Compactness of the Bounded Closed Subsets of \mathcal{E}^2_T

Artur Korniłowicz University of Białystok

Summary. This paper contains theorems which describe the correspondence between topological properties of real numbers subsets introduced in [35] and introduced in [33], [14]. We also show the homeomorphism between the cartesian product of two R^1 and \mathcal{E}^2_T . The compactness of the bounded closed subset of \mathcal{E}^2_T is proven.

MML Identifier: TOPREAL6.

WWW: http://mizar.org/JFM/Vol11/topreal6.html

The articles [36], [9], [42], [43], [7], [8], [6], [16], [2], [38], [21], [39], [1], [34], [30], [11], [25], [24], [23], [22], [20], [4], [10], [12], [26], [3], [41], [35], [33], [15], [31], [32], [14], [37], [5], [17], [18], [19], [44], [28], [13], [27], [40], and [29] provide the notation and terminology for this paper.

1. REAL NUMBERS

For simplicity, we adopt the following convention: a, b denote real numbers, r denotes a real number, i, j, n denote natural numbers, M denotes a non empty metric space, p, q, s denote points of $\mathcal{E}_{\mathrm{T}}^2$, e denotes a point of \mathcal{E}^2 , w denotes a point of \mathcal{E}^n , p denotes a point of \mathcal{E}^n , p denotes a subset of \mathcal{E}^n , p denotes a non empty subset of \mathcal{E}^n .

One can prove the following propositions:

- (6)¹ If $0 \le a$ and $0 \le b$, then $\sqrt{a+b} \le \sqrt{a} + \sqrt{b}$.
- (7) If $0 \le a$ and $a \le b$, then $|a| \le |b|$.
- (8) If $b \le a$ and $a \le 0$, then $|a| \le |b|$.
- (9) $\Pi(0 \mapsto r) = 1$.
- (10) $\prod (1 \mapsto r) = r$.
- (11) $\prod (2 \mapsto r) = r \cdot r$.
- (12) $\prod ((n+1) \mapsto r) = \prod (n \mapsto r) \cdot r$.
- (13) $j \neq 0$ and r = 0 iff $\prod (j \mapsto r) = 0$.
- (14) If $r \neq 0$ and $j \leq i$, then $\prod ((i 'j) \mapsto r) = \frac{\prod (i \mapsto r)}{\prod (j \mapsto r)}$.
- (15) If $r \neq 0$ and $j \leq i$, then $r^{i-'j} = \frac{r^i}{r^j}$.

¹ The propositions (1)–(5) have been removed.

In the sequel a, b denote real numbers.

The following propositions are true:

- (16) ${}^{2}\langle a,b\rangle = \langle a^2,b^2\rangle.$
- (17) For every finite sequence F of elements of \mathbb{R} such that $i \in \text{dom}|F|$ and a = F(i) holds |F|(i) = |a|.
- (18) $|\langle a,b\rangle| = \langle |a|,|b|\rangle.$
- (19) For all real numbers a, b, c, d such that $a \le b$ and $c \le d$ holds |b-a| + |d-c| = (b-a) + (d-c).
- (20) For all real numbers a, r such that r > 0 holds $a \in [a r, a + r[$.
- (21) For all real numbers a, r such that $r \ge 0$ holds $a \in [a-r, a+r]$.
- (22) For all real numbers a, b such that a < b holds $\inf[a, b] = a$ and $\sup[a, b] = b$.
- $(24)^2$ For every bounded subset A of \mathbb{R} holds $A \subseteq [\inf A, \sup A]$.

2. TOPOLOGICAL PRELIMINARIES

Let T be a topological structure and let A be a finite subset of T. Observe that $T \mid A$ is finite.

One can check that there exists a topological space which is finite, non empty, and strict.

Let T be a topological structure. Observe that every subset of T which is empty is also connected.

Let T be a topological space. One can check that every subset of T which is finite is also compact.

One can prove the following two propositions:

- (25) For all topological spaces S, T such that S and T are homeomorphic and S is connected holds T is connected.
- (26) Let T be a topological space and F be a finite family of subsets of T. Suppose that for every subset X of T such that $X \in F$ holds X is compact. Then $\bigcup F$ is compact.

3. Points and Subsets in \mathcal{E}_T^2

We now state a number of propositions:

- (29)³ For all sets A, B, C, D, a, b such that $A \subseteq B$ and $C \subseteq D$ holds $\prod [a \longmapsto A, b \longmapsto C] \subseteq \prod [a \longmapsto B, b \longmapsto D]$.
- (30) For all subsets A, B of \mathbb{R} holds $\prod [1 \longmapsto A, 2 \longmapsto B]$ is a subset of \mathcal{E}^2_T .
- (31) |[0,a]| = |a| and |[a,0]| = |a|.
- (32) For every point p of \mathcal{E}^2 and for every point q of \mathcal{E}^2_T such that $p = 0_{\mathcal{E}^2_T}$ and p = q holds $q = \langle 0, 0 \rangle$ and $q_1 = 0$ and $q_2 = 0$.
- (33) For all points p, q of \mathcal{E}^2 and for every point z of \mathcal{E}^2_T such that $p = 0_{\mathcal{E}^2_T}$ and q = z holds $\rho(p,q) = |z|$.
- $(34) \quad r \cdot p = [r \cdot p_1, r \cdot p_2].$
- (35) If $s = (1 r) \cdot p + r \cdot q$ and $s \neq p$ and $0 \leq r$, then 0 < r.
- (36) If $s = (1-r) \cdot p + r \cdot q$ and $s \neq q$ and $r \leq 1$, then r < 1.

² The proposition (23) has been removed.

³ The propositions (27) and (28) have been removed.

- (37) If $s \in \mathcal{L}(p,q)$ and $s \neq p$ and $s \neq q$ and $p_1 < q_1$, then $p_1 < s_1$ and $s_1 < q_1$.
- (38) If $s \in \mathcal{L}(p,q)$ and $s \neq p$ and $s \neq q$ and $p_2 < q_2$, then $p_2 < s_2$ and $s_2 < q_2$.
- (39) For every point p of \mathcal{E}^2_T there exists a point q of \mathcal{E}^2_T such that $q_1 < W$ -bound(D) and $p \neq q$.
- (40) For every point p of \mathcal{E}^2_T there exists a point q of \mathcal{E}^2_T such that $q_1 > \text{E-bound}(D)$ and $p \neq q$.
- (41) For every point p of \mathcal{E}^2_T there exists a point q of \mathcal{E}^2_T such that $q_2 > N$ -bound(D) and $p \neq q$.
- (42) For every point p of \mathcal{E}^2_T there exists a point q of \mathcal{E}^2_T such that $q_2 < S$ -bound(D) and $p \neq q$.

One can verify the following observations:

- * every subset of \mathcal{E}_T^2 which is convex and non empty is also connected,
- * every subset of \mathcal{E}_{T}^{2} which is non horizontal is also non empty,
- * every subset of \mathcal{E}_{T}^{2} which is non vertical is also non empty,
- * every subset of \mathcal{E}_{T}^{2} which is region is also open and connected, and
- * every subset of \mathcal{E}_T^2 which is open and connected is also region.

One can check that every subset of \mathcal{E}_T^2 which is empty is also horizontal and every subset of \mathcal{E}_T^2 which is empty is also vertical.

Let us note that there exists a subset of \mathcal{E}^2_T which is non empty and convex.

Let a, b be points of $\mathcal{E}^2_{\mathbb{T}}$. Note that $\mathcal{L}(a, b)$ is convex and connected.

Let us observe that $\square_{\mathcal{L}^2}$ is connected.

Let us mention that every subset of \mathcal{E}_T^2 which satisfies conditions of simple closed curve is also connected and compact.

The following propositions are true:

- (43) $\mathcal{L}(\text{NE-corner}(P), \text{SE-corner}(P)) \subseteq \widetilde{\mathcal{L}}(\text{SpStSeq}P).$
- (44) $\mathcal{L}(SW\text{-corner}(P), SE\text{-corner}(P)) \subseteq \widetilde{\mathcal{L}}(SpStSeq P)$
- (45) $\mathcal{L}(SW\text{-corner}(P), NW\text{-corner}(P)) \subseteq \widetilde{\mathcal{L}}(SpStSeq P).$
- (46) For every subset C of \mathcal{E}^2_T holds $\{p; p \text{ ranges over points of } \mathcal{E}^2_T$: $p_1 < \text{W-bound}(C)\}$ is a non empty convex connected subset of \mathcal{E}^2_T .

4. Balls as subsets of \mathcal{E}_{T}^{n}

Next we state a number of propositions:

- (47) If e = q and $p \in Ball(e, r)$, then $q_1 r < p_1$ and $p_1 < q_1 + r$.
- (48) If e = q and $p \in Ball(e, r)$, then $q_2 r < p_2$ and $p_2 < q_2 + r$.
- (49) If p = e, then $\prod [1 \longmapsto]p_1 \frac{r}{\sqrt{2}}, p_1 + \frac{r}{\sqrt{2}}[, 2 \longmapsto]p_2 \frac{r}{\sqrt{2}}, p_2 + \frac{r}{\sqrt{2}}[] \subseteq Ball(e, r)$.
- (50) If p = e, then Ball $(e, r) \subseteq \prod [1 \longmapsto]p_1 r, p_1 + r[, 2 \longmapsto]p_2 r, p_2 + r[]$.
- (51) If P = Ball(e, r) and p = e, then $\text{proj } 1^{\circ} P = [p_1 r, p_1 + r]$.
- (52) If P = Ball(e, r) and p = e, then $\text{proj} 2^{\circ} P = [p_2 r, p_2 + r]$.
- (53) If D = Ball(e, r) and p = e, then W-bound $(D) = p_1 r$.
- (54) If D = Ball(e, r) and p = e, then E-bound(D) = $p_1 + r$.
- (55) If D = Ball(e, r) and p = e, then S-bound $(D) = p_2 r$.

- (56) If D = Ball(e, r) and p = e, then N-bound(D) = $p_2 + r$.
- (57) If D = Ball(e, r), then D is non horizontal.
- (58) If D = Ball(e, r), then D is non vertical.
- (59) For every point f of \mathcal{E}^2 and for every point x of \mathcal{E}^2_{Γ} such that $x \in \text{Ball}(f, a)$ holds $[x_1 2 \cdot a, x_2] \notin \text{Ball}(f, a)$.
- (60) Let X be a non empty compact subset of \mathcal{E}_{T}^{2} and p be a point of \mathcal{E}^{2} . If $p = 0_{\mathcal{E}_{T}^{2}}$ and a > 0, then $X \subseteq \text{Ball}(p, |\text{E-bound}(X)| + |\text{N-bound}(X)| + |\text{W-bound}(X)| + |\text{S-bound}(X)| + a)$.
- (61) Let M be a Reflexive symmetric triangle non empty metric structure and z be a point of M. If r < 0, then Sphere $(z, r) = \emptyset$.
- (62) For every Reflexive discernible non empty metric structure M and for every point z of M holds Sphere $(z,0) = \{z\}$.
- (63) Let M be a Reflexive symmetric triangle non empty metric structure and z be a point of M. If r < 0, then $\overline{\text{Ball}}(z, r) = \emptyset$.
- (64) $\overline{\text{Ball}}(z,0) = \{z\}.$
- (65) For every subset A of M_{top} such that $A = \overline{\text{Ball}}(z, r)$ holds A is closed.
- (66) If $A = \overline{\text{Ball}}(w, r)$, then A is closed.
- (67) $\overline{\text{Ball}}(z, r)$ is bounded.
- (68) For every subset A of M_{top} such that A = Sphere(z, r) holds A is closed.
- (69) If A = Sphere(w, r), then A is closed.
- (70) Sphere(z, r) is bounded.
- (71) If A is Bounded, then \overline{A} is Bounded.
- (72) For every non empty metric structure M holds M is bounded iff every subset of M is bounded.
- (73) Let M be a Reflexive symmetric triangle non empty metric structure and X, Y be subsets of M. Suppose the carrier of $M = X \cup Y$ and M is non bounded and X is bounded. Then Y is non bounded.
- (74) For all subsets X, Y of $\mathcal{E}_{\mathbf{T}}^n$ such that $n \ge 1$ and the carrier of $\mathcal{E}_{\mathbf{T}}^n = X \cup Y$ and X is Bounded holds Y is non Bounded.
- $(76)^4$ If A is Bounded and B is Bounded, then $A \cup B$ is Bounded.
 - 5. TOPOLOGICAL PROPERTIES OF REAL NUMBERS SUBSETS

Let *X* be a non empty subset of \mathbb{R} . One can check that \overline{X} is non empty.

Let D be a lower bounded subset of \mathbb{R} . One can check that \overline{D} is lower bounded.

Let *D* be an upper bounded subset of \mathbb{R} . Observe that \overline{D} is upper bounded.

The following propositions are true:

- (77) For every non empty lower bounded subset D of \mathbb{R} holds $\inf D = \inf \overline{D}$.
- (78) For every non empty upper bounded subset D of \mathbb{R} holds $\sup D = \sup \overline{D}$.

⁴ The proposition (75) has been removed.

Let us mention that \mathbb{R}^1 is T_2 .

We now state three propositions:

- (79) For every subset A of \mathbb{R} and for every subset B of \mathbb{R}^1 such that A = B holds A is closed iff B is closed.
- (80) For every subset *A* of \mathbb{R} and for every subset *B* of \mathbb{R}^1 such that A = B holds $\overline{A} = \overline{B}$.
- (81) For every subset A of \mathbb{R} and for every subset B of \mathbb{R}^1 such that A = B holds A is compact iff B is compact.

Let us note that every subset of $\ensuremath{\mathbb{R}}$ which is finite is also compact.

Let a, b be real numbers. One can check that [a,b] is compact.

The following proposition is true

(82) For all real numbers a, b holds $a \neq b$ iff $\overline{|a,b|} = [a,b]$.

Let us observe that there exists a subset of \mathbb{R} which is non empty, finite, and bounded. One can prove the following propositions:

- (83) Let T be a topological structure, f be a real map of T, and g be a map from T into \mathbb{R}^1 . If f = g, then f is continuous iff g is continuous.
- (84) Let A, B be subsets of \mathbb{R} and f be a map from $[:\mathbb{R}^1, \mathbb{R}^1:]$ into \mathcal{E}^2_T . If for all real numbers x, y holds $f(\langle x, y \rangle) = \langle x, y \rangle$, then $f^{\circ}[:A, B:] = \prod [1 \longmapsto A, 2 \longmapsto B]$.
- (85) For every map f from $[:\mathbb{R}^1, \mathbb{R}^1:]$ into \mathcal{E}^2_T such that for all real numbers x, y holds $f(\langle x, y \rangle) = \langle x, y \rangle$ holds f is a homeomorphism.
- (86) $[:\mathbb{R}^1,\mathbb{R}^1:]$ and \mathcal{E}_T^2 are homeomorphic.

6. BOUNDED SUBSETS

The following propositions are true:

- (87) For all compact subsets A, B of \mathbb{R} holds $\prod [1 \longmapsto A, 2 \longmapsto B]$ is a compact subset of \mathcal{E}^2_T .
- (88) If P is Bounded and closed, then P is compact.
- (89) If *P* is Bounded, then for every continuous real map *g* of \mathcal{E}^2_T holds $\overline{g^{\circ}P} \subseteq g^{\circ}\overline{P}$.
- (90) $\operatorname{proj} 1^{\circ} \overline{P} \subseteq \overline{\operatorname{proj} 1^{\circ} P}$.
- (91) $\operatorname{proj}_{2}^{\circ} \overline{P} \subseteq \overline{\operatorname{proj}_{2}^{\circ} P}$.
- (92) If *P* is Bounded, then $\overline{\text{proj1}^{\circ}P} = \text{proj1}^{\circ}\overline{P}$.
- (93) If *P* is Bounded, then $\overline{\text{proj2}^{\circ}P} = \text{proj2}^{\circ}\overline{P}$.
- (94) If *D* is Bounded, then W-bound(\overline{D}).
- (95) If *D* is Bounded, then E-bound(\overline{D}).
- (96) If D is Bounded, then N-bound(D) = N-bound(\overline{D}).
- (97) If D is Bounded, then S-bound(D) = S-bound(\overline{D}).

ACKNOWLEDGMENTS

I would like to thank Professor Yatsuka Nakamura for his help in the preparation of the article.

REFERENCES

- Grzegorz Bancerek. The fundamental properties of natural numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/nat_1.html.
- [2] Grzegorz Bancerek. The ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/ordinal1.
- [3] Grzegorz Bancerek. König's theorem. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/card_3.html.
- [4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/finseq_1.html.
- [5] Leszek Borys. Paracompact and metrizable spaces. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/pcomps_1.html.
- [6] Czesław Byliński. Binary operations. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/binop_1.html.
- [7] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_1.html.
- [8] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_2.html.
- [9] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/zfmisc_1.html.
- [10] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/finseq_2.html.
- [11] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. *Journal of Formalized Mathematics*, 2, 1990. http://mizar.org/JFM/Vol2/funct_4.html.
- [12] Czesław Byliński. The sum and product of finite sequences of real numbers. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/rysum 1.html.
- [13] Czesław Byliński and Piotr Rudnicki. Bounding boxes for compact sets in E². Journal of Formalized Mathematics, 9, 1997. http://mizar.org/JFM/Vol9/pscomp_1.html.
- [14] Agata Darmochwał. Compact spaces. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/compts_1.html.
- [15] Agata Darmochwał. Families of subsets, subspaces and mappings in topological spaces. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/tops_2.html.
- [16] Agata Darmochwał. Finite sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/finset_1.html.
- $\textbf{[17]} \quad \textbf{Agata Darmochwat. The Euclidean space.} \ \textit{Journal of Formalized Mathematics}, \textbf{3}, \textbf{1991}. \ \texttt{http://mizar.org/JFM/Vol3/euclid.html}.$
- [18] Agata Darmochwał and Yatsuka Nakamura. Metric spaces as topological spaces fundamental concepts. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/topmetr.html.
- [19] Agata Darmochwał and Yatsuka Nakamura. The topological space \(\mathcal{E}_{\trace{\trace{T}}}^2\). Arcs, line segments and special polygonal arcs. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/topreal1.html.
- [20] Alicia de la Cruz. Totally bounded metric spaces. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/tbsp_1.html.
- [21] Krzysztof Hryniewiecki. Basic properties of real numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/real_1.html.
- [22] Stanisława Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/metric_1.html.
- [23] Jarosław Kotowicz. Convergent real sequences. Upper and lower bound of sets of real numbers. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/seg_4.html.
- [24] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/seq_2.html.
- [25] Jarosław Kotowicz. Real sequences and basic operations on them. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/ JFM/Vol1/seq_1.html.
- [26] Rafał Kwiatek. Factorial and Newton coefficients. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/newton.html.
- [27] Yatsuka Nakamura and Czesław Byliński. Extremal properties of vertices on special polygons, part I. Journal of Formalized Mathematics, 6, 1994. http://mizar.org/JFM/Vol6/sppol_1.html.
- [28] Yatsuka Nakamura and Jarosław Kotowicz. The Jordan's property for certain subsets of the plane. *Journal of Formalized Mathematics*, 4, 1992. http://mizar.org/JFM/Vol4/jordan1.html.
- [29] Yatsuka Nakamura, Andrzej Trybulec, and Czesław Byliński. Bounded domains and unbounded domains. Journal of Formalized Mathematics, 11, 1999. http://mizar.org/JFM/Vol11/jordan2c.html.

- [30] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/Vol5/binarith.html.
- [31] Beata Padlewska. Connected spaces. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/connsp_1.html.
- [32] Beata Padlewska. Locally connected spaces. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/connsp_ 2.html.
- [33] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/pre_topo.html.
- [34] Jan Popiotek. Some properties of functions modul and signum. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/ JFM/Vol1/absvalue.html.
- [35] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. *Journal of Formalized Mathematics*, 2, 1990. http://mizar.org/JFM/Vol2/rcomp_1.html.
- [36] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [37] Andrzej Trybulec. A Borsuk theorem on homotopy types. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/borsuk_1.html.
- [38] Andrzej Trybulec. Subsets of real numbers. *Journal of Formalized Mathematics*, Addenda, 2003. http://mizar.org/JFM/Addenda/numbers.html.
- [39] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers operations: min, max, square, and square root. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/square_1.html.
- [40] Andrzej Trybulec and Yatsuka Nakamura. On the rectangular finite sequences of the points of the plane. *Journal of Formalized Mathematics*, 9, 1997. http://mizar.org/JFM/Vol9/sprect_1.html.
- [41] Wojciech A. Trybulec. Pigeon hole principle. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/finseq_4.html.
- $[42] \ \ \textbf{Zinaida Trybulec. Properties of subsets. } \textbf{\textit{Journal of Formalized Mathematics}}, 1, 1989. \ \texttt{http://mizar.org/JFM/Vol1/subset_1.html}.$
- [43] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relat_1.html.
- [44] Mariusz Żynel and Adam Guzowski. T_0 topological spaces. Journal of Formalized Mathematics, 6, 1994. http://mizar.org/JFM/Vol6/t_Otopsp.html.

Received February 19, 1999

Published January 2, 2004