Sequences in $\mathcal{E}_{\mathsf{T}}^N$

Agnieszka Sakowicz Warsaw University Białystok Jarosław Gryko Warsaw University Białystok Adam Grabowski Warsaw University Białystok

MML Identifier: TOPRNS_1.

WWW: http://mizar.org/JFM/Vol6/toprns_1.html

The articles [10], [11], [12], [2], [5], [6], [8], [9], [1], [3], [4], and [7] provide the notation and terminology for this paper.

Let N be a natural number. A sequence in \mathcal{E}_T^N is a sequence of \mathcal{E}_T^N .

For simplicity, we follow the rules: N, n, m are natural numbers, q, r, r_1 , r_2 are real numbers, x is a set, w, w_1 , w_2 , g are points of \mathcal{E}_T^N , and s_1 , s_2 , s_3 , s_4 , s_1' are sequences in \mathcal{E}_T^N .

Next we state the proposition

(2)¹ Let f be a function. Then f is a sequence in \mathcal{E}_{T}^{N} if and only if dom $f = \mathbb{N}$ and for every n holds f(n) is a point of \mathcal{E}_{T}^{N} .

Let us consider N and let I_1 be a sequence in \mathcal{E}_T^N . We say that I_1 is non-zero if and only if:

(Def. 1) $\operatorname{rng} I_1 \subseteq (\text{the carrier of } \mathcal{E}_T^N) \setminus \{0_{\mathcal{E}_T^N}\}.$

One can prove the following propositions:

- (3) s_1 is non-zero iff for every x such that $x \in \mathbb{N}$ holds $s_1(x) \neq 0_{\mathcal{F}_n^N}$.
- (4) s_1 is non-zero iff for every n holds $s_1(n) \neq 0_{\mathcal{E}_x^N}$.
- (5) For all N, s_1 , s_2 such that for every x such that $x \in \mathbb{N}$ holds $s_1(x) = s_2(x)$ holds $s_1 = s_2$.
- (6) For all N, s_1 , s_2 such that for every n holds $s_1(n) = s_2(n)$ holds $s_1 = s_2$.

The scheme ExTopRealNSeq deals with a natural number \mathcal{A} and a unary functor \mathcal{F} yielding a point of $\mathcal{E}_{T}^{\mathcal{A}}$, and states that:

There exists a sequence s_1 in $\mathcal{E}_T^{\mathcal{A}}$ such that for every n holds $s_1(n) = \mathcal{F}(n)$ for all values of the parameters.

Let us consider \hat{N} , s_2 , s_3 . The functor $s_2 + s_3$ yielding a sequence in \mathcal{E}_T^N is defined as follows:

(Def. 2) For every *n* holds $(s_2 + s_3)(n) = s_2(n) + s_3(n)$.

Let us consider r, N, s_1 . The functor $r \cdot s_1$ yields a sequence in \mathcal{E}_T^N and is defined as follows:

(Def. 3) For every n holds $(r \cdot s_1)(n) = r \cdot s_1(n)$.

Let us consider N, s_1 . The functor $-s_1$ yielding a sequence in \mathcal{E}_T^N is defined as follows:

1

¹ The proposition (1) has been removed.

(Def. 4) For every n holds $(-s_1)(n) = -s_1(n)$.

Let us consider N, s_2 , s_3 . The functor $s_2 - s_3$ yields a sequence in \mathcal{E}_T^N and is defined by:

(Def. 5) $s_2 - s_3 = s_2 + -s_3$.

Let us consider N and let x be a point of $\mathcal{E}_{\mathbf{T}}^{N}$. The functor |x| yielding a real number is defined by:

(Def. 6) There exists a finite sequence y of elements of \mathbb{R} such that x = y and |x| = |y|.

Let us consider N, s_1 . The functor $|s_1|$ yields a sequence of real numbers and is defined as follows:

(Def. 7) For every n holds $|s_1|(n) = |s_1(n)|$.

One can prove the following propositions:

$$(8)^2 \quad |r| \cdot |w| = |r \cdot w|.$$

(9)
$$|r \cdot s_1| = |r| |s_1|$$
.

$$(10) \quad s_2 + s_3 = s_3 + s_2.$$

(11)
$$(s_2 + s_3) + s_4 = s_2 + (s_3 + s_4).$$

(12)
$$-s_1 = (-1) \cdot s_1$$
.

(13)
$$r \cdot (s_2 + s_3) = r \cdot s_2 + r \cdot s_3$$
.

$$(14) \quad (r \cdot q) \cdot s_1 = r \cdot (q \cdot s_1).$$

(15)
$$r \cdot (s_2 - s_3) = r \cdot s_2 - r \cdot s_3$$
.

(16)
$$s_2 - (s_3 + s_4) = s_2 - s_3 - s_4$$
.

(17)
$$1 \cdot s_1 = s_1$$
.

(18)
$$--s_1 = s_1$$
.

$$(19) \quad s_2 - -s_3 = s_2 + s_3.$$

(20)
$$s_2 - (s_3 - s_4) = (s_2 - s_3) + s_4$$
.

(21)
$$s_2 + (s_3 - s_4) = (s_2 + s_3) - s_4$$
.

- (22) If $r \neq 0$ and s_1 is non-zero, then $r \cdot s_1$ is non-zero.
- (23) If s_1 is non-zero, then $-s_1$ is non-zero.

(24)
$$|0_{\mathcal{E}_{\mathbf{T}}^N}| = 0.$$

(25) If
$$|w| = 0$$
, then $w = 0_{\mathcal{E}_{\Gamma}^{N}}$.

(26)
$$|w| \ge 0$$
.

(27)
$$|-w| = |w|$$
.

(28)
$$|w_1 - w_2| = |w_2 - w_1|$$
.

(29)
$$|w_1 - w_2| = 0$$
 iff $w_1 = w_2$.

$$(30) |w_1 + w_2| \le |w_1| + |w_2|.$$

$$(31) |w_1 - w_2| \le |w_1| + |w_2|.$$

² The proposition (7) has been removed.

- (32) $|w_1| |w_2| < |w_1 + w_2|$.
- $(33) |w_1| |w_2| \le |w_1 w_2|.$
- (34) If $w_1 \neq w_2$, then $|w_1 w_2| > 0$.
- $(35) |w_1 w_2| \le |w_1 w| + |w w_2|.$
- (36) If $0 \le r_1$ and $|w_1| < |w_2|$ and $r_1 < r_2$, then $|w_1| \cdot r_1 < |w_2| \cdot r_2$.
- $(38)^3 |w| < r$ and r < |w| iff |r| < |w|.

Let us consider N and let I_1 be a sequence in \mathcal{E}_T^N . We say that I_1 is bounded if and only if:

(Def. 8) There exists r such that for every n holds $|I_1(n)| < r$.

The following proposition is true

(39) For every n there exists r such that 0 < r and for every m such that $m \le n$ holds $|s_1(m)| < r$.

Let us consider N and let I_1 be a sequence in \mathcal{E}_T^N . We say that I_1 is convergent if and only if:

(Def. 9) There exists g such that for every r such that 0 < r there exists n such that for every m such that $n \le m$ holds $|I_1(m) - g| < r$.

Let us consider N, s_1 . Let us assume that s_1 is convergent. The functor $\lim s_1$ yielding a point of \mathcal{E}_T^N is defined by:

(Def. 10) For every r such that 0 < r there exists n such that for every m such that $n \le m$ holds $|s_1(m) - \lim s_1| < r$.

One can prove the following propositions:

- $(41)^4$ If s_1 is convergent and s'_1 is convergent, then $s_1 + s'_1$ is convergent.
- (42) If s_1 is convergent and s_1' is convergent, then $\lim(s_1 + s_1') = \lim s_1 + \lim s_1'$.
- (43) If s_1 is convergent, then $r \cdot s_1$ is convergent.
- (44) If s_1 is convergent, then $\lim(r \cdot s_1) = r \cdot \lim s_1$.
- (45) If s_1 is convergent, then $-s_1$ is convergent.
- (46) If s_1 is convergent, then $\lim(-s_1) = -\lim s_1$.
- (47) If s_1 is convergent and s'_1 is convergent, then $s_1 s'_1$ is convergent.
- (48) If s_1 is convergent and s'_1 is convergent, then $\lim(s_1 s'_1) = \lim s_1 \lim s'_1$.
- $(50)^5$ If s_1 is convergent, then s_1 is bounded.
- (51) If s_1 is convergent, then if $\lim s_1 \neq 0_{\mathcal{E}_T^N}$, then there exists n such that for every m such that $n \leq m$ holds $\frac{|\lim s_1|}{2} < |s_1(m)|$.

³ The proposition (37) has been removed.

⁴ The proposition (40) has been removed.

⁵ The proposition (49) has been removed.

REFERENCES

- [1] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/finseq_1.html.
- [2] Czesław Byliński. Functions and their basic properties. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Voll/funct_1.html.
- [3] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. *Journal of Formalized Mathematics*, 2, 1990. http://mizar.org/JFM/Vol2/finseq_2.html.
- [4] Agata Darmochwał. The Euclidean space. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/euclid.html.
- [5] Krzysztof Hryniewiecki. Basic properties of real numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/real_1.html.
- [6] Jarosław Kotowicz. Real sequences and basic operations on them. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/ JFM/Vol1/seq_1.html.
- [7] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/pre_topc.html.
- [8] Jan Popiołek. Some properties of functions modul and signum. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/ JFM/Voll/absvalue.html.
- [9] Jan Popiołek. Real normed space. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/normsp_1.html.
- [10] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [11] Andrzej Trybulec. Subsets of real numbers. *Journal of Formalized Mathematics*, Addenda, 2003. http://mizar.org/JFM/Addenda/numbers.html.
- [12] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relat_1.html.

Received May 10, 1994

Published January 2, 2004