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Summary. The article contains some theorems about open and closed sets. The fol-
lowing topological operations on sets are defined: closure, interior and frontier. The follow-
ing notions are introduced: dense set, boundary set, nowheredense set and set being domain
(closed domain and open domain), and some basic facts concerning them are proved.
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The articles [2], [3], and [1] provide the notation and terminology for this paper.
In this paperT1 denotes a 1-sorted structure andK, Q denote subsets ofT1.
One can prove the following propositions:

(2)1 K∪Ω(T1) = Ω(T1).

(8)2 (Ω(T1))c = /0(T1).

(20)3 K ⊆Q iff K missesQc.

(21) If Kc = Qc, thenK = Q.

For simplicity, we adopt the following rules:T1 is a topological space,G1 is a topological
structure,x is a set,P, Q are subsets ofT1, K, L are subsets ofT1, R, Sare subsets ofG1, andT, W
are subsets ofG1.

Next we state the proposition

(22) /0(T1) is closed.

Let T be a topological space. Observe that/0T is closed.
One can prove the following two propositions:

(26)4 T = T.

(27) Ω(G1) = Ω(G1).

Let T be a topological space and letP be a subset ofT. One can verify thatP is closed.
The following proposition is true

1Supported by RPBP.III-24.C1.
1 The proposition (1) has been removed.
2 The propositions (3)–(7) have been removed.
3 The propositions (9)–(19) have been removed.
4 The propositions (23)–(25) have been removed.
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(29)5 R is closed iffRc is open.

Let T be a topological space and letRbe a closed subset ofT. Note thatRc is open.
One can prove the following proposition

(30) R is open iffRc is closed.

Let T be a topological space. Observe that there exists a subset ofT which is open.
Let T be a topological space and letRbe an open subset ofT. Observe thatRc is closed.
The following propositions are true:

(31) If S is closed andT ⊆ S, thenT ⊆ S.

(32) K \L⊆ K \L.

(34)6 If R is closed andS is closed, thenR∩S= R∩S.

(35) If P is closed andQ is closed, thenP∩Q is closed.

(36) If P is closed andQ is closed, thenP∪Q is closed.

(37) If P is open andQ is open, thenP∪Q is open.

(38) If P is open andQ is open, thenP∩Q is open.

(39) LetG1 be a non empty topological space,Rbe a subset ofG1, andp be a point ofG1. Then
p∈ R if and only if for every subsetT of G1 such thatT is open andp∈ T holdsRmeetsT.

(40) If Q is open, thenQ∩K ⊆Q∩K.

(41) If Q is open, thenQ∩K = Q∩K.

Let G1 be a topological structure and letR be a subset ofG1. The functor IntR yields a subset
of G1 and is defined by:

(Def. 1) IntR= Rcc.

We now state several propositions:

(43)7 Int(Ω(T1)) = Ω(T1).

(44) IntT ⊆ T.

(45) Int IntT = IntT.

(46) IntK∩ IntL = Int(K∩L).

(47) Int( /0(G1)) = /0(G1).

(48) If T ⊆W, then IntT ⊆ IntW.

(49) IntT ∪ IntW ⊆ Int(T ∪W).

(50) Int(K \L)⊆ IntK \ IntL.

(51) IntK is open.

Let T be a topological space and letK be a subset ofT. One can check that IntK is open.
The following two propositions are true:

(52) /0(T1) is open.

5 The proposition (28) has been removed.
6 The proposition (33) has been removed.
7 The proposition (42) has been removed.
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(53) Ω(T1) is open.

Let T be a topological space. Note that/0T is open andΩT is open.
Let T be a topological space. Observe that there exists a subset ofT which is open and closed.
Let T be a non empty topological space. Note that there exists a subset ofT which is non empty,

open, and closed.
We now state several propositions:

(54) x∈ IntK iff there existsQ such thatQ is open andQ⊆ K andx∈Q.

(55) If R is open, then IntR= Rand if IntP = P, thenP is open.

(56) If S is open andS⊆ T, thenS⊆ IntT.

(57) P is open iff for everyx holdsx∈ P iff there existsQ such thatQ is open andQ⊆ P and
x∈Q.

(58) IntT = Int IntT.

(59) If R is open, thenIntR= R.

Let G1 be a topological structure and letRbe a subset ofG1. The functor FrRyielding a subset
of G1 is defined as follows:

(Def. 2) FrR= R∩Rc.

The following propositions are true:

(61)8 Let G1 be a non empty topological space,R be a subset ofG1, and p be a point ofG1.
Then p∈ FrR if and only if for every subsetS of G1 such thatS is open andp∈ S holdsR
meetsSandRc meetsS.

(62) FrT = Fr(Tc).

(63) FrT ⊆ T.

(64) FrT = Tc∩T ∪ (T \T).

(65) T = T ∪FrT.

(66) Fr(K∩L)⊆ FrK∪FrL.

(67) Fr(K∪L)⊆ FrK∪FrL.

(68) FrFrT ⊆ FrT.

(69) If R is closed, then FrR⊆ R.

(70) FrK∪FrL = Fr(K∪L)∪Fr(K∩L)∪FrK∩FrL.

(71) Fr IntT ⊆ FrT.

(72) FrT ⊆ FrT.

(73) IntT misses FrT.

(74) IntT = T \FrT.

(75) FrFrFrK = FrFrK.

(76) P is open iff FrP = P\P.

(77) P is closed iff FrP = P\ IntP.

8 The proposition (60) has been removed.
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Let G1 be a topological structure and letRbe a subset ofG1. We say thatR is dense if and only
if:

(Def. 3) R= Ω(G1).

Next we state four propositions:

(79)9 If R is dense andR⊆ S, thenS is dense.

(80) P is dense iff for everyQ such thatQ 6= /0 andQ is open holdsP meetsQ.

(81) If P is dense, then for everyQ such thatQ is open holdsQ = Q∩P.

(82) If P is dense andQ is dense and open, thenP∩Q is dense.

Let G1 be a topological structure and letR be a subset ofG1. We say thatR is boundary if and
only if:

(Def. 4) Rc is dense.

Next we state several propositions:

(84)10 R is boundary iff IntR= /0.

(85) If P is boundary andQ is boundary and closed, thenP∪Q is boundary.

(86) P is boundary iff for everyQ such thatQ⊆ P andQ is open holdsQ = /0.

(87) SupposeP is closed. ThenP is boundary if and only if for everyQ such thatQ 6= /0 andQ
is open there exists a subsetG of T1 such thatG⊆Q andG 6= /0 andG is open andP misses
G.

(88) R is boundary iffR⊆ FrR.

Let G1 be a topological structure and letR be a subset ofG1. We say thatR is nowhere dense if
and only if:

(Def. 5) R is boundary.

We now state several propositions:

(90)11 If P is nowhere dense andQ is nowhere dense, thenP∪Q is nowhere dense.

(91) If R is nowhere dense, thenRc is dense.

(92) If R is nowhere dense, thenR is boundary.

(93) If S is boundary and closed, thenS is nowhere dense.

(94) If R is closed, thenR is nowhere dense iffR= FrR.

(95) If P is open, then FrP is nowhere dense.

(96) If P is closed, then FrP is nowhere dense.

(97) If P is open and nowhere dense, thenP = /0.

Let G1 be a topological structure and letR be a subset ofG1. We say thatR is condensed if and
only if:

(Def. 6) IntR⊆ RandR⊆ IntR.

9 The proposition (78) has been removed.
10 The proposition (83) has been removed.
11 The proposition (89) has been removed.
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We say thatR is closed condensed if and only if:

(Def. 7) R= IntR.

We say thatR is open condensed if and only if:

(Def. 8) R= IntR.

We now state a number of propositions:

(101)12 R is open condensed iffRc is closed condensed.

(102) If R is closed condensed, then Fr IntR= FrR.

(103) If R is closed condensed, then FrR⊆ IntR.

(104) If R is open condensed, then FrR= FrRand FrR= R\R.

(105) If R is open and closed, thenR is closed condensed iffR is open condensed.

(106)(i) If R is closed and condensed, thenR is closed condensed, and

(ii) if P is closed condensed, thenP is closed and condensed.

(107)(i) If R is open and condensed, thenR is open condensed, and

(ii) if P is open condensed, thenP is open and condensed.

(108) If P is closed condensed andQ is closed condensed, thenP∪Q is closed condensed.

(109) If P is open condensed andQ is open condensed, thenP∩Q is open condensed.

(110) If P is condensed, then IntFrP = /0.

(111) If R is condensed, then IntR is condensed andR is condensed.
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