Subsets of Topological Spaces¹

Mirosław Wysocki Warsaw University Białystok Agata Darmochwał Warsaw University Białystok

Summary. The article contains some theorems about open and closed sets. The following topological operations on sets are defined: closure, interior and frontier. The following notions are introduced: dense set, boundary set, nowheredense set and set being domain (closed domain and open domain), and some basic facts concerning them are proved.

MML Identifier: TOPS_1.

WWW: http://mizar.org/JFM/Vol1/tops_1.html

The articles [2], [3], and [1] provide the notation and terminology for this paper. In this paper T_1 denotes a 1-sorted structure and K, Q denote subsets of T_1 . One can prove the following propositions:

$$(2)^{1}$$
 $K \cup \Omega_{(T_{1})} = \Omega_{(T_{1})}.$

$$(8)^2 \quad (\Omega_{(T_1)})^c = \emptyset_{(T_1)}.$$

$$(20)^3$$
 $K \subseteq Q$ iff K misses Q^c .

(21) If
$$K^{c} = Q^{c}$$
, then $K = Q$.

For simplicity, we adopt the following rules: T_1 is a topological space, G_1 is a topological structure, x is a set, P, Q are subsets of T_1 , T_1 , T_2 are subsets of T_2 , T_3 are subsets of T_4 , T_5 are subsets of T_5 .

Next we state the proposition

(22) $\emptyset_{(T_1)}$ is closed.

Let T be a topological space. Observe that \emptyset_T is closed. One can prove the following two propositions:

$$(26)^4$$
 $\overline{\overline{T}} = \overline{T}$.

(27)
$$\overline{\Omega_{(G_1)}} = \Omega_{(G_1)}$$
.

Let T be a topological space and let P be a subset of T. One can verify that \overline{P} is closed. The following proposition is true

¹Supported by RPBP.III-24.C1.

¹ The proposition (1) has been removed.

² The propositions (3)–(7) have been removed.

³ The propositions (9)–(19) have been removed.

⁴ The propositions (23)–(25) have been removed.

 $(29)^5$ R is closed iff R^c is open.

Let T be a topological space and let R be a closed subset of T. Note that R^c is open. One can prove the following proposition

(30) R is open iff R^c is closed.

Let T be a topological space. Observe that there exists a subset of T which is open. Let T be a topological space and let R be an open subset of T. Observe that R^c is closed. The following propositions are true:

- (31) If S is closed and $T \subseteq S$, then $\overline{T} \subseteq S$.
- $(32) \quad \overline{K} \setminus \overline{L} \subseteq \overline{K \setminus L}.$
- (34)⁶ If *R* is closed and *S* is closed, then $\overline{R \cap S} = \overline{R} \cap \overline{S}$.
- (35) If P is closed and Q is closed, then $P \cap Q$ is closed.
- (36) If P is closed and Q is closed, then $P \cup Q$ is closed.
- (37) If P is open and Q is open, then $P \cup Q$ is open.
- (38) If P is open and Q is open, then $P \cap Q$ is open.
- (39) Let G_1 be a non empty topological space, R be a subset of G_1 , and p be a point of G_1 . Then $p \in \overline{R}$ if and only if for every subset T of G_1 such that T is open and $p \in T$ holds R meets T.
- (40) If Q is open, then $Q \cap \overline{K} \subseteq \overline{Q \cap K}$.
- (41) If Q is open, then $\overline{Q \cap \overline{K}} = \overline{Q \cap K}$.

Let G_1 be a topological structure and let R be a subset of G_1 . The functor Int R yields a subset of G_1 and is defined by:

(Def. 1) Int $R = \overline{R^c}^c$.

We now state several propositions:

- $(43)^7$ Int $(\Omega_{(T_1)}) = \Omega_{(T_1)}$.
- (44) Int $T \subseteq T$.
- (45) Int Int T = Int T.
- $(46) \quad \operatorname{Int} K \cap \operatorname{Int} L = \operatorname{Int}(K \cap L).$
- (47) $\operatorname{Int}(\emptyset_{(G_1)}) = \emptyset_{(G_1)}.$
- (48) If $T \subseteq W$, then Int $T \subseteq \text{Int } W$.
- (49) $\operatorname{Int} T \cup \operatorname{Int} W \subseteq \operatorname{Int}(T \cup W)$.
- (50) $\operatorname{Int}(K \setminus L) \subseteq \operatorname{Int} K \setminus \operatorname{Int} L$.
- (51) Int K is open.

Let T be a topological space and let K be a subset of T. One can check that Int K is open. The following two propositions are true:

(52) $\emptyset_{(T_1)}$ is open.

⁵ The proposition (28) has been removed.

⁶ The proposition (33) has been removed.

⁷ The proposition (42) has been removed.

(53) $\Omega_{(T_1)}$ is open.

Let T be a topological space. Note that \emptyset_T is open and Ω_T is open.

Let T be a topological space. Observe that there exists a subset of T which is open and closed.

Let *T* be a non empty topological space. Note that there exists a subset of *T* which is non empty, open, and closed.

We now state several propositions:

- (54) $x \in \text{Int } K \text{ iff there exists } Q \text{ such that } Q \text{ is open and } Q \subseteq K \text{ and } x \in Q.$
- (55) If R is open, then Int R = R and if Int P = P, then P is open.
- (56) If *S* is open and $S \subseteq T$, then $S \subseteq \operatorname{Int} T$.
- (57) P is open iff for every x holds $x \in P$ iff there exists Q such that Q is open and $Q \subseteq P$ and $x \in Q$.
- (58) $\overline{\operatorname{Int} T} = \overline{\operatorname{Int} \overline{\operatorname{Int} T}}$.
- (59) If *R* is open, then $\overline{\operatorname{Int}} \overline{R} = \overline{R}$.

Let G_1 be a topological structure and let R be a subset of G_1 . The functor FrR yielding a subset of G_1 is defined as follows:

(Def. 2)
$$\operatorname{Fr} R = \overline{R} \cap \overline{R^c}$$
.

The following propositions are true:

- (61)⁸ Let G_1 be a non empty topological space, R be a subset of G_1 , and p be a point of G_1 . Then $p \in \operatorname{Fr} R$ if and only if for every subset S of G_1 such that S is open and $p \in S$ holds R meets S and R^c meets S.
- (62) $\operatorname{Fr} T = \operatorname{Fr}(T^{c}).$
- (63) Fr $T \subseteq \overline{T}$.
- (64) $\operatorname{Fr} T = \overline{T^{c}} \cap T \cup (\overline{T} \setminus T).$
- (65) $\overline{T} = T \cup \operatorname{Fr} T$.
- (66) $\operatorname{Fr}(K \cap L) \subseteq \operatorname{Fr} K \cup \operatorname{Fr} L$.
- (67) $\operatorname{Fr}(K \cup L) \subseteq \operatorname{Fr} K \cup \operatorname{Fr} L$.
- (68) $\operatorname{Fr}\operatorname{Fr} T \subseteq \operatorname{Fr} T$.
- (69) If *R* is closed, then $FrR \subseteq R$.
- (70) $\operatorname{Fr} K \cup \operatorname{Fr} L = \operatorname{Fr}(K \cup L) \cup \operatorname{Fr}(K \cap L) \cup \operatorname{Fr} K \cap \operatorname{Fr} L.$
- (71) $\operatorname{FrInt} T \subseteq \operatorname{Fr} T$.
- (72) $\operatorname{Fr} \overline{T} \subseteq \operatorname{Fr} T$.
- (73) Int T misses Fr T.
- (74) Int $T = T \setminus \operatorname{Fr} T$.
- (75) $\operatorname{Fr}\operatorname{Fr}K = \operatorname{Fr}\operatorname{Fr}K$.
- (76) P is open iff $\operatorname{Fr} P = \overline{P} \setminus P$.
- (77) P is closed iff $FrP = P \setminus Int P$.

⁸ The proposition (60) has been removed.

Let G_1 be a topological structure and let R be a subset of G_1 . We say that R is dense if and only if:

(Def. 3)
$$\overline{R} = \Omega_{(G_1)}$$
.

Next we state four propositions:

- $(79)^9$ If R is dense and $R \subseteq S$, then S is dense.
- (80) *P* is dense iff for every *Q* such that $Q \neq \emptyset$ and *Q* is open holds *P* meets *Q*.
- (81) If *P* is dense, then for every *Q* such that *Q* is open holds $\overline{Q} = \overline{Q \cap P}$.
- (82) If P is dense and Q is dense and open, then $P \cap Q$ is dense.

Let G_1 be a topological structure and let R be a subset of G_1 . We say that R is boundary if and only if:

(Def. 4) R^{c} is dense.

Next we state several propositions:

- $(84)^{10}$ R is boundary iff Int $R = \emptyset$.
- (85) If P is boundary and Q is boundary and closed, then $P \cup Q$ is boundary.
- (86) *P* is boundary iff for every *Q* such that $Q \subseteq P$ and *Q* is open holds $Q = \emptyset$.
- (87) Suppose P is closed. Then P is boundary if and only if for every Q such that $Q \neq \emptyset$ and Q is open there exists a subset G of T_1 such that $G \subseteq Q$ and $G \neq \emptyset$ and G is open and G misses G.
- (88) R is boundary iff $R \subseteq \operatorname{Fr} R$.

Let G_1 be a topological structure and let R be a subset of G_1 . We say that R is nowhere dense if and only if:

(Def. 5) \overline{R} is boundary.

We now state several propositions:

- $(90)^{11}$ If P is nowhere dense and Q is nowhere dense, then $P \cup Q$ is nowhere dense.
- (91) If R is nowhere dense, then R^{c} is dense.
- (92) If R is nowhere dense, then R is boundary.
- (93) If S is boundary and closed, then S is nowhere dense.
- (94) If R is closed, then R is nowhere dense iff R = FrR.
- (95) If P is open, then FrP is nowhere dense.
- (96) If *P* is closed, then Fr *P* is nowhere dense.
- (97) If *P* is open and nowhere dense, then $P = \emptyset$.

Let G_1 be a topological structure and let R be a subset of G_1 . We say that R is condensed if and only if:

(Def. 6) Int $\overline{R} \subseteq R$ and $R \subseteq \overline{\operatorname{Int} R}$.

⁹ The proposition (78) has been removed.

¹⁰ The proposition (83) has been removed.

¹¹ The proposition (89) has been removed.

We say that *R* is closed condensed if and only if:

(Def. 7) $R = \overline{\text{Int } R}$.

We say that R is open condensed if and only if:

(Def. 8) $R = \operatorname{Int} \overline{R}$.

We now state a number of propositions:

- $(101)^{12}$ R is open condensed iff R^{c} is closed condensed.
- (102) If *R* is closed condensed, then Fr Int R = Fr R.
- (103) If *R* is closed condensed, then $Fr R \subseteq \overline{Int R}$.
- (104) If *R* is open condensed, then $\operatorname{Fr} R = \operatorname{Fr} \overline{R}$ and $\operatorname{Fr} \overline{R} = \overline{R} \setminus R$.
- (105) If R is open and closed, then R is closed condensed iff R is open condensed.
- (106)(i) If R is closed and condensed, then R is closed condensed, and
 - (ii) if P is closed condensed, then P is closed and condensed.
- (107)(i) If R is open and condensed, then R is open condensed, and
 - (ii) if P is open condensed, then P is open and condensed.
- (108) If P is closed condensed and Q is closed condensed, then $P \cup Q$ is closed condensed.
- (109) If P is open condensed and Q is open condensed, then $P \cap Q$ is open condensed.
- (110) If *P* is condensed, then Int Fr $P = \emptyset$.
- (111) If R is condensed, then Int R is condensed and \overline{R} is condensed.

REFERENCES

- [1] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/pre_topc.html.
- [2] Andrzej Trybulec. Tarski Grothendieck set theory. *Journal of Formalized Mathematics*, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [3] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.

Received April 28, 1989

Published January 2, 2004

¹² The propositions (98)–(100) have been removed.