Introduction to Trees

Grzegorz Bancerek Warsaw University Białystok

Summary. The article consists of two parts: the first one deals with the concept of the prefixes of a finite sequence, the second one introduces and deals with the concept of tree. Besides some auxiliary propositions concerning finite sequences are presented. The trees are introduced as non-empty sets of finite sequences of natural numbers which are closed on prefixes and on sequences of less numbers (i.e. if $\langle n_1, n_2, ..., n_k \rangle$ is a vertex (element) of a tree and $m_i \leq n_i$ for i = 1, 2, ..., k, then $\langle m_1, m_2, ..., m_k \rangle$ also is). Finite trees, elementary trees with n leaves, the leaves and the subtrees of a tree, the inserting of a tree into another tree, with a node used for determining the place of insertion, antichains of prefixes, and height and width of finite trees are introduced.

MML Identifier: TREES_1.

WWW: http://mizar.org/JFM/Vol1/trees_1.html

The articles [6], [8], [2], [7], [9], [4], [3], [5], and [1] provide the notation and terminology for this paper.

For simplicity, we adopt the following convention: D denotes a non empty set, X, x, y denote sets, k, n denote natural numbers, and p, q, r denote finite sequences of elements of \mathbb{N} .

The following propositions are true:

- (1) For all finite sequences p, q such that $q = p \upharpoonright \operatorname{Seg} n$ holds $\operatorname{len} q \le n$.
- (2) For all finite sequences p, q such that $q = p \upharpoonright \operatorname{Seg} n$ holds $\operatorname{len} q \leq \operatorname{len} p$.
- (3) For all finite sequences p, r such that $r = p \upharpoonright \operatorname{Seg} n$ there exists a finite sequence q such that $p = r \cap q$.
- $(4) \quad \emptyset \neq \langle x \rangle.$
- (5) For all finite sequences p, q such that $p = p \cap q$ or $p = q \cap p$ holds $q = \emptyset$.
- (6) For all finite sequences p, q such that $p \cap q = \langle x \rangle$ holds $p = \langle x \rangle$ and $q = \emptyset$ or $p = \emptyset$ and $q = \langle x \rangle$.

Let p, q be finite sequences. Let us observe that $p \subseteq q$ if and only if:

(Def. 1) There exists *n* such that $p = q \upharpoonright \operatorname{Seg} n$.

We introduce $p \leq q$ as a synonym of $p \subseteq q$.

We now state three propositions:

- (8)¹ For all finite sequences p, q holds $p \leq q$ iff there exists a finite sequence r such that $q = p \cap r$.
- (15)² For all finite sequences p, q such that $p \leq q$ and len p = len q holds p = q.

¹ The proposition (7) has been removed.

² The propositions (9)–(14) have been removed.

(16) $\langle x \rangle \leq \langle y \rangle$ iff x = y.

Let p, q be finite sequences. We introduce $p \prec q$ as a synonym of $p \subset q$. One can prove the following proposition

(19)³ For all finite sets p, q such that p and q are \subseteq -comparable and card $p = \operatorname{card} q$ holds p = q.

In the sequel p_1 , p_2 denote finite sequences.

Next we state a number of propositions:

- $(23)^4$ $\langle x \rangle$ and $\langle y \rangle$ are \subseteq -comparable iff x = y.
- (24) For all finite sets p, q such that $p \subset q$ holds card $p < \operatorname{card} q$.
- (25) It is not true that there exists a finite sequence p such that $p \prec \emptyset$ or $p \prec \varepsilon_D$.
- (26) It is not true that there exist finite sequences p, q such that $p \prec q$ and $q \prec p$.
- (27) For all finite sequences p, q, r such that $p \prec q$ and $q \prec r$ or $p \prec q$ and $q \preceq r$ or $p \preceq q$ and $q \prec r$ holds $p \prec r$.
- (28) If $p_1 \leq p_2$, then $p_2 \not\prec p_1$.
- $(30)^5$ If $p_1 \cap \langle x \rangle \leq p_2$, then $p_1 \prec p_2$.
- (31) If $p_1 \leq p_2$, then $p_1 \prec p_2 \land \langle x \rangle$.
- (32) If $p_1 \prec p_2 \cap \langle x \rangle$, then $p_1 \leq p_2$.
- (33) If $\emptyset \prec p_2$ or $\emptyset \neq p_2$, then $p_1 \prec p_1 \cap p_2$.

Let p be a finite sequence. The functor $Seg_{\prec}(p)$ yields a set and is defined by:

(Def. 4)⁶ $x \in \text{Seg}_{\prec}(p)$ iff there exists a finite sequence q such that x = q and $q \prec p$.

Next we state several propositions:

- (35)⁷ For every finite sequence p such that $x \in \text{Seg}_{\prec}(p)$ holds x is a finite sequence.
- (36) For all finite sequences p, q holds $p \in \text{Seg}_{\prec}(q)$ iff $p \prec q$.
- (37) For all finite sequences p, q such that $p \in \text{Seg}_{\prec}(q)$ holds len p < len q.
- (38) For all finite sequences p, q, r such that $q \cap r \in \text{Seg}_{\prec}(p)$ holds $q \in \text{Seg}_{\prec}(p)$.
- (39) $\operatorname{Seg}_{\prec}(\emptyset) = \emptyset$.
- $(40) \quad \operatorname{Seg}_{\prec}(\langle x \rangle) = \{\emptyset\}.$
- (41) For all finite sequences p, q such that $p \leq q$ holds $\operatorname{Seg}_{\prec}(p) \subseteq \operatorname{Seg}_{\prec}(q)$.
- (42) For all finite sequences p, q, r such that $q \in \operatorname{Seg}_{\leq}(p)$ and $r \in \operatorname{Seg}_{\leq}(p)$ holds q and r are \subseteq -comparable.

Let us consider *X*. We say that *X* is tree-like if and only if:

(Def. 5) $X \subseteq \mathbb{N}^*$ and for every p such that $p \in X$ holds $\operatorname{Seg}_{\preceq}(p) \subseteq X$ and for all p, k, n such that $p \cap \langle k \rangle \in X$ and $n \leq k$ holds $p \cap \langle n \rangle \in X$.

³ The propositions (17) and (18) have been removed.

⁴ The propositions (20)–(22) have been removed.

⁵ The proposition (29) has been removed.

⁶ The definitions (Def. 2) and (Def. 3) have been removed.

⁷ The proposition (34) has been removed.

One can check that there exists a set which is non empty and tree-like.

A tree is a tree-like non empty set.

In the sequel T, T_1 are trees.

The following proposition is true

(44)⁸ If $x \in T$, then x is a finite sequence of elements of \mathbb{N} .

Let us consider T. We see that the element of T is a finite sequence of elements of \mathbb{N} . The following propositions are true:

- (45) For all finite sequences p, q such that $p \in T$ and $q \leq p$ holds $q \in T$.
- (46) For every finite sequence r such that $q \cap r \in T$ holds $q \in T$.
- (47) $\emptyset \in T$ and $\varepsilon_{\mathbb{N}} \in T$.
- (48) $\{\emptyset\}$ is a tree.
- (49) $T \cup T_1$ is a tree.
- (50) $T \cap T_1$ is a tree.

Let us note that there exists a tree which is finite.

In the sequel f_1 , f_2 denote finite trees.

One can prove the following propositions:

- $(52)^9$ $f_1 \cup f_2$ is a finite tree.
- (53) $f_1 \cap T$ is a finite tree and $T \cap f_1$ is a finite tree.

Let us consider n. The elementary tree of n yielding a finite tree is defined as follows:

(Def. 7)¹⁰ The elementary tree of $n = \{\langle k \rangle : k < n\} \cup \{\emptyset\}$.

Next we state three propositions:

- $(55)^{11}$ If k < n, then $\langle k \rangle \in$ the elementary tree of n.
- (56) The elementary tree of $0 = \{\emptyset\}$.
- (57) If $p \in$ the elementary tree of n, then $p = \emptyset$ or there exists k such that k < n and $p = \langle k \rangle$.

Let us consider T. The functor Leaves(T) yielding a subset of T is defined by:

(Def. 8) $p \in \text{Leaves}(T)$ iff $p \in T$ and it is not true that there exists q such that $q \in T$ and $p \prec q$.

Let us consider p. Let us assume that $p \in T$. The functor $T \upharpoonright p$ yielding a tree is defined as follows:

(Def. 9)
$$q \in T \upharpoonright p \text{ iff } p \cap q \in T.$$

The following proposition is true

$$(60)^{12}$$
 $T \upharpoonright \varepsilon_{\mathbb{N}} = T$.

Let T be a finite tree and let p be an element of T. One can check that $T \upharpoonright p$ is finite. Let us consider T. Let us assume that Leaves $(T) \neq \emptyset$. An element of T is called a leaf of T if:

(Def. 10) It \in Leaves(T).

⁸ The proposition (43) has been removed.

⁹ The proposition (51) has been removed.

¹⁰ The definition (Def. 6) has been removed.

The proposition (54) has been removed.

¹² The propositions (58) and (59) have been removed.

Let us consider T. A tree is called a subtree of T if:

(Def. 11) There exists an element p of T such that it $= T \upharpoonright p$.

In the sequel t denotes an element of T.

Let us consider T, p, T_1 . Let us assume that $p \in T$. The functor T with-replacement (p, T_1) yielding a tree is defined as follows:

(Def. 12) $q \in T$ with-replacement (p, T_1) iff $q \in T$ and $p \not\prec q$ or there exists r such that $r \in T_1$ and $q = p \cap r$.

We now state two propositions:

- (64)¹³ If $p \in T$, then T with-replacement $(p, T_1) = \{t_1; t_1 \text{ ranges over elements of } T: <math>p \not\prec t_1\} \cup \{p \cap s; s \text{ ranges over elements of } T_1: s = s\}.$
- (66)¹⁴ If $p \in T$, then $T_1 = (T \text{ with-replacement}(p, T_1)) \upharpoonright p$.

Let T be a finite tree, let t be an element of T, and let T_1 be a finite tree. One can verify that T with-replacement (t, T_1) is finite.

In the sequel w denotes a finite sequence.

The following proposition is true

(67) For every finite sequence p holds $\operatorname{Seg}_{\prec}(p) \approx \operatorname{dom} p$.

Let p be a finite sequence. Note that $Seg_{\prec}(p)$ is finite.

Next we state the proposition

(68) For every finite sequence p holds card $Seg_{\prec}(p) = len p$.

Let I_1 be a set. We say that I_1 is antichain of prefixes-like if and only if the conditions (Def. 13) are satisfied.

- (Def. 13)(i) For every x such that $x \in I_1$ holds x is a finite sequence, and
 - (ii) for all p_1 , p_2 such that $p_1 \in I_1$ and $p_2 \in I_1$ and $p_1 \neq p_2$ holds p_1 and p_2 are not \subseteq -comparable.

Let us mention that there exists a set which is antichain of prefixes-like.

An antichain of prefixes is an antichain of prefixes-like set.

Next we state two propositions:

- $(70)^{15}$ {w} is antichain of prefixes-like.
- (71) If p_1 and p_2 are not \subseteq -comparable, then $\{p_1, p_2\}$ is antichain of prefixes-like.

Let us consider T. An antichain of prefixes is said to be an antichain of prefixes of T if:

(Def. 14) It $\subseteq T$.

In the sequel t_1 , t_2 denote elements of T.

We now state three propositions:

- $(73)^{16}$ 0 is an antichain of prefixes of T and $\{0\}$ is an antichain of prefixes of T.
- (74) $\{t\}$ is an antichain of prefixes of T.
- (75) If t_1 and t_2 are not \subseteq -comparable, then $\{t_1, t_2\}$ is an antichain of prefixes of T.

¹³ The propositions (61)–(63) have been removed.

¹⁴ The proposition (65) has been removed.

¹⁵ The proposition (69) has been removed.

¹⁶ The proposition (72) has been removed.

Let T be a finite tree. Observe that every antichain of prefixes of T is finite.

Let T be a finite tree. The functor height T yielding a natural number is defined as follows:

(Def. 15) There exists p such that $p \in T$ and len p = height T and for every p such that $p \in T$ holds len $p \le \text{height } T$.

The functor width T yields a natural number and is defined by:

(Def. 16) There exists an antichain X of prefixes of T such that width $T = \operatorname{card} X$ and for every antichain Y of prefixes of T holds $\operatorname{card} Y \leq \operatorname{card} X$.

The following propositions are true:

- $(78)^{17}$ 1 < width f_1 .
- (79) height (the elementary tree of 0) = 0.
- (80) If height $f_1 = 0$, then $f_1 =$ the elementary tree of 0.
- (81) height (the elementary tree of n + 1) = 1.
- (82) width (the elementary tree of 0) = 1.
- (83) width (the elementary tree of n + 1) = n + 1.
- (84) For every element t of f_1 holds height $(f_1 \mid t) \leq \text{height } f_1$.
- (85) For every element t of f_1 such that $t \neq \emptyset$ holds height $(f_1 \mid t) < \text{height } f_1$.

The scheme $Tree\ Ind$ concerns a unary predicate \mathcal{P} , and states that:

For every f_1 holds $\mathcal{P}[f_1]$

provided the following requirement is met:

• For every f_1 such that for every n such that $\langle n \rangle \in f_1$ holds $\mathcal{P}[f_1 \upharpoonright \langle n \rangle]$ holds $\mathcal{P}[f_1]$.

REFERENCES

- [1] Grzegorz Bancerek. Cardinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/card_1.html.
- [2] Grzegorz Bancerek. The fundamental properties of natural numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/ JFM/Vol1/nat_1.html.
- [3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/finseq_1.html.
- [4] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funct_1.html.
- [5] Agata Darmochwał. Finite sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/finset_1.html.
- [6] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/ Axiomatics/tarski.html.
- [7] Andrzej Trybulec. Subsets of real numbers. Journal of Formalized Mathematics, Addenda, 2003. http://mizar.org/JFM/Addenda/numbers.html.
- [8] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/subset_1.html.
- [9] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/relat_1.html.

Received October 25, 1989

Published January 2, 2004

¹⁷ The propositions (76) and (77) have been removed.