$, then $T_1 = \overbrace{T, P, T_1} \upharpoonright p$.

Let us consider T. Observe that there exists an antichain of prefixes of T which is non empty. Let us consider T and let t be an element of T. Then $\{t\}$ is a non empty antichain of prefixes of T.

One can prove the following proposition

(10)
$$T, \{t\}, T_1 = T \text{ with-replacement}(t, T_1).$$

In the sequel T, T_1 are decorated trees, P is an antichain of prefixes of dom T, and t is an element of dom T.

Let us consider T, P, T_1 . Let us assume that $P \neq \emptyset$. The functor T, P, T_1 yielding a decorated tree is defined by the conditions (Def. 2).

(Def. 2)(i)
$$\operatorname{dom} \widetilde{T, P, T_1} = \overline{\operatorname{dom} T, P, \operatorname{dom} T_1}$$
, and

(ii) for every q such that $q \in \overline{\text{dom } T, P, \text{dom } T_1}$ holds for every p such that $p \in P$ holds $p \npreceq q$ and $\overline{T, P, T_1}(q) = T(q)$ or there exist p, r such that $p \in P$ and $r \in \text{dom } T_1$ and $q = p \cap r$ and $\overline{T, P, T_1}(q) = T_1(r)$.

One can prove the following propositions:

- (13)² Suppose $P \neq \emptyset$. Let given q. Suppose $q \in \text{dom } \widetilde{T, P, T_1}$. Then for every p such that $p \in P$ holds $p \nleq q$ and $\widetilde{T, P, T_1}(q) = T(q)$ or there exist p, r such that $p \in P$ and $r \in \text{dom } T_1$ and $q = p \cap r$ and $\widetilde{T, P, T_1}(q) = T_1(r)$.
- (14) Suppose $p \in \text{dom } T$. Let given q. Suppose $q \in \text{dom}(T \text{ with-replacement}(p, T_1))$. Then $p \not\preceq q$ and $(T \text{ with-replacement}(p, T_1))(q) = T(q)$ or there exists r such that $r \in \text{dom } T_1$ and $q = p \cap r$ and $(T \text{ with-replacement}(p, T_1))(q) = T_1(r)$.
- (15) Suppose $P \neq \emptyset$. Let given q. Suppose $q \in \text{dom } \widetilde{T}, P, T_1$ and $q \in \{t_1; t_1 \text{ ranges over elements of dom } T: \bigwedge_P (p \in P \implies p \npreceq t_1)\}$. Then $\widetilde{T}, P, T_1(q) = T(q)$.
- (16) If $p \in \text{dom } T$, then for every q such that $q \in \text{dom}(T \text{ with-replacement}(p, T_1))$ and $q \in \{t_1; t_1 \text{ ranges over elements of dom } T : p \not\preceq t_1\}$ holds $(T \text{ with-replacement}(p, T_1))(q) = T(q)$.
- (17) Let given q. Suppose $q \in \text{dom } \widetilde{T, P, T_1}$ and $q \in \{p \cap s; p \text{ ranges over elements of dom } T, s$ ranges over elements of dom $T_1 : p \in P\}$. Then there exists an element p' of dom T and there exists an element p' of dom T_1 such that $q = p' \cap r$ and $p' \in P$ and $T_1 \cap T_1 \cap T_2 \cap T_1 \cap T_2 \cap T_2$
- (18) Suppose $p \in \text{dom } T$. Let given q. Suppose $q \in \text{dom}(T \text{ with-replacement}(p, T_1))$ and $q \in \{p \cap s; s \text{ ranges over elements of } \text{dom } T_1 : s = s\}$. Then there exists an element r of $\text{dom } T_1$ such that $q = p \cap r$ and $(T \text{ with-replacement}(p, T_1))(q) = T_1(r)$.

(19)
$$T, \{t\}, T_1 = T \text{ with-replacement}(t, T_1).$$

In the sequel D denotes a non empty set, T, T_1 denote trees decorated with elements of D, and P denotes an antichain of prefixes of dom T.

Let us consider D, T, P, T_1 . Let us assume that $P \neq \emptyset$. The functor T, P, T_1 yields a tree decorated with elements of D and is defined by:

(Def. 3)
$$\widetilde{T,P,T_1} = \widetilde{T,P,T_1}$$
.

¹ The proposition (8) has been removed.

² The propositions (11) and (12) have been removed.

ACKNOWLEDGMENTS

The author wishes to thank to G. Bancerek for his assistance during the preparation of this paper.

REFERENCES

- $[1] \begin{tabular}{ll} Grzegorz Bancerek. Introduction to trees. {\it Journal of Formalized Mathematics}, 1, 1989. http://mizar.org/JFM/Vol1/trees_1.html. {\it Journal of Formalized Mathematics}, 1, 1989. https://mizar.org/JFM/Vol1/trees_1.html. {\it Journal of Formalized Mathematics}, 1, 1989. html. {\it Journal of Formalized Mathematics}, 1, 1989. html. {\it Journal$
- [2] Grzegorz Bancerek. König's Lemma. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/trees_2.html.
- [3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/finseq_1.html.
- [4] Czesław Byliński. Functions and their basic properties. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Voll/funct_1.html.
- [5] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [6] Andrzej Trybulec. Subsets of real numbers. Journal of Formalized Mathematics, Addenda, 2003. http://mizar.org/JFM/Addenda/numbers.html.
- [7] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.
- [8] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/relat_1.html.

Received October 1, 1995

Published January 2, 2004