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Summary. The notions of arc and line segment are introduced in two-dimensional
topological real spac@%. Some basic theorems for these notions are proved. Using line
segments, the notion of special polygonal arc is defined. It has been shown that any special
polygonal arc is homeomorphic to unit interdial The notion of unit squarEETe has been
also introduced and some facts about it have been proved.
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The articles[[15],[[18],[2],[[3],[16],[[14],[11],[12191,[16],[[7],[18],[[1B], 141, [[1l7],[[12],[[10],[15],18],
and [14] provide the notation and terminology for this paper.

We adopt the following ruled; denotes a real numbaey,j, n denote natural numbers, aagm
denote natural numbers.

The schemd-raenkel Altdeals with a non empty set and two unary predicate8, Q, and
states that:
{v;v ranges over elements ¢f : P[v] vV Q|v]} = {vi;v1 ranges over elements of
A : Pv1]} U{vo; vz ranges over elements &f: Q[v2]}
for all values of the parameters.
In the sequeD denotes a set angldenotes a finite sequence of element®of
Let us consideDb, p, m. The functorp[myielding a finite sequence of elementsidfs defined
by:

(Def. 1) pim= p|Segn.

Let D be a set and let be a finite sequence of elementdbfOne can verify thaf [0 is empty.
The following propositions are true:

(1) Ifaedom(pm), then(plm)a = pa.
(2) Iflenp<m, thenpim=p.
(3) Ifm<lenp,thenlerfpfm)=m.

Let T be a 1-sorted structure. A finite sequence of elementsisf finite sequence of elements
of the carrier ofT.

We use the following conventiomp, p1, pz, 1, 02 are points ofE% andP, P; are subsets (ﬁ

Let us considen, let p1, p2 be points of£{, and letP be a subset of7. We say thaP is an arc
from py to py if and only if:
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(Def. 2) There exists a mapfrom I into (£7)[P such thatf is a homeomorphism anf{0) = p;
andf (1) = py.

Next we state two propositions:

(4) For every subsd? of £ and for all pointspy, p2 of 7 such thaP is an arc frompy to p,
holdsp; € Pandpy € P.

(5) LetP, Qbe subsets off andp1, p2, 1 be points of£{. SupposeP is an arc fromp; to
pz2 andQ is an arc fromp, to gz andPNQ = {p2}. ThenPUQ is an arc fromp; to q;.

The subsefl,» of E% is defined by the condition (Def. 3).

(Def.3) Opz={p:p1=0AP2<1AP2>0V pr<1IAPL>0AP2=1Vp<1APp>
OAP2=0V pr=1Ap<1A p2>0}

Let us considen and letp;, p2 be points ofEf. The functorZ(ps, p) yields a subset of7
and is defined as follows:

(Def. 4)  L(p1,p2) ={(1—11) - pr+l1-p2:0<11 A Ip <1}

Let us considen and letpy, p2 be points ofEf. Note thatZ(py, p2) is non empty.
The following propositions are true:

(6) For all pointspy, pz of Z7 holdsp; € L(pz, p2) andpz € L(p1, P2).
(7) For every poinp of £ holdsL(p, p) = {p}.
(8) For all pointspy, p2 of £ holds L(p1, p2) = L(p2, P1)-

Let us considen and letp;, p. be points of£{. Let us note that the functaf(ps, p2) is
commutative.
Next we state a number of propositions:

(9) If (pr)1 < (p2)1andpe L(p1,p2), then(p1)1 < prandp; < (P2)1.
(10) If (p1)2 < (p2)2 andp € L(p1, p2), then(py)2 < pz andpz < (p2)2.

(11) For all pointsp, p1, p2 of E{ such thatp € L(p1,p2) holds L(p1, p2) = L(p1,p) U
L(p, p2)-

(12) For all pointsps, p2, 01, g2 of 7 such thatqy € £(p1, p2) andge € L(p1, p2) holds
L£(01,02) € L(p1, P2)-

(13) For all pointsp, g, p1, p of £ such thatp € L(p1,p2) and q € L(p1, p2) holds
L(p1, P2) = L(P1, P) U L(p,q) U L(Q, P2)-

(14) If pe L(p1,p2), thenL(p, p)NL(p, P2) = {p}-

(15) For all pointspz, po of 7 such thatp; # p2 holds£(ps, p2) is an arc fromp; to p;.

(16) LetP be a subset off and py, p2, o1 be points ofZ{. If P is an arc fromp; to p, and
PN L(p2,01) = {pz2}, thenPU L(pz,qz) is an arc frompy to qs.

(17) LetP be a subset off andp1, p2, 01 be points of£7. If P is an arc fromp, to p; and
L(t, p2) NP ={pz}, thenL(qgs, p2) UP is an arc fron; to p;.

(18) For all pointspy, po, g1 of 7 such thatp; # p2 or pa # g1 but L(p1, p2) N L(p2,01) =
{pz2} holds L(p1, p2) U L(p2,q1) is an arc fromp; to gs.
(19)() £([0,05,[0,1]) = {pr: (P1)1=0 A (p1)2 <1 A (p1)2 > O},
(i) £([0,1],[1,1]) ={p2: (P2)1 <1 A (P2)1 20 A (p2)2 =1},
(i) £([0,0],[1,0]) = {ox: (qu)1 <1 A (1)1 >0 A (d2)2 =0}, and
(v) L£([1,0,[1,1]) ={d2: ()1 =1 A (G)2<1 A (d2)2 >0}
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(20) Dz = £([0,0],[0, 1)) U £([0, 1], [1,1]) U (£([0,0], [1,0]) U L([1,0], 1, 1]))-

Let us note thall,2 is non empty.
We now state several propositions:

(21) £([0,0],[0,1}) N £([0,1], [1,1]) = {[0, 1]}
(22) £([0,0],[1,00)N £([1,0], (1,1]) = {[1,0]}
(23) £([0,0],[0,1}) N £([0,0], 1,0]) = {[0,0]}.
(24) £([0,2],[1,1)) N £([2,0], 1, 1]) = {[1,2]}.
(25) £([0,0],[1,0]) misses£([0,1],[1,1]).
(26) £([0,0],[0,1]) missesL([1,0],[1,1]).

Let us considen, let f be a finite sequence of elementsZff, and let us considér The functor
L(f,i) yielding a subset of is defined as follows:

L(fi, fiy1), if1 <iandi+1<lenf,
0, otherwise.

(Def.5) L(f,i)= {
The following proposition is true

(27) For every finite sequenck of elements ofE} such that 1< i andi+ 1 < lenf holds
fie L(f,i)andfi 1 € L(f,i).

Let us considen and letf be a finite sequence of elements®f. The functorZ(f) yields a
subset of£f and is defined as follows:

(Def.6) L(f)=U{L(f,i):1<iAi+1<lenf}.
The following propositions are true:
(28) For every finite sequendeof elements of£f holds lenf =0 or lenf = 1 iff Z(f) =0.
(29) For every finite sequendeof elements of£7 such that lerf > 2 holdsZ(f) # 0.

Let ;1 be a finite sequence of elementszq% We say that; is special if and only if:

(Def. 7) For everyi such that 1< i andi+ 1 < lenls holds ((I1)i)1 = ((11)i+1)1 or ((I1)i)2 =
((I)is1)2-

We say that; is unfolded if and only if:

(Def. 8) For every such that i< i andi+2 <lenly holds£(l1,i) N L(I1,i+1) = {(l1)i+1}
We say that; is s.n.c. if and only if:

(Def.9) Foralli, j such thai +1 < j holds £(I1,i) missesL(l1, j).

In the sequelf, fi, f2, h are finite sequences of elementﬂ.
Let us considerf. We say thaff is special sequence if and only if:

(Def. 10) f is one-to-one and leh> 2 andf is unfolded, s.n.c., and special.

We introducef is a special sequence as a synonynfi &f special sequence.
One can prove the following two propositions:

(30) There exisff, fo such that

f1 is a special sequence affiglis a special sequence ang}.> = L(f1)UL(fp) and L(f1) N
L(f2) ={[0,0],[1,1]} and(f1)1 = [0,0] and(f1)ient, = [1,1] and(f2)1 = [0,0] and(f2)ient, =
[1,1].



THE TOPOLOGICAL SPACE—|t2. R 4

(31) If his a special sequence, théih) is an arc fromhy to hienp.

Let P be a subset oE2. We say thaP is special polygonal arc if and only if:

(Def. 11) There exist$ such thatf is a special sequence aRd= Z(f).

We introduceP is a special polygonal arc as a synonynPdé special polygonal arc.
Next we state the proposition

(32) If Py is a special polygonal arc, théh £ 0.

One can verify that every subset®§ which is special polygonal arc is also non empty.
We now state three propositions:

(34@ There exist non empty subsé?g P, of E% such that?; is a special polygonal arc ari

is a special polygonal arc ahd,> = Pt UP, andPL NP = {[0,0],[1,1]}.

(385) If Pis a special polygonal arc, then there exist p, such thaf is an arc fromp; to ps.

(36) If Pis a special polygonal arc, then there exists a map framto £2|P which is a homeo-
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morphism.
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