Connectedness Conditions Using Polygonal Arcs

Yatsuka Nakamura Shinshu University Nagano Jarosław Kotowicz Warsaw University Białystok

Summary. A concept of special polygonal arc joining two different points is defined. Any two points in a ball can be connected by this kind of arc, and that is also true for any region in \mathcal{E}_{T}^{2} .

MML Identifier: TOPREAL4.

WWW: http://mizar.org/JFM/Vol4/topreal4.html

The articles [12], [14], [2], [8], [1], [15], [4], [3], [13], [11], [10], [9], [5], [6], and [7] provide the notation and terminology for this paper.

For simplicity, we use the following convention: P, P_1, P_2, R denote subsets of \mathcal{E}_T^2 , W denotes a non empty subset of \mathcal{E}_T^2 , p, p_1, p_2, q denote points of \mathcal{E}_T^2 , f, h denote finite sequences of elements of \mathcal{E}_T^2 , r denotes a real number, u denotes a point of \mathcal{E}^2 , and n, i denote natural numbers.

The following proposition is true

Let D be a non empty set, f be a finite sequence of elements of D, and p be an element of D. Then (f ∩ ⟨p⟩)_{len f+1} = p.

Let us consider P, p, q. We say that P is a special polygonal arc joining p and q if and only if:

(Def. 1) There exists f such that f is a special sequence and $P = \widetilde{\mathcal{L}}(f)$ and $p = f_1$ and $q = f_{\text{len } f}$.

Let us consider P. We say that P is special polygon if and only if the condition (Def. 2) is satisfied.

(Def. 2) There exist p_1 , p_2 , P_1 , P_2 such that

 $p_1 \neq p_2$ and $p_1 \in P$ and $p_2 \in P$ and P_1 is a special polygonal arc joining p_1 and p_2 and P_2 is a special polygonal arc joining p_1 and p_2 and $P_1 \cap P_2 = \{p_1, p_2\}$ and $P = P_1 \cup P_2$.

We introduce *P* is a special polygon as a synonym of *P* is special polygon. Let *P* be a subset of \mathcal{E}_{T}^{2} . We say that *P* is region if and only if:

(Def. 3) *P* is open and connected.

We introduce *P* is a region as a synonym of *P* is region. Next we state a number of propositions:

- (2) If P is a special polygonal arc joining p and q, then P is a special polygonal arc.
- (3) If W is a special polygonal arc joining p and q, then W is an arc from p to q.
- (4) If W is a special polygonal arc joining p and q, then $p \in W$ and $q \in W$.
- (5) If *P* is a special polygonal arc joining *p* and *q*, then $p \neq q$.

- (6) If W is a special polygon, then W is a simple closed curve.
- (7) Suppose p₁ = q₁ and p₂ ≠ q₂ and p ∈ Ball(u,r) and q ∈ Ball(u,r) and f = ⟨p, [p₁, ^{p₂+q₂}/₂], q⟩. Then f is a special sequence and f₁ = p and f_{len f} = q and L̃(f) is a special polygonal arc joining p and q and L̃(f) ⊆ Ball(u,r).
- (8) Suppose p₁ ≠ q₁ and p₂ = q₂ and p ∈ Ball(u, r) and q ∈ Ball(u, r) and f = ⟨p, [^{p₁+q₁}/₂, p₂], q⟩. Then f is a special sequence and f₁ = p and f_{len f} = q and L̃(f) is a special polygonal arc joining p and q and L̃(f) ⊆ Ball(u, r).
- (9) Suppose p₁ ≠ q₁ and p₂ ≠ q₂ and p ∈ Ball(u, r) and q ∈ Ball(u, r) and [p₁,q₂] ∈ Ball(u, r) and f = ⟨p, [p₁,q₂],q⟩. Then f is a special sequence and f₁ = p and f_{len f} = q and L̃(f) is a special polygonal arc joining p and q and L̃(f) ⊆ Ball(u, r).
- (10) Suppose $p_1 \neq q_1$ and $p_2 \neq q_2$ and $p \in \text{Ball}(u, r)$ and $q \in \text{Ball}(u, r)$ and $[q_1, p_2] \in \text{Ball}(u, r)$ and $f = \langle p, [q_1, p_2], q \rangle$. Then f is a special sequence and $f_1 = p$ and $f_{\text{len}f} = q$ and $\widetilde{\mathcal{L}}(f)$ is a special polygonal arc joining p and q and $\widetilde{\mathcal{L}}(f) \subseteq \text{Ball}(u, r)$.
- (11) If $p \neq q$ and $p \in \text{Ball}(u, r)$ and $q \in \text{Ball}(u, r)$, then there exists P such that P is a special polygonal arc joining p and q and $P \subseteq \text{Ball}(u, r)$.
- (12) Suppose $p \neq f_1$ and $(f_1)_2 = p_2$ and f is a special sequence and $p \in \mathcal{L}(f, 1)$ and $h = \langle f_1, [\frac{(f_1)_1 + p_1}{2}, (f_1)_2], p \rangle$. Then
- (i) h is a special sequence,
- (ii) $h_1 = f_1$,
- (iii) $h_{\text{len}h} = p$,
- (iv) $\mathcal{L}(h)$ is a special polygonal arc joining f_1 and p,
- (v) $\widetilde{\mathcal{L}}(h) \subseteq \widetilde{\mathcal{L}}(f)$, and
- (vi) $\widetilde{\mathcal{L}}(h) = \widetilde{\mathcal{L}}(f \upharpoonright 1) \cup \mathcal{L}(f_1, p).$
- (13) Suppose $p \neq f_1$ and $(f_1)_1 = p_1$ and f is a special sequence and $p \in \mathcal{L}(f, 1)$ and $h = \langle f_1, [(f_1)_1, \frac{(f_1)_2 + p_2}{2}], p \rangle$. Then
- (i) h is a special sequence,
- (ii) $h_1 = f_1$,
- (iii) $h_{\text{len}h} = p$,
- (iv) $\widetilde{\mathcal{L}}(h)$ is a special polygonal arc joining f_1 and p,
- (v) $\widetilde{\mathcal{L}}(h) \subseteq \widetilde{\mathcal{L}}(f)$, and
- (vi) $\widetilde{\mathcal{L}}(h) = \widetilde{\mathcal{L}}(f \upharpoonright 1) \cup \mathcal{L}(f_1, p).$
- (14) Suppose $p \neq f_1$ and f is a special sequence and $i \in \text{dom } f$ and $i+1 \in \text{dom } f$ and i > 1 and $p \in \mathcal{L}(f,i)$ and $p \neq f_i$ and $p \neq f_{i+1}$ and $h = (f \upharpoonright i) \cap \langle p \rangle$. Then
 - (i) h is a special sequence,
- (ii) $h_1 = f_1$,
- (iii) $h_{\text{len}h} = p$,
- (iv) $\mathcal{L}(h)$ is a special polygonal arc joining f_1 and p,
- (v) $\widetilde{\mathcal{L}}(h) \subseteq \widetilde{\mathcal{L}}(f)$, and
- (vi) $\widetilde{\mathcal{L}}(h) = \widetilde{\mathcal{L}}(f \upharpoonright i) \cup \mathcal{L}(f_i, p).$
- (15) Suppose $f_2 \neq f_1$ and f is a special sequence and $(f_2)_2 = (f_1)_2$ and $h = \langle f_1, [\frac{(f_1)_1 + (f_2)_1}{2}, (f_1)_2], f_2 \rangle$. Then h is a special sequence and $h_1 = f_1$ and $h_{\text{len}h} = f_2$ and $\widetilde{\mathcal{L}}(h)$ is a special polygonal arc joining f_1 and f_2 and $\widetilde{\mathcal{L}}(h) \subseteq \widetilde{\mathcal{L}}(f)$ and $\widetilde{\mathcal{L}}(h) = \widetilde{\mathcal{L}}(f \upharpoonright 1) \cup \mathcal{L}(f_1, f_2)$ and $\widetilde{\mathcal{L}}(h) = \widetilde{\mathcal{L}}(f \upharpoonright 2) \cup \mathcal{L}(f_2, f_2)$.

- (16) Suppose $f_2 \neq f_1$ and f is a special sequence and $(f_2)_1 = (f_1)_1$ and $h = \langle f_1, [(f_1)_1, \frac{(f_1)_2 + (f_2)_2}{2}], f_2 \rangle$. Then h is a special sequence and $h_1 = f_1$ and $h_{\text{len}h} = f_2$ and $\widetilde{\mathcal{L}}(h)$ is a special polygonal arc joining f_1 and f_2 and $\widetilde{\mathcal{L}}(h) \subseteq \widetilde{\mathcal{L}}(f)$ and $\widetilde{\mathcal{L}}(h) = \widetilde{\mathcal{L}}(f \upharpoonright 1) \cup \mathcal{L}(f_1, f_2)$ and $\widetilde{\mathcal{L}}(h) = \widetilde{\mathcal{L}}(f \upharpoonright 2) \cup \mathcal{L}(f_2, f_2)$.
- (17) Suppose $f_i \neq f_1$ and f is a special sequence and i > 2 and $i \in \text{dom } f$ and h = f | i. Then
- (i) h is a special sequence,
- (ii) $h_1 = f_1$,
- (iii) $h_{\text{len}\,h} = f_i$,
- (iv) $\mathcal{L}(h)$ is a special polygonal arc joining f_1 and f_i ,

(v)
$$\mathcal{L}(h) \subseteq \mathcal{L}(f)$$
, and

- (vi) $\widetilde{\mathcal{L}}(h) = \widetilde{\mathcal{L}}(f | i) \cup \mathcal{L}(f_i, f_i).$
- (18) Suppose $p \neq f_1$ and f is a special sequence and $p \in \mathcal{L}(f, n)$. Then there exists h such that
- (i) h is a special sequence,
- (ii) $h_1 = f_1$,
- (iii) $h_{\operatorname{len} h} = p$,
- (iv) $\widetilde{\mathcal{L}}(h)$ is a special polygonal arc joining f_1 and p,
- (v) $\widetilde{\mathcal{L}}(h) \subseteq \widetilde{\mathcal{L}}(f)$, and
- (vi) $\widetilde{\mathcal{L}}(h) = \widetilde{\mathcal{L}}(f \upharpoonright n) \cup \mathcal{L}(f_n, p).$
- (19) Suppose $p \neq f_1$ and f is a special sequence and $p \in \widetilde{\mathcal{L}}(f)$. Then there exists h such that h is a special sequence and $h_1 = f_1$ and $h_{\text{len}h} = p$ and $\widetilde{\mathcal{L}}(h)$ is a special polygonal arc joining f_1 and p and $\widetilde{\mathcal{L}}(h) \subseteq \widetilde{\mathcal{L}}(f)$.
- (20) Suppose that $p_1 = (f_{\text{len}f})_1$ and $p_2 \neq (f_{\text{len}f})_2$ or $p_1 \neq (f_{\text{len}f})_1$ and $p_2 = (f_{\text{len}f})_2$ and $f_1 \notin \text{Ball}(u, r)$ and $f_{\text{len}f} \in \text{Ball}(u, r)$ and $p \in \text{Ball}(u, r)$ and f is a special sequence and $\mathcal{L}(f_{\text{len}f}, p) \cap \widetilde{\mathcal{L}}(f) = \{f_{\text{len}f}\}$ and $h = f \cap \langle p \rangle$. Then h is a special sequence and $\widetilde{\mathcal{L}}(h)$ is a special polygonal arc joining f_1 and p and $\widetilde{\mathcal{L}}(h) \subseteq \widetilde{\mathcal{L}}(f) \cup \text{Ball}(u, r)$.
- (21) Suppose that $f_1 \notin \text{Ball}(u, r)$ and $f_{\text{len}f} \in \text{Ball}(u, r)$ and $p \in \text{Ball}(u, r)$ and $[p_1, (f_{\text{len}f})_2] \in \text{Ball}(u, r)$ and f is a special sequence and $p_1 \neq (f_{\text{len}f})_1$ and $p_2 \neq (f_{\text{len}f})_2$ and $h = f \cap \langle [p_1, (f_{\text{len}f})_2], p \rangle$ and $(\mathcal{L}(f_{\text{len}f}, [p_1, (f_{\text{len}f})_2]) \cup \mathcal{L}([p_1, (f_{\text{len}f})_2], p)) \cap \widetilde{\mathcal{L}}(f) = \{f_{\text{len}f}\}$. Then $\widetilde{\mathcal{L}}(h)$ is a special polygonal arc joining f_1 and p and $\widetilde{\mathcal{L}}(h) \subseteq \widetilde{\mathcal{L}}(f) \cup \text{Ball}(u, r)$.
- (22) Suppose that $f_1 \notin \text{Ball}(u, r)$ and $f_{\text{len}f} \in \text{Ball}(u, r)$ and $p \in \text{Ball}(u, r)$ and $[(f_{\text{len}f})_1, p_2] \in \text{Ball}(u, r)$ and f is a special sequence and $p_1 \neq (f_{\text{len}f})_1$ and $p_2 \neq (f_{\text{len}f})_2$ and $h = f \cap \langle [(f_{\text{len}f})_1, p_2], p \rangle$ and $(\mathcal{L}(f_{\text{len}f}, [(f_{\text{len}f})_1, p_2]) \cup \mathcal{L}([(f_{\text{len}f})_1, p_2], p)) \cap \widetilde{\mathcal{L}}(f) = \{f_{\text{len}f}\}$. Then $\widetilde{\mathcal{L}}(h)$ is a special polygonal arc joining f_1 and p and $\widetilde{\mathcal{L}}(h) \subseteq \widetilde{\mathcal{L}}(f) \cup \text{Ball}(u, r)$.
- (23) Suppose $f_1 \notin \text{Ball}(u, r)$ and $f_{\text{len}f} \in \text{Ball}(u, r)$ and $p \in \text{Ball}(u, r)$ and f is a special sequence and $p \notin \widetilde{\mathcal{L}}(f)$. Then there exists h such that $\widetilde{\mathcal{L}}(h)$ is a special polygonal arc joining f_1 and pand $\widetilde{\mathcal{L}}(h) \subseteq \widetilde{\mathcal{L}}(f) \cup \text{Ball}(u, r)$.
- (24) Let given R, p, p_1 , p_2 , P, r, u. Suppose $p \neq p_1$ and P is a special polygonal arc joining p_1 and p_2 and $P \subseteq R$ and $p \in \text{Ball}(u, r)$ and $p_2 \in \text{Ball}(u, r)$ and $\text{Ball}(u, r) \subseteq R$. Then there exists a subset P_1 of \mathcal{E}_T^2 such that P_1 is a special polygonal arc joining p_1 and p and $P_1 \subseteq R$.

In the sequel *P*, *R* are subsets of \mathcal{E}_{T}^{2} . We now state several propositions:

- (25) Let given p. Suppose that
- (i) *R* is a region, and
- (ii) $P = \{q : q \neq p \land q \in R \land \neg \bigvee_{P_1 : \text{subset of } \mathcal{E}_T^2} (P_1 \text{ is a special polygonal arc joining } p \text{ and } q \land P_1 \subseteq R)\}.$

Then *P* is open.

- (26) Suppose that
- (i) R is a region,
- (ii) $p \in R$, and
- (iii) $P = \{q : q = p \lor \bigvee_{P_1 : \text{subset of } \mathcal{E}_T^2} (P_1 \text{ is a special polygonal arc joining } p \text{ and } q \land P_1 \subseteq R) \}.$ Then *P* is open.
- (27) Suppose $p \in R$ and $P = \{q : q = p \lor \bigvee_{P_1 : \text{subset of } \mathcal{E}_T^2} (P_1 \text{ is a special polygonal arc joining } p \text{ and } q \land P_1 \subseteq R\}$. Then $P \subseteq R$.
- (28) Suppose that
- (i) R is a region,
- (ii) $p \in R$, and
- (iii) $P = \{q : q = p \lor \bigvee_{P_1 : \text{subset of } \mathcal{E}_T^2} (P_1 \text{ is a special polygonal arc joining } p \text{ and } q \land P_1 \subseteq R) \}.$ Then $R \subseteq P$.
- (29) Suppose that
- (i) *R* is a region,
- (ii) $p \in R$, and
- (iii) $P = \{q : q = p \lor \bigvee_{P_1 : \text{subset of } \mathcal{E}_T^2} (P_1 \text{ is a special polygonal arc joining } p \text{ and } q \land P_1 \subseteq R) \}.$ Then R = P.
- (30) If *R* is a region and $p \in R$ and $q \in R$ and $p \neq q$, then there exists *P* such that *P* is a special polygonal arc joining *p* and *q* and $P \subseteq R$.

REFERENCES

- Grzegorz Bancerek. The fundamental properties of natural numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/nat_l.html.
- [2] Grzegorz Bancerek. The ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ordinall. html.
- [3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/finseq_1.html.
- [4] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ funct_1.html.
- [5] Agata Darmochwał. The Euclidean space. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/euclid.html.
- [6] Agata Darmochwał and Yatsuka Nakamura. The topological space L²_T. Arcs, line segments and special polygonal arcs. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/topreall.html.
- [7] Agata Darmochwał and Yatsuka Nakamura. The topological space £²₁. Simple closed curves. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/topreal2.html.
- [8] Krzysztof Hryniewiecki. Basic properties of real numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Vol1/real_1.html.
- [9] Stanisława Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Journal of Formalized Mathematics, 2, 1990. http://mizar. org/JFM/Vol2/metric_1.html.
- [10] Beata Padlewska. Connected spaces. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/connsp_1.html.
- [11] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/pre_topc.html.

- [12] Andrzej Trybulec. Tarski Grothendieck set theory. *Journal of Formalized Mathematics*, Axiomatics, 1989. http://mizar.org/JFM/ Axiomatics/tarski.html.
- [13] Wojciech A. Trybulec. Pigeon hole principle. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/finseq_4.html.
- [14] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/subset_1.html.
- [15] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Voll/relat_1.html.

Received August 24, 1992

Published January 2, 2004