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Summary. We continue proving lemmas needed for the proof of the Jordan curve
theorem. The main goal was to prove the last theorem being a mutation of the first theorem in
[12].

MML Identifier: TOPREAL8.

WWW: http://mizar.org/JFM/Vol13/topreal8.html

The articles [18], [1], [15], [9], [16], [4], [2], [5], [19], [10], [13], [8], [21], [3], [17], [6], [7], [11],
[14], and [20] provide the notation and terminology for this paper.

1. PRELIMINARIES

One can prove the following proposition

(1) For all setsA, x, y such thatA⊆ {x,y} andx∈ A andy /∈ A holdsA = {x}.

Let us observe that there exists a function which is trivial.

2. FINITE SEQUENCES

We use the following convention:G is a Go-board andi, j, k, m, n are natural numbers.
Let us observe that there exists a finite sequence which is non constant.
Next we state a number of propositions:

(2) For every non trivial finite sequencef holds 1< len f .

(3) For every non trivial setD and for every non constant circular finite sequencef of elements
of D holds lenf > 2.

(4) For every finite sequencef and for every setx holdsx∈ rng f or x " f = 0.

(5) Let p be a set,D be a non empty set,f be a non empty finite sequence of elements ofD,
andg be a finite sequence of elements ofD. If p " f = len f , then f a g→ p = g.

(6) For every non empty setD and for every non empty one-to-one finite sequencef of ele-
ments ofD holds flen f " f = len f .

(7) For all finite sequencesf , g holds lenf ≤ len( f aa g).

(8) For all finite sequencesf , g and for every setx such thatx∈ rng f holdsx" f = x" ( f a
a g).
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(9) For every non empty finite sequencef and for every finite sequenceg holds leng≤ len( f a
a g).

(10) For all finite sequencesf , g holds rngf ⊆ rng( f aa g).

(11) LetD be a non empty set,f be a non empty finite sequence of elements ofD, andg be a
non trivial finite sequence of elements ofD. If gleng = f1, then f aa g is circular.

(12) Let D be a non empty set,M be a matrix overD, f be a finite sequence of elements of
D, andg be a non empty finite sequence of elements ofD. Supposeflen f = g1 and f is a
sequence which elements belong toM andg is a sequence which elements belong toM. Then
f aa g is a sequence which elements belong toM.

(13) For every setD and for every finite sequencef of elements ofD such that 1≤ k holds
〈 f (k+1), . . . , f (len f )〉= f�k.

(14) For every setD and for every finite sequencef of elements ofD such thatk≤ len f holds
〈 f (1), . . . , f (k)〉= f �k.

(15) Let p be a set,D be a non empty set,f be a non empty finite sequence of elements
of D, andg be a finite sequence of elements ofD. If p " f = len f , then f a g← p =
〈 f (1), . . . , f (len f −′ 1)〉.

(16) Let D be a non empty set andf , g be non empty finite sequences of elements ofD. If
g1 " f = len f , then( f aa g) :−g1 = g.

(17) Let D be a non empty set andf , g be non empty finite sequences of elements ofD. If
g1 " f = len f , then( f aa g)−: g1 = f .

(18) LetD be a non trivial set,f be a non empty finite sequence of elements ofD, andg be a
non trivial finite sequence of elements ofD. Supposeg1 = flen f and for everyi such that 1≤ i
andi < len f holds fi 6= g1. Then f aa g 	 g1 = g aa f .

3. ON THE PLANE

Next we state several propositions:

(19) For every non trivial finite sequencef of elements ofE2
T holdsL( f ,1) = L̃( f �2).

(20) For every s.c.c. finite sequencef of elements ofE2
T and for everyn such thatn < len f

holds f �n is s.n.c..

(21) For every s.c.c. finite sequencef of elements ofE2
T and for everyn such that 1≤ n holds

f�n is s.n.c..

(22) Let f be a circular s.c.c. finite sequence of elements ofE2
T and givenn. If n < len f and

len f > 4, then f �n is one-to-one.

(23) Let f be a circular s.c.c. finite sequence of elements ofE2
T. Suppose lenf > 4. Let i, j be

natural numbers. If 1< i andi < j and j ≤ len f , then fi 6= f j .

(24) Let f be a circular s.c.c. finite sequence of elements ofE2
T and givenn. If 1 ≤ n and

len f > 4, then f�n is one-to-one.

(25) For every special non empty finite sequencef of elements ofE2
T holds〈 f (m), . . . , f (n)〉 is

special.

(26) Let f be a special non empty finite sequence of elements ofE2
T andg be a special non

trivial finite sequence of elements ofE2
T. If flen f = g1, then f aa g is special.

(27) For every circular unfolded s.c.c. finite sequencef of elements ofE2
T such that lenf > 4

holdsL( f ,1)∩ L̃( f�1) = { f1, f2}.
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Let us note that there exists a finite sequence of elements ofE2
T which is one-to-one, special,

unfolded, s.n.c., and non empty.
We now state several propositions:

(28) For all finite sequencesf , g of elements ofE2
T such thatj < len f holdsL( f aa g, j) =

L( f , j).

(29) For all non empty finite sequencesf , g of elements ofE2
T such that 1≤ j and j +1 < leng

holdsL( f aa g, len f + j) = L(g, j +1).

(30) Let f be a non empty finite sequence of elements ofE2
T andg be a non trivial finite sequence

of elements ofE2
T. If flen f = g1, thenL( f aa g, len f ) = L(g,1).

(31) Let f be a non empty finite sequence of elements ofE2
T andg be a non trivial finite sequence

of elements ofE2
T. If j +1 < leng and flen f = g1, thenL( f aa g, len f + j) = L(g, j +1).

(32) Let f be a non empty s.n.c. unfolded finite sequence of elements ofE2
T and giveni. If 1≤ i

andi < len f , thenL( f , i)∩ rng f = { fi , fi+1}.

(33) Let f , g be non trivial s.n.c. one-to-one unfolded finite sequences of elements ofE2
T. If

L̃( f )∩ L̃(g) = { f1,g1} and f1 = gleng andg1 = flen f , then f aa g is s.c.c..

In the sequelf , g are finite sequences of elements ofE2
T.

The following three propositions are true:

(34) If f is unfolded andg is unfolded andflen f = g1 andL( f , len f −′ 1)∩L(g,1) = { flen f },
then f aa g is unfolded.

(35) If f is non empty andg is non trivial andflen f = g1, thenL̃( f aa g) = L̃( f )∪ L̃(g).

(36) Suppose that

(i) for every n such thatn ∈ dom f there existi, j such that〈〈i, j〉〉 ∈ the indices ofG and
fn = G◦ (i, j),

(ii) f is non constant, circular, unfolded, s.c.c., and special, and

(iii) len f > 4.

Then there existsg such that

(iv) g is a sequence which elements belong toG, unfolded, s.c.c., and special,

(v) L̃( f ) = L̃(g),

(vi) f1 = g1,

(vii) flen f = gleng, and

(viii) len f ≤ leng.
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[3] Józef Białas. Group and field definitions.Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/realset1.
html.
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