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Summary. Relations of convergence of real sequences and convergence of metric
spaces are investigated. An abstract intermediate value theorem for two closed sets in the
range is presented. At the end, it is proven that an arc connecting the west minimal point and
the east maximal point in a simple closed curve must be identical to the upper arc or lower arc
of the closed curve.
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The articles [22], [24], [1], [23], [25], [4], [5], [3], [13], [19], [7], [2], [21], [8], [6], [9], [17], [15],
[14], [16], [12], [20], [18], [10], and [11] provide the notation and terminology for this paper.

One can prove the following propositions:

(1) Let R be a non empty subset ofR andr0 be a real number. If for every real numberr such
thatr ∈ Rholdsr ≤ r0, then supR≤ r0.

(2) Let X be a non empty metric space,S be a sequence ofX, andF be a subset ofXtop.
SupposeSis convergent and for every natural numbern holdsS(n)∈ F andF is closed. Then
lim S∈ F.

(3) Let X, Y be non empty metric spaces,f be a map fromXtop into Ytop, andSbe a sequence
of X. Then f ·S is a sequence ofY.

(4) Let X, Y be non empty metric spaces,f be a map fromXtop into Ytop, Sbe a sequence of
X, andT be a sequence ofY. If S is convergent andT = f ·Sand f is continuous, thenT is
convergent.

(5) For every non empty metric spaceX holds every function fromN into the carrier ofX is a
sequence ofX.

(6) Letsbe a sequence of real numbers andSbe a sequence of the metric space of real numbers
such thats= S. Then

(i) s is convergent iffS is convergent, and

(ii) if s is convergent, then lims= lim S.

(7) Let a, b be real numbers ands be a sequence of real numbers. If rngs⊆ [a,b], thens is a
sequence of[a, b]M .
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(8) Let a, b be real numbers andS be a sequence of[a, b]M . Supposea ≤ b. Then S is a
sequence of the metric space of real numbers.

(9) Let a, b be real numbers,S1 be a sequence of[a, b]M , andS be a sequence of the metric
space of real numbers such thatS= S1 anda≤ b. Then

(i) S is convergent iffS1 is convergent, and

(ii) if S is convergent, then limS= lim S1.

(10) Leta, b be real numbers,s be a sequence of real numbers, andSbe a sequence of[a, b]M .
If S= s anda≤ b ands is convergent, thenS is convergent and lims= lim S.

(11) Leta, b be real numbers,s be a sequence of real numbers, andSbe a sequence of[a, b]M .
If S= s anda≤ b ands is non-decreasing, thenS is convergent.

(12) Leta, b be real numbers,s be a sequence of real numbers, andSbe a sequence of[a, b]M .
If S= s anda≤ b ands is non-increasing, thenS is convergent.

(15)1 Let R be a non empty subset ofR. SupposeR is upper bounded. Then there exists a
sequences of real numbers such thats is non-decreasing and convergent and rngs⊆ R and
lim s= supR.

(16) Let R be a non empty subset ofR. SupposeR is lower bounded. Then there exists a
sequences of real numbers such thats is non-increasing and convergent and rngs⊆ R and
lim s= inf R.

(17) LetX be a non empty metric space,f be a map fromI into Xtop, F1, F2 be subsets ofXtop,
andr1, r2 be real numbers. Suppose that 0≤ r1 andr2 ≤ 1 andr1 ≤ r2 and f (r1) ∈ F1 and
f (r2) ∈ F2 andF1 is closed andF2 is closed andf is continuous andF1∪F2 = the carrier of
X. Then there exists a real numberr such thatr1 ≤ r andr ≤ r2 and f (r) ∈ F1∩F2.

(18) Letn be a natural number,p1, p2 be points ofEn
T, andP, P1 be non empty subsets ofEn

T.
If P is an arc fromp1 to p2 andP1 is an arc fromp2 to p1 andP1 ⊆ P, thenP1 = P.

(19) LetP, P1 be compact non empty subsets ofE2
T. SupposeP is a simple closed curve andP1 is

an arc from Wmin(P) to Emax(P) andP1 ⊆ P. ThenP1 = UpperArc(P) or P1 = LowerArc(P).
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[5] Czesław Bylínski. Functions from a set to a set.Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/funct_
2.html.
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