JOURNAL OF FORMALIZED MATHEMATICS
Volumell, Released 1999, Published 2003
Inst. of Computer Science, Univ. of Bialystok

Compactness of the Bounded Closed Subsets &f

Artur Kornitowicz
University of Biatystok

Summary. This paper contains theorems which describe the correspondence between
topological properties of real numbers subsets introduced |n [35] and introduced in [33], [14].
We also show the homeomorphism between the cartesian product diltaad Z% The
compactness of the bounded closed subsét?dfs proven.
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The articlesl[[36],1[9],[142],[148],[17],1[8], 16], [[15], [[2], [[38],[121],[139],[1],[[34],[30],[[11],[25],
[24], [23], [22], [2C], [4], [10Q], [12], [26], [3], [41], [35], [33], [15], [31], [32], [14], [37],I[5], [17],
[18], [19], [44], [28], [13], [271], [40], and([2D] provide the notation and terminology for this paper.

1. ReAL NUMBERS

For simplicity, we adopt the following convention; b denote real numbers,denotes a real num-
ber,i, j, n denote natural numberd] denotes a non empty metric spapeg, s denote points of
Z%, edenotes a point o£2, w denotes a point o£", zdenotes a point dfl, A, B denote subsets of
£1, P denotes a subset @2, andD denotes a non empty subset.

One can prove the following propositions:

(6f] 1f0 <aand0<b, thenyva+b< a+vb.
(7) If0<aanda< b, then|a < |b|.

(8) Ifb<aanda<O0,then|a < |b.

9 NO~r)=1
(10) Ml—r)=r.
11) n@er)y=r-r

(12) M((+1) —1)=[n—r)-.
(13) j#0andr =0iff [](j —r)=0.

(14) Ifr£0andj <i, then[]((i—'j)—r)= Jﬂl%

(15) Ifr #0andj <i, thenr'~'I = r%

1 The propositions (1)—(5) have been removed.

1 © Association of Mizar Users


http://mizar.org/JFM/Vol11/topreal6.html

COMPACTNESS OF THE BOUNDED CLOSED SUBSETS OF. 2

In the sequed, b denote real numbers.
The following propositions are true:

(16) 2(a,b) = (a?,b?).

(17) For every finite sequende of elements ofR such thati € domF| anda = F(i) holds
F|(i) =1al.

(18) [(a,b)[ = (|al, bf).

(19) For all real numbers, b, ¢, d such tha < bandc < d holds|b—a|+|d—c| = (b—a)+
(d—c).

(20) For all real numbers, r such thar > 0 holdsa € Ja—r,a+r[.

(21) For all real numbers, r such thar > 0 holdsa € [a—r,a+r].

(22) For all real numbera, b such that < b holds infa,b[ = a and supa,b[ = b.
(24f] For every bounded subsatof R holdsA C [inf A, supA).

2. TOPOLOGICAL PRELIMINARIES

Let T be a topological structure and l&te a finite subset of. Observe thal [Ais finite.

One can check that there exists a topological space which is finite, non empty, and strict.

Let T be a topological structure. Observe that every subsdt which is empty is also con-
nected.

Let T be a topological space. One can check that every substtwvaifiich is finite is also
compact.

One can prove the following two propositions:

(25) For all topological space§ T such thatSandT are homeomorphic anflis connected
holdsT is connected.

(26) LetT be a topological space aril be a finite family of subsets df. Suppose that for
every subseX of T such thaiX € F holdsX is compact. Theiy F is compact.

3. POINTS AND SUBSETS INE2
We now state a number of propositions:

(29 For all setsA, B, C, D, a, b such thatA C B andC C D holds[]la— A,b — C] C
Mla— B,b+—D].

(30) For all subsets, B of R holds[][1+— A, 2+ B] is a subset of2.
(1) |[0.a]| = |al and|[a, 0] = [a].

(32) For every poinp of £2 and for every pointj of £2 such thatp = 02 andp = g holds
g=(0,0) andg; =0 andg, =0.

(33) For all pointsp, q of £2 and for every point of E% such thatp = Ofg andq = z holds
p(p.a) =12

(34) r-p=[r-psr-p2.

(35) Ifs=(1-r)-p+r-qands# pand 0<r, then 0<r.

(36) Ifs=(1—r)-p+r-gands#qandr <1, thenr <1

2 The proposition (23) has been removed.
3 The propositions (27) and (28) have been removed.
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(37) Ifse L(p,q) ands# pands+# gandp; < g1, thenp; < s; ands; < .
(38) Ifse L(p,q) ands=# pands+# gandp; < O, thenp, < s, ands, < Q.
(39) For every poinp of 2 there exists a poirg of £2 such thaty; < W-boundD) andp # q.
(40) For every poinp of £2 there exists a poirg of £2 such thaty, > E-boundD) andp # q.
(41) For every poinp of £2 there exists a poirg of £2 such thaty, > N-bound D) andp # q.
(42) For every poinp of E2 there exists a poirg of £2 such thaty, < S-boundD) andp # q.
One can verify the following observations:

x every subset OE% which is convex and non empty is also connected,

x every subset OE% which is non horizontal is also non empty,

x every subset orE% which is non vertical is also non empty,

x every subset orE% which is region is also open and connected, and

x every subset orE% which is open and connected is also region.

One can check that every subsetﬁwhich is empty is also horizontal and every subseEéf
which is empty is also vertical.

Let us note that there exists a subsefgfwhich is non empty and convex.

Leta, b be points of£2. Note thatZ(a, b) is convex and connected.

Let us observe thail ;> is connected.

Let us mention that every subsetﬁf- which satisfies conditions of simple closed curve is also
connected and compact.
The following propositions are true:

(43) L(NE-cornetP),SE-cornefP)) C £(SpStSe®).
(44) L(SW-corne(P), SE-cornefP)) C L(SpStSed).
(45) L(SW-corne(P), NW-cornefP)) C L(SpStSe).

(46) For every subset of £2 holds {p; p ranges over points aE2: p; < W-boundC)} is a
non empty convex connected subselféf

4. BALLS AS SUBSETS OFE}
Next we state a number of propositions:
(47) Ife=qgandpeBall(er),theng; —r < p; andp; < gy +r.
(48) Ife=qgandpeBall(er),thengy—r < pz andpy < g2 +r.
(49) Ifp=ethenM)[l—Jp1— 75 P+ 52— Ip2— 75, P2+ 5[] C Ball(er).
(50) Ifp=ethenBaller) CM[l+—]p1—r,p1+r[,2—|p2—r1,p2+r]].
(51) IfP=Ball(e;r) andp=-e, then projfP=]py—r,p1+r|.
(52) IfP=Ball(e;r)andp=-e, thenproj2P=]p,—r,p2+r|.

andp = e, then E-boun(D) = p; +r.

)

)
)
(53) If D=Ball(e,r) andp = e, then W-boun@D) = p; —r.
(54) IfD=Ball(er)
(55) IfD=Ball(er)

)

andp = e, then S-boun(D) = p, —r.



COMPACTNESS OF THE BOUNDED CLOSED SUBSETS OF. 4

(56) If D =Ball(er)andp = e, then N-boun¢D) = py+r.
(57) IfD=Ball(er), thenD is non horizontal.
(58) If D =Ball(er), thenD is non vertical.

(59) For every poinf of 2 and for every poink of £2 such thak € Ball( f,a) holds[x; —2-a,
xo] ¢ Ball(f,a).

(60) LetX be a non empty compact subseﬂq? andp be a point ofE2. If p= 0@% anda > 0,
thenX C Ball(p, |E-boundX)| + |N-bound X)| 4+ |W-boundX)| + |S-boundX)| + a).

(61) LetM be a Reflexive symmetric triangle non empty metric structurezdreda point ofM.
If r <0, then Spherg,r) = 0.

(62) For every Reflexive discernible non empty metric strucMrand for every poing of M
holds Spherg, 0) = {z}.

(63) LetM be a Reflexive symmetric triangle non empty metric structurezdreda point oM.
If r <0, thenBall(z,r) = 0.

(64) Ball(z,0) = {z}.

(65) For every subse of Miop such thath = Ball(zr) holdsA is closed.
(66) If A=Ball(w,r), thenAis closed.

(67) Ball(zr) is bounded.

(68) For every subsét of Miop such thatA = Spheréz,r) holdsA s closed.
(69) If A= Spheréw,r), thenAis closed.

(70) Spherézr) is bounded.

(71) If Ais Bounded, ther is Bounded.

(72) For every non empty metric structuk& holds M is bounded iff every subset df is
bounded.

(73) LetM be a Reflexive symmetric triangle non empty metric structureXand be subsets
of M. Suppose the carrier 8 = XUY andM is non bounded anX is bounded. ThelY is
non bounded.

(74) For all subsetX, Y of 7 such thah > 1 and the carrier of£7 = X UY andX is Bounded
holdsY is non Bounded.

(76ff] If Ais Bounded and is Bounded, thel\U B is Bounded.

5. TOPOLOGICAL PROPERTIES OFREAL NUMBERS SUBSETS

Let X be a non empty subset Bf One can check tha€ is non empty.
Let D be a lower bounded subsetlkf One can check tha is lower bounded.
Let D be an upper bounded subseffofObserve thabD is upper bounded.
The following propositions are true:

(77) For every non empty lower bounded suli3etf R holds infD = infD.
(78) For every non empty upper bounded sulisef R holds su = supD.

4 The proposition (75) has been removed.
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Let us mention thaRl is To.
We now state three propositions:

(79) For every subseX of R and for every subsd of R! such thatA = B holdsA is closed iff
B is closed.

(80) For every subsét of R and for every subsé of R! such thatA = B holdsA = B.

(81) For every subset of R and for every subsd of R? such thatA = B holdsA is compact
iff Bis compact.

Let us note that every subsetRfwhich is finite is also compact.
Leta, b be real numbers. One can check tfeab| is compact.
The following proposition is true

(82) For all real numbera, b holdsa # b iff Ja,b[ = [a,b].

Let us observe that there exists a subséR @fhich is non empty, finite, and bounded.
One can prove the following propositions:

(83) LetT be a topological structurd, be a real map of , andg be a map fronT into RL. If
f =g, thenf is continuous iffg is continuous.

(84) LetA, B be subsets dR and f be a map fronf RY, R1] into Z2. If for all real numbers,
yholdsf({x,y)) = (x,y), thenf°[A B]=[][1— A 2— B].

(85) For every magf from [RY, R} into £2 such that for all real numbess y holds f ({x,
y}) = (x,y) holdsf is a homeomorphism.

(86) [RY R]andZ2are homeomorphic.
6. BOUNDED SUBSETS
The following propositions are true:

(87) For all compact subsefs B of R holds[][1+—— A,2+— B] is a compact subset @2.
(88) If Pis Bounded and closed, théis compact.

(89) If Pis Bounded, then for every continuous real ngeqf E% holdsg°P C ¢°P.
(90) projT P C proj1°P.
(91) proj2 P C proj2° P.

(92) If Pis Bounded, theproj1° P = proj1°P.

(93) If Pis Bounded, theproj2° P = proj2° P.

(94) If Dis Bounded, then W-bouri®) = W-boundD).
(95) If Dis Bounded, then E-bou®) = E-boundD).
(96) If Dis Bounded, then N-bouti®) = N-boundD).
(97) If Dis Bounded, then S-boufid) = S-boundD).
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