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Summary. Various types of the intermediate value theorem ([14]) are proved. For
their special cases, the Bolzano theorem is also proved. Using such a theorem, it is shown
that if a curve is a simple closed curve, then it is not horizontally degenerated, neither is it
vertically degenerated.
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The articles [15], [18], [1], [17], [19], [4], [12], [6], [13], [2], [10], [3], [7], [8], [9], [11], [16], and
[5] provide the notation and terminology for this paper.

1. INTERMEDIATE VALUE THEOREMS ANDBOLZANO THEOREM

For simplicity, we follow the rules:a, b, d, r1, r2, s1, s2 are real numbers,r, r3, r4 are elements of
R, p, q are points ofE2

T, andX, Y are non empty topological spaces.
One can prove the following propositions:

(1) For all real numbersa, b, c holdsc∈ [a,b] iff a≤ c andc≤ b.

(4)1 Let A, B1, B2 be subsets ofX. SupposeB1 is open andB2 is open andB1 meetsA andB2

meetsA andA⊆ B1∪B2 andB1 missesB2. ThenA is not connected.

(5) Let f be a continuous map fromX into Y andA be a subset ofX. If A is connected, then
f ◦A is connected.

(6) For allr1, r2 such thatr1 ≤ r2 holdsΩ[(r1), r2]T is connected.

(7) For every subsetA of R1 and for everya such thatA = {r : a < r} holdsA is open.

(8) For every subsetA of R1 and for everya such thatA = {r : a > r} holdsA is open.

(9) LetA be a subset ofR1 and givena. Supposea /∈ A and there existb, d such thatb∈ A and
d ∈ A andb < a anda < d. ThenA is not connected.

(10) LetX be a non empty topological space,x1, x2 be points ofX, a, b, d be real numbers, and
f be a continuous map fromX into R1. SupposeX is connected andf (x1) = a and f (x2) = b
anda≤ d andd≤ b. Then there exists a pointx3 of X such thatf (x3) = d.

1 The propositions (2) and (3) have been removed.
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(11) Let X be a non empty topological space,x1, x2 be points ofX, B be a subset ofX, a, b,
d be real numbers, andf be a continuous map fromX into R1. SupposeB is connected and
f (x1) = a and f (x2) = b anda≤ d andd≤ b andx1 ∈ B andx2 ∈ B. Then there exists a point
x3 of X such thatx3 ∈ B and f (x3) = d.

(12) Let givenr1, r2, a, b. Supposer1 < r2. Let f be a continuous map from[(r1), r2]T into R1

and givend. Supposef (r1) = a and f (r2) = b anda< d andd < b. Then there existsr4 such
that f (r4) = d andr1 < r4 andr4 < r2.

(13) Let givenr1, r2, a, b. Supposer1 < r2. Let f be a continuous map from[(r1), r2]T into R1

and givend. Supposef (r1) = a and f (r2) = b anda> d andd > b. Then there existsr4 such
that f (r4) = d andr1 < r4 andr4 < r2.

(14) Let givenr1, r2, g be a continuous map from[(r1), r2]T into R1, and givens1, s2. Suppose
r1 < r2 ands1 ·s2 < 0 ands1 = g(r1) ands2 = g(r2). Then there existsr3 such thatg(r3) = 0
andr1 < r3 andr3 < r2.

(15) Letg be a map fromI intoR1 and givens1, s2. Supposeg is continuous andg(0) 6= g(1) and
s1 = g(0) ands2 = g(1). Then there existsr3 such that 0< r3 andr3 < 1 andg(r3) = s1+s2

2 .

2. SIMPLE CLOSED CURVES ARE NOT FLAT

We now state a number of propositions:

(16) For every mapf from E2
T into R1 such thatf = proj1 holdsf is continuous.

(17) For every mapf from E2
T into R1 such thatf = proj2 holdsf is continuous.

(18) Let P be a non empty subset ofE2
T and f be a map fromI into (E2

T)�P. Supposef is
continuous. Then there exists a mapg from I into R1 such thatg is continuous and for allr,
q such thatr ∈ the carrier ofI andq = f (r) holdsq1 = g(r).

(19) Let P be a non empty subset ofE2
T and f be a map fromI into (E2

T)�P. Supposef is
continuous. Then there exists a mapg from I into R1 such thatg is continuous and for allr,
q such thatr ∈ the carrier ofI andq = f (r) holdsq2 = g(r).

(20) LetP be a non empty subset ofE2
T. SupposeP satisfies conditions of simple closed curve.

Then it is not true that there existsr such that for everyp such thatp∈ P holdsp2 = r.

(21) LetP be a non empty subset ofE2
T. SupposeP satisfies conditions of simple closed curve.

Then it is not true that there existsr such that for everyp such thatp∈ P holdsp1 = r.

(22) For every compact non empty subsetC of E2
T such thatC is a simple closed curve holds

N-bound(C) > S-bound(C).

(23) For every compact non empty subsetC of E2
T such thatC is a simple closed curve holds

E-bound(C) > W-bound(C).

(24) For every compact non empty subsetP of E2
T such thatP is a simple closed curve holds

Smin(P) 6= Nmax(P).

(25) For every compact non empty subsetP of E2
T such thatP is a simple closed curve holds

Wmin(P) 6= Emax(P).
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