JOURNAL OF FORMALIZED MATHEMATICS
Volume4,  Released 1992,  Published 2003
Inst. of Computer Science, Univ. of Bialystok

Connectedness Conditions Using Polygonal Arcs
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Summary. A concept of special polygonal arc joining two different points is defined.
Any two points in a ball can be connected by this kind of arc, and that is also true for any
region in£2.

MML Identifier: TOPREALA4.

WWW: http://mizar.org/JFM/Vold/topreald. html

The articles([12],[[14],[12],[18],T1],[15],[[4],[13], 18], 111],110],[19],[15],[I6], and 7] provide the
notation and terminology for this paper.

For simplicity, we use the following conventioR; P, P,, Rdenote subsets cﬁ% W denotes a
non empty subset af2, p, p1, p2, q denote points ofE2, f, h denote finite sequences of elements
of £2, r denotes a real numberdenotes a point o£2, andn, i denote natural numbers.

The following proposition is true

(1) LetD be anon empty sef, be a finite sequence of elementdmfandp be an element of
D. Then(f ™ (p))ieni+1 = p-

Let us consideP, p, g. We say thaP is a special polygonal arc joiningandq if and only if:
(Def. 1) There exist$ such thatf is a special sequence aRd= z(f) andp = f; andq = fient.

Let us consideP. We say thatP is special polygon if and only if the condition (Def. 2) is
satisfied.

(Def. 2) There exisps, p2, P1, P> such that

p1 # pz andp; € P andp, € P andP; is a special polygonal arc joining; andp, andP; is
a special polygonal arc joinings andpz andPy NP, = {p1, p2} andP =P, UP;.

We introduceP is a special polygon as a synonymmfs special polygon.
Let P be a subset oE2. We say thaP is region if and only if:

(Def. 3) Pis open and connected.

We introduceP is a region as a synonym &fis region.
Next we state a number of propositions:

(2) If Pis a special polygonal arc joiningandq, thenP is a special polygonal arc.
(3) If Wis a special polygonal arc joiningandg, thenW is an arc fromp to g.

(4) If Wis a special polygonal arc joiningandg, thenp € W andq € W.

(5) If Pis a special polygonal arc joiningandq, thenp # g.
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(6) If Wis a special polygon, thaw is a simple closed curve.

(7) Supposep, = gy andp, # g2 andp € Ball(u,r) andq € Ball(u,r) and f = (p, [p1, 225%],

g). Thenf is a special sequence afig= p andfient =q andZ(f) is a special polygonal arc
joining pandqand£(f) C Ball(u,r).

(8) Supposey # gy andp; = gz andp € Ball(u,r) andq € Ball(u,r) and f = (p, [25% py],

g). Thenf is a special sequence afig= p andfient =q andZ(f) is a special polygonal arc
joining p andq and £(f) C Ball(u,r).

(9) Suppose # i andp; # g andp € Ball(u,r) andq € Ball(u,r) and[p1,g] € Ball(u,r)
andf = (p,[p1,92],q). Thenf is a special sequence afigd= p and fiens = gand£(f) is a
special polygonal arc joining andq andZ( f) C Ball(u,r).

(10) Suppose; # g1 andp, # gz andp € Ball(u,r) andq € Ball(u,r) and[qi, p2] € Iéall(u, r
andf = (p,[a1, p2),q). Thenf is a special sequence afig= p and fiens = gand£(f) is a
special polygonal arc joining andq andE( f) C Ball(u,r).

(11) If p#£qgandp e Ball(u,r) andq € Ball(u,r), then there exist® such thatP is a special
polygonal arc joiningp andg andP C Ball(u,r).

(12) Suppose # f1 and(f1)2 = p2 and f is a special sequence apds £(f,1) andh = (fq,
[JLLtP (£),],p). Then

(i) his aspecial sequence,
(i) ="y,
(iii) hIenh =P,

(iv)  L(h) is a special polygonal arc joininfy andp,
(v) L(h)C L(f),and
(vi) L(h)=ZL(fl1)UL(f1,p).

(13) Suppose # f1 and(f1)1 = p1 and f is a special sequence apds £(f,1) andh = (fq,
[(f1)2, {¥5%2] ). Then

(i) his aspecial sequence,
(i) ="y,
(iii) hIenh =D,

(iv)  L(h) is a special polygonal arc joininfy andp,
(v) £L(h)C L(f),and
(viy L(h)=L(fl1)UL(fy,p).
(14) Suppose # f1 andf is a special sequence and domf andi+ 1 € domf andi > 1 and
pe L(f,i)andp# fi andp +# fi;1 andh = (f[i) ™ (p). Then
() hisaspecial sequence,
(i) ="y,
(iii) l]enh =D,
(iv)  L(h) is a special polygonal arc joininfy andp,
(v) ZL(h)C L(f),and

W) L(h)=L(fl)UL(fip).

(15) Supposef; # f1 and f is a special sequence ant), = (f1)2 andh :~<fl, [M,
(f1)2], f2). Thenh is a special seguenceNahgi: f1~and h|e~nh = fyand L(h) is a~special
polygonal arc joiningfy and f, andL(h) € £(f) andL(h) = L(f[1)U L(f1, f2) andL(h) =
L(FI2)U L(fy, f2).
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(16) Supposef, # f; and f is a special sequence arfdz); = (f1)1 and h = (f1,[(f1)1,
%], f2). Thenh is a special sequence ahd= fi; andhjenp = f2 andZ(h) is a spe-
cial polygonal arc joiningfy and f, and L(h) C £(f) and L(h) = L(f[1)U L(fy, fz) and
L(h)=L(f]2)UL(fy, f2).

(17) Supposd; # f; andf is a special sequence ang 2 andi € domf andh = fi. Then

(i) his aspecial sequence,
(i)  hy=fg,
(i) hienn = fi,
(iv) Z(h) is a special polygonal arc joininfy and f;,
(v) ZL(h)C L(f),and

(viy L(h)=ZL(fli)uL(f;,f).

(18) Suppose # f1 andf is a special sequence apd L(f,n). Then there exists such that
(i) his aspecial sequence,

(i)  hy=fy,

(iii) hIenh =D,

(iv) Z(h) is a special polygonal arc joininfy andp,

(v) L(h)C L(f),and

W) L(h) = L(f)UL(fn,p).

(19) Suppose £ f; andf is a special sequence aEcE z(f). Then there existh such thah
isa speci:il sequence ahg= f; andhienn = pandL(h) is a special polygonal arc joininfy
andpand£Z(h) C L(f).

(20) Suppose that; = (fient)1 andpz # (fient)2 OF P1 # (fient)1 andpz = (fient)2 and fy ¢
Ball(u,r) andfiens € Ball(u,r) andp € Ball(u,r) andf is a special sequence andfient, p) N
L(f)={fient } andh= f ~ (p). Thenhis a special sequence andh) is a special polygonal
arc joining fy andp and£(h) C £(f)uBall(u,r).

(21) Suppose that; ¢ Ball(u,r) and fiens € Ball(u,r) and p € Ball(u,r) and [p1, (fient)2] €
Ball(u,r) and f is a special sequence apg # (fient)1 and p2 # (fient)2 andh = f = ([pa,

(flent)2); P) and (L(fient, [P1, (fient)2]) U L([PL, (fient )2], P) N L(f) = { fient }. Then L(h)
is a special polygonal arc joininfy andp andL(h) C £(f)uUBall(u,r).

(22) Suppose that; ¢ Ball(u,r) and fiens € Ball(u,r) and p € Ball(u,r) and[( fient)1, P2} €
Ball(u,r) and f is a special sequence amd # (fienf)1 and p2 # (fienf)2 andh =~
([(fient)1, P2], ) and (L fient, [(fient)1, P2]) U L([(fient)1, Po], P)) N Z(F) = { fienr }. Then
L(h) is a special polygonal arc joininfy andp and £(h) C £(f)uUBall(u,r).

(23) Supposd; ¢ Ball(u,r) andfiens € Ball(u,r) andp € Ball(u,r) andf is a special sequence
andp ¢ L(f). Then there existh such thatZ(h) is a special polygonal arc joininfy andp
andL(h) C £(f)UBall(u,r).

(24) LetgivenR, p, p1, p2, P, r, u. Suppose # p; andP is a special polygonal arc joiningy
andpz andP C Randp € Ball(u,r) andp; € Ball(u,r) and Bal(u,r) C R. Then there exists
a subseP; of E% such thaf; is a special polygonal arc joining; andp andP; C R

In the sequeP, Rare subsets of2.
We now state several propositions:
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(25) Let givenp. Suppose that

(i) Risaregion, and

(i) P={q:q#pAgeERA “Vp, :subset of2 (P, is a special polygonal arc joining and

qgA P C R)}
ThenP is open.

(26) Suppose that

() Risaregion,

(i) peRand

(i) P={a:9=pV Vp, subset of£2 (P1 is a special polygonal arc joiningandg A PL CR)}.

ThenP is open.

(27) SuppospcRandP={q:q=p Vv Vb, :subset of£2 (Py is a special polygonal arc joining

pandg A PL CR)}. ThenPCR.

(28) Suppose that

(i) Risaregion,

(i) peRand

(i) P={a:9=pV Vp  subset of2 (P1 is a special polygonal arc joiningandg A PL CR)}.

ThenRCP.

(29) Suppose that

(i) Risaregion,

(i) peRand

@iy  P={a:9=pV Vp, subset of£2 (Py is a special polygonal arc joiningandg A PL CR)}.

ThenR=P.

(30) If Risaregion ang € Randqg € Randp # g, then there exist® such thatlP is a special
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polygonal arc joiningp andg andP C R
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