More on the Finite Sequences on the Plane¹

Andrzej Trybulec University of Białystok

Summary. We continue proving lemmas needed for the proof of the Jordan curve theorem. The main goal was to prove the last theorem being a mutation of the first theorem in [12].

MML Identifier: TOPREAL8.

WWW: http://mizar.org/JFM/Vol13/topreal8.html

The articles [18], [1], [15], [9], [16], [4], [2], [5], [19], [10], [13], [8], [21], [3], [17], [6], [7], [11], [14], and [20] provide the notation and terminology for this paper.

1. Preliminaries

One can prove the following proposition

(1) For all sets A, x, y such that $A \subseteq \{x,y\}$ and $x \in A$ and $y \notin A$ holds $A = \{x\}$.

Let us observe that there exists a function which is trivial.

2. FINITE SEQUENCES

We use the following convention: G is a Go-board and i, j, k, m, n are natural numbers.

Let us observe that there exists a finite sequence which is non constant.

Next we state a number of propositions:

- (2) For every non trivial finite sequence f holds 1 < len f.
- (3) For every non trivial set D and for every non constant circular finite sequence f of elements of D holds len f > 2.
- (4) For every finite sequence f and for every set x holds $x \in \operatorname{rng} f$ or $x \leftrightarrow f = 0$.
- (5) Let p be a set, D be a non empty set, f be a non empty finite sequence of elements of D, and g be a finite sequence of elements of D. If $p \leftrightarrow f = \text{len } f$, then $f \cap g \to p = g$.
- (6) For every non empty set D and for every non empty one-to-one finite sequence f of elements of D holds $f_{\text{len } f} \leftrightarrow f = \text{len } f$.
- (7) For all finite sequences f, g holds len $f \leq \text{len}(f \sim g)$.
- (8) For all finite sequences f, g and for every set x such that $x \in \operatorname{rng} f$ holds $x \leftrightarrow f = x \leftrightarrow (f \land g)$.

1

¹This work has been partially supported by CALCULEMUS grant HPRN-CT-2000-00102.

- (9) For every non empty finite sequence f and for every finite sequence g holds len $g \le \text{len}(f \cap g)$.
- (10) For all finite sequences f, g holds rng $f \subseteq \text{rng}(f \curvearrowright g)$.
- (11) Let D be a non empty set, f be a non empty finite sequence of elements of D, and g be a non trivial finite sequence of elements of D. If $g_{\text{len }g} = f_1$, then $f \sim g$ is circular.
- (12) Let D be a non empty set, M be a matrix over D, f be a finite sequence of elements of D, and g be a non empty finite sequence of elements of D. Suppose $f_{\text{len }f} = g_1$ and f is a sequence which elements belong to M and g is a sequence which elements belong to M. Then $f \sim g$ is a sequence which elements belong to M.
- (13) For every set D and for every finite sequence f of elements of D such that $1 \le k$ holds $\langle f(k+1), \ldots, f(\ln f) \rangle = f_{\mid k}$.
- (14) For every set D and for every finite sequence f of elements of D such that $k \le \text{len } f$ holds $\langle f(1), \dots, f(k) \rangle = f \upharpoonright k$.
- (15) Let p be a set, D be a non empty set, f be a non empty finite sequence of elements of D, and g be a finite sequence of elements of D. If $p \leftrightarrow f = \text{len } f$, then $f \cap g \leftarrow p = \langle f(1), \dots, f(\text{len } f 1) \rangle$.
- (16) Let *D* be a non empty set and f, g be non empty finite sequences of elements of *D*. If $g_1 \leftrightarrow f = \text{len } f$, then $(f \curvearrowright g) := g$.
- (17) Let *D* be a non empty set and f, g be non empty finite sequences of elements of *D*. If $g_1 \leftrightarrow f = \text{len } f$, then $(f \curvearrowright g) -: g_1 = f$.
- (18) Let D be a non trivial set, f be a non empty finite sequence of elements of D, and g be a non trivial finite sequence of elements of D. Suppose $g_1 = f_{\text{len } f}$ and for every i such that $1 \le i$ and i < len f holds $f_i \ne g_1$. Then $f \curvearrowright g \circlearrowleft g_1 = g \curvearrowright f$.

3. ON THE PLANE

Next we state several propositions:

- (19) For every non trivial finite sequence f of elements of \mathcal{E}_{T}^{2} holds $\mathcal{L}(f,1) = \widetilde{\mathcal{L}}(f \upharpoonright 2)$.
- (20) For every s.c.c. finite sequence f of elements of $\mathcal{E}_{\mathbb{T}}^2$ and for every n such that n < len f holds $f \upharpoonright n$ is s.n.c..
- (21) For every s.c.c. finite sequence f of elements of \mathcal{E}_T^2 and for every n such that $1 \le n$ holds $f_{|n}$ is s.n.c..
- (22) Let f be a circular s.c.c. finite sequence of elements of \mathcal{E}_T^2 and given n. If n < len f and len f > 4, then $f \upharpoonright n$ is one-to-one.
- (23) Let f be a circular s.c.c. finite sequence of elements of \mathcal{E}_T^2 . Suppose len f > 4. Let i, j be natural numbers. If 1 < i and i < j and $j \le \text{len } f$, then $f_i \ne f_j$.
- (24) Let f be a circular s.c.c. finite sequence of elements of \mathcal{E}_T^2 and given n. If $1 \le n$ and len f > 4, then $f_{|n}$ is one-to-one.
- (25) For every special non empty finite sequence f of elements of \mathcal{E}^2_T holds $\langle f(m), \dots, f(n) \rangle$ is special.
- (26) Let f be a special non empty finite sequence of elements of \mathcal{E}_T^2 and g be a special non trivial finite sequence of elements of \mathcal{E}_T^2 . If $f_{\text{len }f} = g_1$, then $f \sim g$ is special.
- (27) For every circular unfolded s.c.c. finite sequence f of elements of $\mathcal{E}_{\mathbf{T}}^2$ such that len f > 4 holds $\mathcal{L}(f,1) \cap \widetilde{\mathcal{L}}(f_{\mid 1}) = \{f_1, f_2\}.$

Let us note that there exists a finite sequence of elements of \mathcal{E}_T^2 which is one-to-one, special, unfolded, s.n.c., and non empty.

We now state several propositions:

- (28) For all finite sequences f, g of elements of \mathcal{E}_T^2 such that j < len f holds $\mathcal{L}(f \curvearrowright g, j) = \mathcal{L}(f, j)$.
- (29) For all non empty finite sequences f, g of elements of \mathcal{E}_T^2 such that $1 \le j$ and j+1 < len g holds $\mathcal{L}(f \frown g, \text{len } f+j) = \mathcal{L}(g, j+1)$.
- (30) Let f be a non empty finite sequence of elements of \mathcal{E}^2_T and g be a non trivial finite sequence of elements of \mathcal{E}^2_T . If $f_{\text{len }f} = g_1$, then $\mathcal{L}(f \curvearrowright g, \text{len }f) = \mathcal{L}(g, 1)$.
- (31) Let f be a non empty finite sequence of elements of $\mathcal{E}_{\mathbf{T}}^2$ and g be a non trivial finite sequence of elements of $\mathcal{E}_{\mathbf{T}}^2$. If $j+1 < \log g$ and $f_{\log f} = g_1$, then $\mathcal{L}(f \curvearrowright g, \log f + j) = \mathcal{L}(g, j+1)$.
- (32) Let f be a non empty s.n.c. unfolded finite sequence of elements of \mathcal{E}_T^2 and given i. If $1 \le i$ and i < len f, then $\mathcal{L}(f,i) \cap \text{rng } f = \{f_i, f_{i+1}\}$.
- (33) Let f, g be non trivial s.n.c. one-to-one unfolded finite sequences of elements of \mathcal{E}_T^2 . If $\widetilde{\mathcal{L}}(f) \cap \widetilde{\mathcal{L}}(g) = \{f_1, g_1\}$ and $f_1 = g_{\text{len } g}$ and $g_1 = f_{\text{len } f}$, then $f \curvearrowright g$ is s.c.c..

In the sequel f, g are finite sequences of elements of $\mathcal{E}^2_{\mathrm{T}}$.

The following three propositions are true:

- (34) If f is unfolded and g is unfolded and $f_{\text{len }f} = g_1$ and $\mathcal{L}(f, \text{len }f 1) \cap \mathcal{L}(g, 1) = \{f_{\text{len }f}\},$ then $f \curvearrowright g$ is unfolded.
- (35) If f is non empty and g is non trivial and $f_{\text{len }f}=g_1$, then $\widetilde{\mathcal{L}}(f \curvearrowright g)=\widetilde{\mathcal{L}}(f)\cup\widetilde{\mathcal{L}}(g)$.
- (36) Suppose that
 - (i) for every n such that $n \in \text{dom } f$ there exist i, j such that $\langle i, j \rangle \in \text{the indices of } G$ and $f_n = G \circ (i, j)$,
- (ii) f is non constant, circular, unfolded, s.c.c., and special, and
- (iii) len f > 4.

Then there exists g such that

- (iv) g is a sequence which elements belong to G, unfolded, s.c.c., and special,
- (v) $\mathcal{L}(f) = \mathcal{L}(g)$,
- (vi) $f_1 = g_1$,
- (vii) $f_{\text{len }f} = g_{\text{len }g}$, and
- (viii) $\operatorname{len} f \leq \operatorname{len} g$.

REFERENCES

- Grzegorz Bancerek. The fundamental properties of natural numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/nat_1.html.
- [2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Voll/finseq_1.html.
- [3] Józef Białas. Group and field definitions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/realsetl. html.
- [4] Czesław Byliński. Functions and their basic properties. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Voll/funct_1.html.
- [5] Czesław Byliński. Some properties of restrictions of finite sequences. Journal of Formalized Mathematics, 7, 1995. http://mizar.org/JFM/Vo17/finseq_5.html.
- [6] Agata Darmochwał. The Euclidean space. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/euclid.html.

- [7] Agata Darmochwał and Yatsuka Nakamura. The topological space $\mathcal{E}_{\mathbb{T}}^2$. Arcs, line segments and special polygonal arcs. *Journal of Formalized Mathematics*, 3, 1991. http://mizar.org/JFM/Vol3/topreal1.html.
- [8] Katarzyna Jankowska. Matrices. Abelian group of matrices. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/matrix_1.html.
- [9] Jarosław Kotowicz. Monotone real sequences. Subsequences. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Vol1/seqm_3.html.
- [10] Jarosław Kotowicz. Functions and finite sequences of real numbers. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/ JFM/Vol5/rfinseq.html.
- [11] Jarosław Kotowicz and Yatsuka Nakamura. Introduction to Go-Board part I. Journal of Formalized Mathematics, 4, 1992. http://mizar.org/JFM/Vol4/goboard1.html.
- [12] Jarosław Kotowicz and Yatsuka Nakamura. Properties of Go-Board part III. Journal of Formalized Mathematics, 4, 1992. http://mizar.org/JFM/Vol4/goboard3.html.
- [13] Yatsuka Nakamura and Piotr Rudnicki. Vertex sequences induced by chains. Journal of Formalized Mathematics, 7, 1995. http://mizar.org/JFM/Vol7/graph_2.html.
- [14] Yatsuka Nakamura and Andrzej Trybulec. Decomposing a Go-Board into cells. Journal of Formalized Mathematics, 7, 1995. http://mizar.org/JFM/Vol7/goboard5.html.
- [15] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/Vol5/binarith.html.
- [16] Beata Padlewska. Families of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/setfam_1.html.
- [17] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/pre_topo.html.
- [18] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [19] Andrzej Trybulec. On the decomposition of finite sequences. Journal of Formalized Mathematics, 7, 1995. http://mizar.org/JFM/Vol7/finseq_6.html.
- [20] Wojciech A. Trybulec. Pigeon hole principle. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/finseq_4.html.
- [21] Edmund Woronowicz. Relations defined on sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relset_1.html.

Received October 25, 2001

Published January 2, 2004