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Summary. A concept of special polygonal arc joining two different points is defined.
Any two points in a ball can be connected by this kind of arc, and that is also true for any
region inE2

T.
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The articles [12], [14], [2], [8], [1], [15], [4], [3], [13], [11], [10], [9], [5], [6], and [7] provide the
notation and terminology for this paper.

For simplicity, we use the following convention:P, P1, P2, Rdenote subsets ofE2
T, W denotes a

non empty subset ofE2
T, p, p1, p2, q denote points ofE2

T, f , h denote finite sequences of elements
of E2

T, r denotes a real number,u denotes a point ofE2, andn, i denote natural numbers.
The following proposition is true

(1) Let D be a non empty set,f be a finite sequence of elements ofD, andp be an element of
D. Then( f a 〈p〉)len f+1 = p.

Let us considerP, p, q. We say thatP is a special polygonal arc joiningp andq if and only if:

(Def. 1) There existsf such thatf is a special sequence andP = L̃( f ) andp = f1 andq = flen f .

Let us considerP. We say thatP is special polygon if and only if the condition (Def. 2) is
satisfied.

(Def. 2) There existp1, p2, P1, P2 such that

p1 6= p2 andp1 ∈ P andp2 ∈ P andP1 is a special polygonal arc joiningp1 andp2 andP2 is
a special polygonal arc joiningp1 andp2 andP1∩P2 = {p1, p2} andP = P1∪P2.

We introduceP is a special polygon as a synonym ofP is special polygon.
Let P be a subset ofE2

T. We say thatP is region if and only if:

(Def. 3) P is open and connected.

We introduceP is a region as a synonym ofP is region.
Next we state a number of propositions:

(2) If P is a special polygonal arc joiningp andq, thenP is a special polygonal arc.

(3) If W is a special polygonal arc joiningp andq, thenW is an arc fromp to q.

(4) If W is a special polygonal arc joiningp andq, thenp∈W andq∈W.

(5) If P is a special polygonal arc joiningp andq, thenp 6= q.
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(6) If W is a special polygon, thenW is a simple closed curve.

(7) Supposep1 = q1 andp2 6= q2 andp∈ Ball(u, r) andq∈ Ball(u, r) and f = 〈p, [p1,
p2+q2

2 ],
q〉. Then f is a special sequence andf1 = p and flen f = q andL̃( f ) is a special polygonal arc
joining p andq andL̃( f )⊆ Ball(u, r).

(8) Supposep1 6= q1 andp2 = q2 andp∈ Ball(u, r) andq∈ Ball(u, r) and f = 〈p, [ p1+q1
2 , p2],

q〉. Then f is a special sequence andf1 = p and flen f = q andL̃( f ) is a special polygonal arc
joining p andq andL̃( f )⊆ Ball(u, r).

(9) Supposep1 6= q1 andp2 6= q2 andp∈ Ball(u, r) andq∈ Ball(u, r) and[p1,q2] ∈ Ball(u, r)
and f = 〈p, [p1,q2],q〉. Then f is a special sequence andf1 = p and flen f = q andL̃( f ) is a
special polygonal arc joiningp andq andL̃( f )⊆ Ball(u, r).

(10) Supposep1 6= q1 andp2 6= q2 andp∈ Ball(u, r) andq∈ Ball(u, r) and[q1, p2] ∈ Ball(u, r)
and f = 〈p, [q1, p2],q〉. Then f is a special sequence andf1 = p and flen f = q andL̃( f ) is a
special polygonal arc joiningp andq andL̃( f )⊆ Ball(u, r).

(11) If p 6= q and p∈ Ball(u, r) andq∈ Ball(u, r), then there existsP such thatP is a special
polygonal arc joiningp andq andP⊆ Ball(u, r).

(12) Supposep 6= f1 and( f1)2 = p2 and f is a special sequence andp∈ L( f ,1) andh = 〈 f1,

[ ( f1)1+p1
2 ,( f1)2], p〉. Then

(i) h is a special sequence,

(ii) h1 = f1,

(iii) hlenh = p,

(iv) L̃(h) is a special polygonal arc joiningf1 andp,

(v) L̃(h)⊆ L̃( f ), and

(vi) L̃(h) = L̃( f �1)∪L( f1, p).

(13) Supposep 6= f1 and( f1)1 = p1 and f is a special sequence andp∈ L( f ,1) andh = 〈 f1,

[( f1)1,
( f1)2+p2

2 ], p〉. Then

(i) h is a special sequence,

(ii) h1 = f1,

(iii) hlenh = p,

(iv) L̃(h) is a special polygonal arc joiningf1 andp,

(v) L̃(h)⊆ L̃( f ), and

(vi) L̃(h) = L̃( f �1)∪L( f1, p).

(14) Supposep 6= f1 and f is a special sequence andi ∈ dom f andi +1∈ dom f andi > 1 and
p∈ L( f , i) andp 6= fi andp 6= fi+1 andh = ( f �i)a 〈p〉. Then

(i) h is a special sequence,

(ii) h1 = f1,

(iii) hlenh = p,

(iv) L̃(h) is a special polygonal arc joiningf1 andp,

(v) L̃(h)⊆ L̃( f ), and

(vi) L̃(h) = L̃( f �i)∪L( fi , p).

(15) Supposef2 6= f1 and f is a special sequence and( f2)2 = ( f1)2 andh = 〈 f1, [
( f1)1+( f2)1

2 ,

( f1)2], f2〉. Thenh is a special sequence andh1 = f1 andhlenh = f2 and L̃(h) is a special
polygonal arc joiningf1 and f2 andL̃(h)⊆ L̃( f ) andL̃(h) = L̃( f �1)∪L( f1, f2) andL̃(h) =
L̃( f �2)∪L( f2, f2).
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(16) Supposef2 6= f1 and f is a special sequence and( f2)1 = ( f1)1 and h = 〈 f1, [( f1)1,
( f1)2+( f2)2

2 ], f2〉. Thenh is a special sequence andh1 = f1 andhlenh = f2 andL̃(h) is a spe-

cial polygonal arc joiningf1 and f2 and L̃(h) ⊆ L̃( f ) and L̃(h) = L̃( f �1)∪L( f1, f2) and
L̃(h) = L̃( f �2)∪L( f2, f2).

(17) Supposefi 6= f1 and f is a special sequence andi > 2 andi ∈ dom f andh = f �i. Then

(i) h is a special sequence,

(ii) h1 = f1,

(iii) hlenh = fi ,

(iv) L̃(h) is a special polygonal arc joiningf1 and fi ,

(v) L̃(h)⊆ L̃( f ), and

(vi) L̃(h) = L̃( f �i)∪L( fi , fi).

(18) Supposep 6= f1 and f is a special sequence andp∈ L( f ,n). Then there existsh such that

(i) h is a special sequence,

(ii) h1 = f1,

(iii) hlenh = p,

(iv) L̃(h) is a special polygonal arc joiningf1 andp,

(v) L̃(h)⊆ L̃( f ), and

(vi) L̃(h) = L̃( f �n)∪L( fn, p).

(19) Supposep 6= f1 and f is a special sequence andp∈ L̃( f ). Then there existsh such thath
is a special sequence andh1 = f1 andhlenh = p andL̃(h) is a special polygonal arc joiningf1
andp andL̃(h)⊆ L̃( f ).

(20) Suppose thatp1 = ( flen f )1 andp2 6= ( flen f )2 or p1 6= ( flen f )1 andp2 = ( flen f )2 and f1 /∈
Ball(u, r) and flen f ∈Ball(u, r) andp∈Ball(u, r) and f is a special sequence andL( flen f , p)∩
L̃( f ) = { flen f } andh= f a 〈p〉. Thenh is a special sequence andL̃(h) is a special polygonal
arc joining f1 andp andL̃(h)⊆ L̃( f )∪Ball(u, r).

(21) Suppose thatf1 /∈ Ball(u, r) and flen f ∈ Ball(u, r) and p ∈ Ball(u, r) and [p1,( flen f )2] ∈
Ball(u, r) and f is a special sequence andp1 6= ( flen f )1 andp2 6= ( flen f )2 andh = f a 〈[p1,

( flen f )2], p〉 and(L( flen f , [p1,( flen f )2])∪L([p1,( flen f )2], p))∩ L̃( f ) = { flen f }. ThenL̃(h)
is a special polygonal arc joiningf1 andp andL̃(h)⊆ L̃( f )∪Ball(u, r).

(22) Suppose thatf1 /∈ Ball(u, r) and flen f ∈ Ball(u, r) and p ∈ Ball(u, r) and [( flen f )1, p2] ∈
Ball(u, r) and f is a special sequence andp1 6= ( flen f )1 and p2 6= ( flen f )2 and h = f a

〈[( flen f )1, p2], p〉 and (L( flen f , [( flen f )1, p2])∪L([( flen f )1, p2], p))∩ L̃( f ) = { flen f }. Then
L̃(h) is a special polygonal arc joiningf1 andp andL̃(h)⊆ L̃( f )∪Ball(u, r).

(23) Supposef1 /∈Ball(u, r) and flen f ∈Ball(u, r) andp∈Ball(u, r) and f is a special sequence
andp /∈ L̃( f ). Then there existsh such that̃L(h) is a special polygonal arc joiningf1 andp
andL̃(h)⊆ L̃( f )∪Ball(u, r).

(24) Let givenR, p, p1, p2, P, r, u. Supposep 6= p1 andP is a special polygonal arc joiningp1

andp2 andP⊆ Randp∈ Ball(u, r) andp2 ∈ Ball(u, r) and Ball(u, r)⊆ R. Then there exists
a subsetP1 of E2

T such thatP1 is a special polygonal arc joiningp1 andp andP1 ⊆ R.

In the sequelP, Rare subsets ofE2
T.

We now state several propositions:
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(25) Let givenp. Suppose that

(i) R is a region, and

(ii) P = {q : q 6= p ∧ q∈ R ∧ ¬
∨

P1 :subset ofE2
T

(P1 is a special polygonal arc joiningp and

q ∧ P1 ⊆ R)}.
ThenP is open.

(26) Suppose that

(i) R is a region,

(ii) p∈ R, and

(iii) P= {q : q= p ∨
∨

P1 :subset ofE2
T

(P1 is a special polygonal arc joiningp andq ∧ P1⊆R)}.

ThenP is open.

(27) Supposep∈ R andP = {q : q = p ∨
∨

P1 :subset ofE2
T

(P1 is a special polygonal arc joining

p andq ∧ P1 ⊆ R)}. ThenP⊆ R.

(28) Suppose that

(i) R is a region,

(ii) p∈ R, and

(iii) P= {q : q= p ∨
∨

P1 :subset ofE2
T

(P1 is a special polygonal arc joiningp andq ∧ P1⊆R)}.

ThenR⊆ P.

(29) Suppose that

(i) R is a region,

(ii) p∈ R, and

(iii) P= {q : q= p ∨
∨

P1 :subset ofE2
T

(P1 is a special polygonal arc joiningp andq ∧ P1⊆R)}.

ThenR= P.

(30) If R is a region andp∈ R andq∈ R andp 6= q, then there existsP such thatP is a special
polygonal arc joiningp andq andP⊆ R.
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