Intermediate Value Theorem and Thickness of Simple Closed Curves

Yatsuka Nakamura Shinshu University Nagano Andrzej Trybulec University of Białystok

Summary. Various types of the intermediate value theorem ([14]) are proved. For their special cases, the Bolzano theorem is also proved. Using such a theorem, it is shown that if a curve is a simple closed curve, then it is not horizontally degenerated, neither is it vertically degenerated.

MML Identifier: TOPREAL5.

WWW: http://mizar.org/JFM/Vol9/topreal5.html

The articles [15], [18], [1], [17], [19], [4], [12], [6], [13], [2], [10], [3], [7], [8], [9], [11], [16], and [5] provide the notation and terminology for this paper.

1. Intermediate Value Theorems and Bolzano Theorem

For simplicity, we follow the rules: a, b, d, r_1 , r_2 , s_1 , s_2 are real numbers, r, r_3 , r_4 are elements of \mathbb{R} , p, q are points of \mathcal{E}_T^2 , and X, Y are non empty topological spaces.

One can prove the following propositions:

- (1) For all real numbers a, b, c holds $c \in [a, b]$ iff $a \le c$ and $c \le b$.
- (4)¹ Let A, B_1 , B_2 be subsets of X. Suppose B_1 is open and B_2 is open and B_1 meets A and $A \subseteq B_1 \cup B_2$ and B_1 misses B_2 . Then A is not connected.
- (5) Let f be a continuous map from X into Y and A be a subset of X. If A is connected, then $f \circ A$ is connected.
- (6) For all r_1 , r_2 such that $r_1 \le r_2$ holds $\Omega_{[(r_1), r_2]_T}$ is connected.
- (7) For every subset *A* of \mathbb{R}^1 and for every *a* such that $A = \{r : a < r\}$ holds *A* is open.
- (8) For every subset A of \mathbb{R}^1 and for every a such that $A = \{r : a > r\}$ holds A is open.
- (9) Let A be a subset of \mathbb{R}^1 and given a. Suppose $a \notin A$ and there exist b, d such that $b \in A$ and $d \in A$ and b < a and a < d. Then A is not connected.
- (10) Let X be a non empty topological space, x_1 , x_2 be points of X, a, b, d be real numbers, and f be a continuous map from X into \mathbb{R}^1 . Suppose X is connected and $f(x_1) = a$ and $f(x_2) = b$ and $a \le d$ and $d \le b$. Then there exists a point x_3 of X such that $f(x_3) = d$.

1

¹ The propositions (2) and (3) have been removed.

- (11) Let X be a non empty topological space, x_1 , x_2 be points of X, B be a subset of X, a, b, d be real numbers, and f be a continuous map from X into \mathbb{R}^1 . Suppose B is connected and $f(x_1) = a$ and $f(x_2) = b$ and $a \le d$ and $d \le b$ and $x_1 \in B$ and $x_2 \in B$. Then there exists a point x_3 of X such that $x_3 \in B$ and $f(x_3) = d$.
- (12) Let given r_1 , r_2 , a, b. Suppose $r_1 < r_2$. Let f be a continuous map from $[(r_1), r_2]_T$ into \mathbb{R}^1 and given d. Suppose $f(r_1) = a$ and $f(r_2) = b$ and a < d and d < b. Then there exists r_4 such that $f(r_4) = d$ and $r_1 < r_4$ and $r_4 < r_2$.
- (13) Let given r_1 , r_2 , a, b. Suppose $r_1 < r_2$. Let f be a continuous map from $[(r_1), r_2]_T$ into \mathbb{R}^1 and given d. Suppose $f(r_1) = a$ and $f(r_2) = b$ and a > d and d > b. Then there exists r_4 such that $f(r_4) = d$ and $r_1 < r_4$ and $r_4 < r_2$.
- (14) Let given r_1 , r_2 , g be a continuous map from $[(r_1), r_2]_T$ into \mathbb{R}^1 , and given s_1 , s_2 . Suppose $r_1 < r_2$ and $s_1 \cdot s_2 < 0$ and $s_1 = g(r_1)$ and $s_2 = g(r_2)$. Then there exists r_3 such that $g(r_3) = 0$ and $r_1 < r_3$ and $r_3 < r_2$.
- (15) Let g be a map from \mathbb{I} into \mathbb{R}^1 and given s_1, s_2 . Suppose g is continuous and $g(0) \neq g(1)$ and $s_1 = g(0)$ and $s_2 = g(1)$. Then there exists r_3 such that $0 < r_3$ and $r_3 < 1$ and $g(r_3) = \frac{s_1 + s_2}{2}$.

2. SIMPLE CLOSED CURVES ARE NOT FLAT

We now state a number of propositions:

- (16) For every map f from \mathcal{E}^2_T into \mathbb{R}^1 such that f = proj 1 holds f is continuous.
- (17) For every map f from \mathcal{E}_T^2 into \mathbb{R}^1 such that f = proj 2 holds f is continuous.
- (18) Let P be a non empty subset of \mathcal{E}_T^2 and f be a map from \mathbb{I} into $(\mathcal{E}_T^2) \upharpoonright P$. Suppose f is continuous. Then there exists a map g from \mathbb{I} into \mathbb{R}^1 such that g is continuous and for all r, q such that $r \in$ the carrier of \mathbb{I} and q = f(r) holds $q_1 = g(r)$.
- (19) Let P be a non empty subset of $\mathcal{E}_{\mathbb{T}}^2$ and f be a map from \mathbb{I} into $(\mathcal{E}_{\mathbb{T}}^2) \upharpoonright P$. Suppose f is continuous. Then there exists a map g from \mathbb{I} into \mathbb{R}^1 such that g is continuous and for all r, q such that $r \in$ the carrier of \mathbb{I} and q = f(r) holds $q_2 = g(r)$.
- (20) Let P be a non empty subset of \mathcal{E}_T^2 . Suppose P satisfies conditions of simple closed curve. Then it is not true that there exists r such that for every p such that $p \in P$ holds $p_2 = r$.
- (21) Let P be a non empty subset of \mathcal{E}_T^2 . Suppose P satisfies conditions of simple closed curve. Then it is not true that there exists r such that for every p such that $p \in P$ holds $p_1 = r$.
- (22) For every compact non empty subset C of \mathcal{E}^2_T such that C is a simple closed curve holds N-bound(C) > S-bound(C).
- (23) For every compact non empty subset C of \mathcal{E}^2_T such that C is a simple closed curve holds E-bound(C) > W-bound(C).
- (24) For every compact non empty subset P of \mathcal{E}^2_T such that P is a simple closed curve holds $S_{\min}(P) \neq N_{\max}(P)$.
- (25) For every compact non empty subset P of \mathcal{E}_T^2 such that P is a simple closed curve holds $W_{\min}(P) \neq E_{\max}(P)$.

REFERENCES

- [1] Grzegorz Bancerek. The ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/ordinal1.html.
- [2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/finseg_1.html.
- [3] Leszek Borys. Paracompact and metrizable spaces. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/pcomps_1.html.
- [4] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct 1.html.
- [5] Czesław Byliński and Piotr Rudnicki. Bounding boxes for compact sets in E². Journal of Formalized Mathematics, 9, 1997. http://mizar.org/JFM/Vo19/pscomp_1.html.
- [6] Agata Darmochwał. Compact spaces. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/compts_1.html.
- [7] Agata Darmochwał. The Euclidean space. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/euclid.html.
- [8] Agata Darmochwał and Yatsuka Nakamura. Metric spaces as topological spaces fundamental concepts. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/topmetr.html.
- [9] Agata Darmochwał and Yatsuka Nakamura. The topological space \mathcal{E}^2_Γ . Simple closed curves. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/topreal2.html.
- [10] Stanisława Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/metric_1.html.
- [11] Beata Padlewska. Connected spaces. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/connsp_1.html.
- [12] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/pre_topc.html.
- [13] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. *Journal of Formalized Mathematics*, 2, 1990. http://mizar.org/JFM/Vol2/rcomp_1.html.
- [14] Georgi E. Shilov, editor. Elementary Real and Complex Analysis(English translation, translated by Richard A. Silverman). The MIT Press, 1973.
- [15] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [16] Andrzej Trybulec. A Borsuk theorem on homotopy types. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/borsuk_1.html.
- [17] Andrzej Trybulec. Subsets of real numbers. Journal of Formalized Mathematics, Addenda, 2003. http://mizar.org/JFM/Addenda/numbers.html.
- [18] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.
- [19] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relat_1.html.

Received November 13, 1997

Published January 2, 2004