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The articles [15], [12], [17], [16], [2], [18], [10], [11], [8], [14], [13], [4], [1], [3], [5], [6], [7], and
[9] provide the notation and terminology for this paper.

1. ROOT TREE AND SUCCESSORS OFNODE IN DECORATEDTREE

Let us mention that every tree which is finite is also finite-order.
Next we state three propositions:

(1) For every decorated treet holdst�εN = t.

(2) For every treet and for all finite sequencesp, q of elements ofN such thatpa q∈ t holds
t�(pa q) = t�p�q.

(3) Let t be a decorated tree andp, q be finite sequences of elements ofN. If pa q∈ domt,
thent�(pa q) = t�p�q.

Let I1 be a decorated tree. We say thatI1 is root if and only if:

(Def. 1) domI1 = the elementary tree of 0.

One can check that every decorated tree which is root is also finite.
We now state three propositions:

(4) For every decorated treet holdst is root iff /0 ∈ Leaves(domt).

(5) For every treet and for every elementp of t holds t�p = the elementary tree of 0 iff
p∈ Leaves(t).

(6) For every decorated treet and for every nodep of t holdst�p is root iff p∈ Leaves(domt).

Let us observe that there exists a decorated tree which is root and there exists a decorated tree
which is finite and non root.

Let x be a set. One can verify that the root tree ofx is finite and root.
Let I1 be a tree. We say thatI1 is finite-branching if and only if:

1This article has been worked out during the visit of the author in Nagano in Summer 1994.
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(Def. 2) For every elementx of I1 holds succx is finite.

Let us observe that every tree which is finite-order is also finite-branching.
Let us note that there exists a tree which is finite.
Let I1 be a decorated tree. We say thatI1 is finite-order if and only if:

(Def. 3) domI1 is finite-order.

We say thatI1 is finite-branching if and only if:

(Def. 4) domI1 is finite-branching.

Let us mention that every decorated tree which is finite is also finite-order and every decorated
tree which is finite-order is also finite-branching.

Let us observe that there exists a decorated tree which is finite.
Let t be a finite-order decorated tree. Note that domt is finite-order.
Let t be a finite-branching decorated tree. Observe that domt is finite-branching.
Let t be a finite-branching tree and letp be an element oft. Note that succp is finite.
The schemeFinOrdSetdeals with a unary functorF yielding a set and a finite setA , and states

that:
For every natural numbern holdsF (n) ∈ A iff n < cardA

provided the following requirements are met:
• For every setx such thatx∈ A there exists a natural numbern such thatx = F (n),
• For all natural numbersi, j such thati < j andF ( j) ∈ A holdsF (i) ∈ A , and
• For all natural numbersi, j such thatF (i) = F ( j) holdsi = j.

Let X be a set. One can verify that there exists a finite sequence of elements ofX which is
one-to-one and empty.

The following proposition is true

(7) Let t be a finite-branching tree,p be an element oft, andn be a natural number. Then
pa 〈n〉 ∈ succp if and only if n < cardsuccp.

Let t be a finite-branching tree and letp be an element oft. The functor Succp yields an
one-to-one finite sequence of elements oft and is defined by:

(Def. 5) lenSuccp = cardsuccp and rngSuccp = succp and for every natural numberi such that
i < lenSuccp holds(Succp)(i +1) = pa 〈i〉.

Let t be a finite-branching decorated tree and letp be a finite sequence. Let us assume that
p∈ domt. The functor succ(t, p) yielding a finite sequence is defined by:

(Def. 6) There exists an elementq of domt such thatq = p and succ(t, p) = t ·Succq.

Next we state the proposition

(8) Let t be a finite-branching decorated tree. Then there exists a setx and there exists a
decorated tree yielding finite sequencep such thatt = x-tree(p).

Let t be a finite decorated tree and letp be a node oft. Note thatt�p is finite.
Next we state the proposition

(10)1 For every finite treet and for every elementp of t such thatt = t�p holdsp = /0.

Let D be a non empty set and letSbe a non empty subset of FinTrees(D). Observe that every
element ofS is finite.

1 The proposition (9) has been removed.
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2. SET OF SUBTREES OFDECORATEDTREE

Let t be a decorated tree. The functor Subtrees(t) yields a set and is defined as follows:

(Def. 7) Subtrees(t) = {t�p : p ranges over nodes oft}.

Let t be a decorated tree. Observe that Subtrees(t) is constituted of decorated trees and non
empty.

Let D be a non empty set and lett be a tree decorated with elements ofD. Then Subtrees(t) is a
non empty subset of Trees(D).

Let D be a non empty set and lett be a finite tree decorated with elements ofD. Then Subtrees(t)
is a non empty subset of FinTrees(D).

Let t be a finite decorated tree. One can check that every element of Subtrees(t) is finite.
In the sequelx is a set andt, t1, t2 are decorated trees.
Next we state four propositions:

(11) x∈ Subtrees(t) iff there exists a noden of t such thatx = t�n.

(12) t ∈ Subtrees(t).

(13) If t1 is finite and Subtrees(t1) = Subtrees(t2), thent1 = t2.

(14) For every noden of t holds Subtrees(t�n)⊆ Subtrees(t).

Let t be a decorated tree. The functor FixedSubtrees(t) yields a subset of[:domt, Subtrees(t) :]
and is defined as follows:

(Def. 8) FixedSubtrees(t) = {〈〈p, t�p〉〉 : p ranges over nodes oft}.

Let t be a decorated tree. Observe that FixedSubtrees(t) is non empty.
Next we state three propositions:

(15) x∈ FixedSubtrees(t) iff there exists a noden of t such thatx = 〈〈n, t�n〉〉.

(16) 〈〈 /0, t〉〉 ∈ FixedSubtrees(t).

(17) If FixedSubtrees(t1) = FixedSubtrees(t2), thent1 = t2.

Let t be a decorated tree and letC be a set. The functorC-Subtrees(t) yields a subset of
Subtrees(t) and is defined by:

(Def. 9) C-Subtrees(t) = {t�p; p ranges over nodes oft: p /∈ Leaves(domt) ∨ t(p) ∈C}.

In the sequelC is a set.
One can prove the following propositions:

(18) x∈C-Subtrees(t) iff there exists a noden of t such thatx = t�n but n /∈ Leaves(domt) or
t(n) ∈C.

(19) C-Subtrees(t) is empty iff t is root andt( /0) /∈C.

Let t be a finite decorated tree and letC be a set. The functorC-ImmediateSubtrees(t) yielding
a function fromC-Subtrees(t) into (Subtrees(t))∗ is defined by the condition (Def. 10).

(Def. 10) Letd be a decorated tree. Supposed ∈C-Subtrees(t). Let p be a finite sequence of ele-
ments of Subtrees(t). If p = (C-ImmediateSubtrees(t))(d), thend = d( /0)-tree(p).
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3. SET OF SUBTREES OFSET OF DECORATEDTREE

Let X be a constituted of decorated trees non empty set. The functor Subtrees(X) yields a set and is
defined as follows:

(Def. 11) Subtrees(X) = {t�p : t ranges over elements ofX, p ranges over nodes oft}.
Let X be a constituted of decorated trees non empty set. Note that Subtrees(X) is constituted of

decorated trees and non empty.
Let D be a non empty set and letX be a non empty subset of Trees(D). Then Subtrees(X) is a

non empty subset of Trees(D).
Let D be a non empty set and letX be a non empty subset of FinTrees(D). Then Subtrees(X) is

a non empty subset of FinTrees(D).
In the sequelX, Y denote non empty constituted of decorated trees sets.
Next we state three propositions:

(20) x∈ Subtrees(X) iff there exists an elementt of X and there exists a noden of t such that
x = t�n.

(21) If t ∈ X, thent ∈ Subtrees(X).

(22) If X ⊆Y, then Subtrees(X)⊆ Subtrees(Y).

Let t be a decorated tree. Observe that{t} is non empty and constituted of decorated trees.
We now state two propositions:

(23) Subtrees({t}) = Subtrees(t).

(24) Subtrees(X) =
⋃
{Subtrees(t) : t ranges over elements ofX}.

Let X be a constituted of decorated trees non empty set and letC be a set. The functor
C-Subtrees(X) yielding a subset of Subtrees(X) is defined by:

(Def. 12) C-Subtrees(X) = {t�p; t ranges over elements ofX, p ranges over nodes oft: p /∈
Leaves(domt) ∨ t(p) ∈C}.

One can prove the following four propositions:

(25) x∈C-Subtrees(X) iff there exists an elementt of X and there exists a noden of t such that
x = t�n butn /∈ Leaves(domt) or t(n) ∈C.

(26) C-Subtrees(X) is empty iff for every elementt of X holdst is root andt( /0) /∈C.

(27) C-Subtrees({t}) = C-Subtrees(t).

(28) C-Subtrees(X) =
⋃
{C-Subtrees(t) : t ranges over elements ofX}.

Let X be a non empty constituted of decorated trees set. Let us assume that every element ofX is
finite. LetC be a set. The functorC-ImmediateSubtrees(X) yielding a function fromC-Subtrees(X)
into (Subtrees(X))∗ is defined by the condition (Def. 13).

(Def. 13) Letd be a decorated tree. Supposed ∈ C-Subtrees(X). Let p be a finite sequence of
elements of Subtrees(X). If p = (C-ImmediateSubtrees(X))(d), thend = d( /0)-tree(p).

Let t be a tree. Note that there exists an element oft which is empty.
Next we state four propositions:

(29) For every finite decorated treet and for every elementp of domt holds lensucc(t, p) =
lenSuccp and domsucc(t, p) = domSuccp.

(30) For every finite tree yielding finite sequencep and for every empty elementn of
︷︸︸︷

p holds
cardsuccn = lenp.

(31) Lett be a finite decorated tree,x be a set, andp be a decorated tree yielding finite sequence.
Supposet = x-tree(p). Let n be an empty element of domt. Then succ(t,n) = the roots ofp.

(32) For every finite decorated treet and for every nodep of t and for every nodeq of t�p holds
succ(t, pa q) = succ(t�p,q).
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