Metric Spaces as Topological Spaces — Fundamental Concepts

Agata Darmochwał Warsaw University Białystok

Yatsuka Nakamura Shinshu University Nagano

Summary. Some notions connected with metric spaces and the relationship between metric spaces and topological spaces. Compactness of topological spaces is transferred for the case of metric spaces [13]. Some basic theorems about translations of topological notions for metric spaces are proved. One-dimensional topological space \mathbb{R}^1 is introduced, too.

MML Identifier: TOPMETR.

WWW: http://mizar.org/JFM/Vol3/topmetr.html

The articles [18], [7], [21], [1], [20], [11], [22], [4], [6], [5], [9], [3], [12], [15], [8], [2], [14], [17], [16], [19], and [10] provide the notation and terminology for this paper.

For simplicity, we adopt the following rules: r is a real number, n is a natural number, a, b are real numbers, and T is a non empty topological space.

We now state the proposition

(1) Let T be a topological structure and F be a family of subsets of T. Then F is a cover of T if and only if the carrier of $T \subseteq \bigcup F$.

In the sequel A denotes a non empty subspace of T.

We now state three propositions:

- (2) Every point of A is a point of T.
- (3) If T is a T_2 space, then A is a T_2 space.
- (4) For all subspaces A, B of T such that the carrier of $A \subseteq$ the carrier of B holds A is a subspace of B.

In the sequel P, Q denote subsets of T and p denotes a point of T.

The following propositions are true:

- (5) $T \upharpoonright P$ is a subspace of $T \upharpoonright (P \cup Q)$ and $T \upharpoonright Q$ is a subspace of $T \upharpoonright (P \cup Q)$.
- (6) Let P be a non empty subset of T. Suppose $p \in P$. Let Q be a neighbourhood of p, p' be a point of $T \upharpoonright P$, and Q' be a subset of $T \upharpoonright P$. If $Q' = Q \cap P$ and p' = p, then Q' is a neighbourhood of p'.
- (7) Let A, B, C be topological spaces and f be a map from A into C. Suppose f is continuous and C is a subspace of B. Let h be a map from A into B. If h = f, then h is continuous.

- (8) Let A be a topological space, B be a non empty topological space, f be a map from A into B, and C be a subspace of B. Suppose f is continuous. Let h be a map from A into C. If h = f, then h is continuous.
- (9) Let A, B be topological spaces, f be a map from A into B, and C be a subset of B. Suppose f is continuous. Let h be a map from A into $B \upharpoonright C$. If h = f, then h is continuous.
- (10) Let X be a topological structure, Y be a non empty topological structure, K_0 be a subset of X, f be a map from X into Y, and g be a map from $X \upharpoonright K_0$ into Y. If f is continuous and $g = f \upharpoonright K_0$, then g is continuous.

In the sequel M denotes a non empty metric space and p denotes a point of M.

Let M be a metric space. A metric space is called a subspace of M if it satisfies the conditions (Def. 1).

- (Def. 1)(i) The carrier of it \subseteq the carrier of M, and
 - (ii) for all points x, y of it holds (the distance of it)(x, y) = (the distance of M)(x, y).

Let *M* be a metric space. Note that there exists a subspace of *M* which is strict.

Let M be a non empty metric space. Observe that there exists a subspace of M which is strict and non empty.

In the sequel A is a non empty subspace of M.

One can prove the following propositions:

- $(12)^{1}$ Every point of A is a point of M.
- (13) Let r be a real number, M be a metric space, A be a subspace of M, x be a point of M, and x' be a point of A. If x = x', then $Ball(x', r) = Ball(x, r) \cap$ the carrier of A.

Let M be a non empty metric space and let A be a non empty subset of M. The functor $M \upharpoonright A$ yielding a strict subspace of M is defined by:

(Def. 2) The carrier of $M \upharpoonright A = A$.

Let M be a non empty metric space and let A be a non empty subset of M. Observe that $M \upharpoonright A$ is non empty.

Let a, b be real numbers. Let us assume that $a \le b$. The functor $[a, b]_M$ yields a strict non empty subspace of the metric space of real numbers and is defined by the condition (Def. 3).

(Def. 3) Let P be a non empty subset of the metric space of real numbers. If P = [a, b], then $[a, b]_M = (\text{the metric space of real numbers}) \upharpoonright P$.

The following proposition is true

(14) If $a \le b$, then the carrier of $[a, b]_{\mathbf{M}} = [a, b]$.

In the sequel F, G denote families of subsets of M.

Let M be a metric structure and let F be a family of subsets of M. We say that F is ball-family if and only if:

(Def. 4) For every set P such that $P \in F$ there exists a point p of M and there exists r such that P = Ball(p, r).

We introduce F is a family of balls as a synonym of F is ball-family. We say that F is a cover of M if and only if:

(Def. 5) The carrier of $M \subseteq \bigcup F$.

One can prove the following propositions:

¹ The proposition (11) has been removed.

- (15) Let p, q be points of the metric space of real numbers and x, y be real numbers. If x = p and y = q, then $\rho(p,q) = |x y|$.
- (16) Let M be a metric structure. Then the carrier of M = the carrier of M_{top} and the topology of M_{top} = the open set family of M.
- $(19)^2$ A_{top} is a subspace of M_{top} .
- (20) For every subset P of \mathcal{E}^n_T and for every non empty subset Q of \mathcal{E}^n such that P = Q holds $(\mathcal{E}^n_T) \upharpoonright P = (\mathcal{E}^n \upharpoonright Q)_{top}$.
- (21) Let r be a real number, M be a triangle metric structure, p be a point of M, and P be a subset of M_{top} . If P = Ball(p, r), then P is open.
- (22) Let P be a subset of M_{top} . Then P is open if and only if for every point p of M such that $p \in P$ there exists a real number r such that r > 0 and $Ball(p, r) \subseteq P$.

Let *M* be a metric structure. We say that *M* is compact if and only if:

(Def. 6) M_{top} is compact.

One can prove the following proposition

(23) M is compact if and only if for every F such that F is a family of balls and a cover of M there exists G such that $G \subseteq F$ and G is a cover of M and finite.

The strict topological space \mathbb{R}^1 is defined by:

(Def. 7) \mathbb{R}^1 = (the metric space of real numbers)_{top}.

Let us note that \mathbb{R}^1 is non empty. The following proposition is true

(24) The carrier of $\mathbb{R}^1 = \mathbb{R}$.

Let C be a set, let f be a partial function from C to the carrier of \mathbb{R}^1 , and let x be a set. One can verify that f(x) is real.

Let a, b be real numbers. The functor $[a, b]_T$ yields a strict non empty subspace of \mathbb{R}^1 and is defined by:

(Def. 8) $[a, b]_T = ([a, b]_M)_{top}$.

The following propositions are true:

- (25) If $a \le b$, then the carrier of $[a, b]_T = [a, b]$.
- (26) If $a \le b$, then for every subset P of \mathbb{R}^1 such that P = [a, b] holds $[a, b]_T = \mathbb{R}^1 \upharpoonright P$.
- (27) $[0, 1]_T = \mathbb{I}$.

 \mathbb{I} is a strict subspace of \mathbb{R}^1 .

Next we state the proposition

(28) Let f be a map from \mathbb{R}^1 into \mathbb{R}^1 . Given real numbers a, b such that let x be a real number. Then $f(x) = a \cdot x + b$. Then f is continuous.

² The propositions (17) and (18) have been removed.

REFERENCES

- [1] Grzegorz Bancerek. The ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/ordinal1.html.
- [2] Leszek Borys. Paracompact and metrizable spaces. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/pcomps_1.html.
- [3] Czesław Byliński. Binary operations. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/binop_1.html.
- [4] Czesław Byliński. Functions and their basic properties. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Voll/funct_1.html.
- [5] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_2.html.
- [6] Czesław Byliński. Partial functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/partfun1.html.
- [7] Czesław Byliński. Some basic properties of sets. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/zfmisc 1.html.
- [8] Agata Darmochwał. Compact spaces. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/compts_1.html.
- [9] Agata Darmochwał. Finite sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/finset_1.html.
- [10] Agata Darmochwał. The Euclidean space. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/euclid.html.
- [11] Krzysztof Hryniewiecki. Basic properties of real numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/real 1.html.
- [12] Stanisława Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/metric_1.html.
- [13] John L. Kelley. General Topology, volume I,II. von Nostrand, 1955.
- [14] Beata Padlewska. Locally connected spaces. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/connsp_ 2.html.
- [15] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/pre_topo.html.
- [16] Jan Popiotek. Some properties of functions modul and signum. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/ JFM/Voll/absvalue.html.
- [17] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. *Journal of Formalized Mathematics*, 2, 1990. http://mizar.org/JFM/Vol2/rcomp_1.html.
- [18] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [19] Andrzej Trybulec. A Borsuk theorem on homotopy types. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/borsuk_1.html.
- [20] Andrzej Trybulec. Subsets of real numbers. Journal of Formalized Mathematics, Addenda, 2003. http://mizar.org/JFM/Addenda/numbers.html.
- $[21] \enskip \textbf{Zinaida Trybulec. Properties of subsets.} \enskip \textbf{Journal of Formalized Mathematics}, \textbf{1}, \textbf{1989}. \\ \texttt{http://mizar.org/JFM/Vol1/subset_l.html.}$
- [22] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relat_1.html.

Received November 21, 1991

Published January 2, 2004