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Summary. Various types of the intermediate value theorem]([14]) are proved. For
their special cases, the Bolzano theorem is also proved. Using such a theorem, it is shown
that if a curve is a simple closed curve, then it is not horizontally degenerated, neither is it
vertically degenerated.
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The articles([15],[[18],[[1],[17],119],14],[112] [16],[[13] [2],[[10],[[8],[7].[[8],[[9],[11],[16], and
[5] provide the notation and terminology for this paper.

1. INTERMEDIATE VALUE THEOREMS ANDBOLZANO THEOREM

For simplicity, we follow the rulesa, b, d, ry, r2, s1, S are real numbers, r3, r4 are elements of
R, p, g are points of£2, andX, Y are non empty topological spaces.
One can prove the following propositions:

(1) For all real numbers, b, c holdsc € [a,b] iff a< candc<h.

(4H Let A, By, Bz be subsets oK. SupposeB; is open and3; is open and; meetsA andB;
meetsA andA C B; UBy andB; misseB,. ThenA is not connected.

(5) Letf be a continuous map frod into Y andA be a subset oK. If Ais connected, then
f°Ais connected.

(6) Forallry, r suchthary <rp hoIdsQ[(mrz]T is connected.
(7) For every subsek of R and for everya such thatA = {r : a < r} holdsA is open.
(8) For every subsek of R! and for everya such thatA = {r : a > r} holdsA is open.

(9) LetAbe asubsetdrk® and givera. Suppose ¢ A and there exis, d such thab € Aand
d € Aandb < aanda < d. ThenA is not connected.

(10) LetX be a non empty topological spacg, X2 be points oiX, a, b, d be real numbers, and
f be a continuous map frod into RY. SupposeX is connected andl(x;) = aandf(x) =b
anda < d andd < b. Then there exists a poirg of X such thatf (x3) = d.

1 The propositions (2) and (3) have been removed.
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(11) LetX be a non empty topological space, X, be points ofX, B be a subset oK, a, b,
d be real numbers, antibe a continuous map froiX into R'. SupposeB is connected and
f(x1) =aandf(x2) =banda<dandd <bandx; € Bandx; € B. Then there exists a point
x3 of X such thatkz € B and f(x3) = d.

(12) Letgivenry,ra, a, b. Suppose; < r,. Let f be a continuous map frofgry), ro]t into R?
and giverd. Suppos€ (r1) =aandf(rz) = banda < d andd < b. Then there exists; such
thatf(rs) =dandr; <rgandrg <ro.

(13) Letgivenry, rp, a, b. Suppose; < rp. Let f be a continuous map frofry), ro]t into Rt
and giverd. Suppos€ (r1) =aandf(rz) = banda > d andd > b. Then there exists; such
thatf(rs) =dandr; <rgandrg <r.

(14) Letgivenry, rp, g be a continuous map frofiry), ro]t into R, and giversy, s,. Suppose
ri <ryands;-s < 0ands; =g(r1) ands; = g(r2). Then there existss such thag(rz) =0
andri <rgandrz <rs.

(15) Letgbe amap froni into R* and givers;, ;. Supposeis continuous and(0) # g(1) an
s1 = g(0) ands, = g(1). Then there exists; such that 0< r3 andrz < 1 andg(r3) = 3“2'52

2. SMPLE CLOSED CURVES ARE NOT FLAT
We now state a number of propositions:

(16) For every mag from E% into R such thatf = proj1 holdsf is continuous.
(17) For every mag from E% into R such thatf = proj2 holdsf is continuous.

(18) LetP be a non empty subset cﬂ% and f be a map fronl into (Z%)[P. Supposef is
continuous. Then there exists a m@from I into R! such thaty is continuous and for a,
g such thar < the carrier ofl andg = f(r) holdsqg; = g(r).

(19) LetP be a non empty subset @2 and f be a map froml into (£2)[P. Supposef is
continuous. Then there exists a m@fyom I into R! such thaig is continuous and for af,
g such thar < the carrier ofl andg = f(r) holdsqg, = g(r).

(20) LetP be a non empty subset (Zt% Suppose satisfies conditions of simple closed curve.
Then it is not true that there existsuch that for every such thatp € P holdsp, =r.

(21) LetP be a non empty subset (Zt% Suppose satisfies conditions of simple closed curve.
Then it is not true that there existsuch that for every such thatp € P holdsp; = .

(22) For every compact non empty sub&evf E% such thatC is a simple closed curve holds
N-boundC) > S-boundC).

(23) For every compact non empty sub&edf E% such thatC is a simple closed curve holds
E-boundC) > W-boundC).

(24) For every compact non empty subBetf £2 such thatP is a simple closed curve holds

Smin(P) 7é Nmax(P)~

(25) For every compact non empty subBetf £2 such thatP is a simple closed curve holds
Wmin(P) ?é Emax(P)-
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