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The articles|[[10], [[14],[[12],12],[15], 18], 18], 9], [[1], [3], [[4], and[[7] provide the notation and
terminology for this paper.

LetN be a natural number. A sequenceZf is a sequence afN.

For simplicity, we follow the rulesN, n, mare natural numbers, r, ry, ro are real numbers
is a setw, w1, Wo, g are points ofE’r\‘, andsy, 9, s3, 4, S) are sequences nﬁ{\‘

Next we state the proposition

(ZE] Let f be a function. Therf is a sequence i if and only if domf = N and for everyn
holds f (n) is a point of N,

Let us consideN and letl; be a sequence m{“ We say that; is non-zero if and only if:
(Def. 1) gy C (the carrier ofEN)\ {Ogn}-

One can prove the following propositions:

(3) s1is non-zero iff for every such thai € N holdss; (x) # Oﬂ.

(4) s is non-zero iff for evenyn holdss; (n) # 0@..

(5) ForallN, s1, 52 such that for every such tha € N holdss; (X) = s(x) holdss; = ;.
(6) ForallN, s1, 52 such that for every holdss; (n) = s(n) holdss; = 5.

The schemé&xTopRealNSedeals with a natural numbet and a unary functofF yielding a
point of £, and states that:
There exists a sequensgin Z;! such that for every holdss; (n) = 7 (n)
for all values of the parameters.
Let us consideN, s, s3. The functors, + s3 yielding a sequence iﬁ{\‘ is defined as follows:

(Def. 2) For everyn holds(s; +3)(n) = Sp(n) +s3(n).
Let us consider, N, s;. The functor - 5; yields a sequence rﬁ}\‘ and is defined as follows:
(Def. 3) For everyn holds(r-s1)(n) =r-s1(n).

Let us consideN, s;. The functor—s; yielding a sequence ifETN is defined as follows:

1 The proposition (1) has been removed.
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(Def. 4) For evenyn holds(—s;1)(n) = —s1(n).
Let us consideN, s, s3. The functors, — s3 yields a sequence m{\‘ and is defined by:
(Def.5) ,—s3=9+—S3.

Let us consideN and letx be a point on{“. The functor|x| yielding a real number is defined
by:

(Def. 6) There exists a finite sequencef elements oR such thaik =y and|x| = |y|.

Let us consideN, s;. The functor|s;| yields a sequence of real numbers and is defined as
follows:

(Def. 7) For evenyn holds|s;|(n) = |s1(n)].
One can prove the following propositions:
@F Ir|-w| =r-wl.
©) [r-si=Ir[si].

(10) +s3=s3+%.

(1) (2+s3)+su=%+(s3+%)
(12) —s1=(-1)-s1.

(13) r-(sptss)=r-s2+r-s3.
(14) (r-a)-s1=r-(q-s1).

(15) r-(s—s)=r-s2—r-s3.
(16) s—(ss+s4) = —S3— 4.
17) 1s1=s9.

(18) ——si=s1.

(19) ——-s=%+ss.

(20) s2—(s3—s4) = (22— %) +%u.
(21) st (ss—s4) = (2+%) — s
(22) If r #0 ands; is non-zero, then - s; is non-zero.

(23) If 51 is non-zero, ther-s; is non-zero.

(24) |O,ETN| =0.

(25) Ifjw| =0, thenw= O,E_IN.
(26) |w| >0.

@7) [-w| = |w|.

(28)  [wy —wo| = w2 —wy|.
(29) |wi—wo| =0 iff wy =ws.
(30)  [wa +Wp| < |wy|+ |wyl.

(31)  [wp —wp| < |wy|+ |wyl.

2 The proposition (7) has been removed.
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(32) |wi| — Wa| < Jwy+ Wyl

(33)  wa| — [wa| < Wy —Wy|.

(34) If wy # wp, then|wy —wsp| > 0.

(35) |wy—wa| < |wp—wW|+ |w—wy.

(36) IfO<riand|wi| < |wy|andry <ro, thenjwy| rq < |wp|-ro.

(38F —|w| <randr < |w|iff |r| < |w.

Let us consideN and letl; be a sequence m{“ We say that; is bounded if and only if:

(Def. 8) There exists such that for every holds|l1(n)| <.

The following proposition is true
(39) Forevennthere exists such that O< r and for everym such tham < n holds|s;(m)| <.

Let us consideN and letl; be a sequence iBN. We say that; is convergent if and only if:

(Def. 9) There existg such that for every such that O< r there exists1 such that for everyn such
thatn < mholds|l;(m) —g| <.

Let us consideN, s;. Let us assume that is convergent. The functor lisj yielding a point of
£N is defined by:

(Def. 10) For everyr such that O< r there exist: such that for everyn such thatn < m holds
|st(m) —limsy| <.

One can prove the following propositions:
(41@ If 51 is convergent and, is convergent, thes; +s) is convergent.
(42) If s is convergent and, is convergent, then lii$; +s;) = lims; +lim s).
(43) If 1 is convergent, then- s; is convergent.
(44) If s is convergent, then lign-s;) =r-lims;.
(45) |If 1 is convergent, ther-s; is convergent.
(46) If 51 is convergent, then lifr-s1) = —lim s;.
(47) If s is convergent and, is convergent, thes; — s, is convergent.
(48) If 51 is convergent and, is convergent, then lii$; — s;) = lims; —lims).
(SOE] If s1is convergent, theg is bounded.
(51) If 51 is convergent, then if ling # Ozy, then there exista such that for everyn such that

i
n < mholds 2% < |s;(m)).

3 The proposition (37) has been removed.
4 The proposition (40) has been removed.
5 The proposition (49) has been removed.
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