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Summary. Some notions connected with metric spaces and the relationship between
metric spaces and topological spaces. Compactness of topological spaces is transferred for the
case of metric spaces [13]. Some basic theorems about translations of topological notions for
metric spaces are proved. One-dimensional topological spaceR1 is introduced, too.
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The articles [18], [7], [21], [1], [20], [11], [22], [4], [6], [5], [9], [3], [12], [15], [8], [2], [14], [17],
[16], [19], and [10] provide the notation and terminology for this paper.

For simplicity, we adopt the following rules:r is a real number,n is a natural number,a, b are
real numbers, andT is a non empty topological space.

We now state the proposition

(1) Let T be a topological structure andF be a family of subsets ofT. ThenF is a cover ofT
if and only if the carrier ofT ⊆

⋃
F.

In the sequelA denotes a non empty subspace ofT.
We now state three propositions:

(2) Every point ofA is a point ofT.

(3) If T is aT2 space, thenA is aT2 space.

(4) For all subspacesA, B of T such that the carrier ofA⊆ the carrier ofB holdsA is a subspace
of B.

In the sequelP, Q denote subsets ofT andp denotes a point ofT.
The following propositions are true:

(5) T�P is a subspace ofT�(P∪Q) andT�Q is a subspace ofT�(P∪Q).

(6) Let P be a non empty subset ofT. Supposep∈ P. Let Q be a neighbourhood ofp, p′ be a
point ofT�P, andQ′ be a subset ofT�P. If Q′ = Q∩P andp′ = p, thenQ′ is a neighbourhood
of p′.

(7) Let A, B, C be topological spaces andf be a map fromA into C. Supposef is continuous
andC is a subspace ofB. Let h be a map fromA into B. If h = f , thenh is continuous.
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(8) Let A be a topological space,B be a non empty topological space,f be a map fromA into
B, andC be a subspace ofB. Supposef is continuous. Leth be a map fromA intoC. If h= f ,
thenh is continuous.

(9) LetA, B be topological spaces,f be a map fromA into B, andC be a subset ofB. Suppose
f is continuous. Leth be a map fromA into B�C. If h = f , thenh is continuous.

(10) Let X be a topological structure,Y be a non empty topological structure,K0 be a subset
of X, f be a map fromX into Y, andg be a map fromX�K0 into Y. If f is continuous and
g = f �K0, theng is continuous.

In the sequelM denotes a non empty metric space andp denotes a point ofM.
Let M be a metric space. A metric space is called a subspace ofM if it satisfies the conditions

(Def. 1).

(Def. 1)(i) The carrier of it⊆ the carrier ofM, and

(ii) for all pointsx, y of it holds (the distance of it)(x, y) = (the distance ofM)(x, y).

Let M be a metric space. Note that there exists a subspace ofM which is strict.
Let M be a non empty metric space. Observe that there exists a subspace ofM which is strict

and non empty.
In the sequelA is a non empty subspace ofM.
One can prove the following propositions:

(12)1 Every point ofA is a point ofM.

(13) Letr be a real number,M be a metric space,A be a subspace ofM, x be a point ofM, and
x′ be a point ofA. If x = x′, then Ball(x′, r) = Ball(x, r)∩ the carrier ofA.

Let M be a non empty metric space and letA be a non empty subset ofM. The functorM�A
yielding a strict subspace ofM is defined by:

(Def. 2) The carrier ofM�A = A.

Let M be a non empty metric space and letA be a non empty subset ofM. Observe thatM�A is
non empty.

Let a, b be real numbers. Let us assume thata≤ b. The functor[a, b]M yields a strict non empty
subspace of the metric space of real numbers and is defined by the condition (Def. 3).

(Def. 3) LetPbe a non empty subset of the metric space of real numbers. IfP= [a,b], then[a, b]M =
(the metric space of real numbers)�P.

The following proposition is true

(14) If a≤ b, then the carrier of[a, b]M = [a,b].

In the sequelF , G denote families of subsets ofM.
Let M be a metric structure and letF be a family of subsets ofM. We say thatF is ball-family

if and only if:

(Def. 4) For every setP such thatP ∈ F there exists a pointp of M and there existsr such that
P = Ball(p, r).

We introduceF is a family of balls as a synonym ofF is ball-family. We say thatF is a cover ofM
if and only if:

(Def. 5) The carrier ofM ⊆
⋃

F.

One can prove the following propositions:

1 The proposition (11) has been removed.
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(15) Let p, q be points of the metric space of real numbers andx, y be real numbers. Ifx = p
andy = q, thenρ(p,q) = |x−y|.

(16) LetM be a metric structure. Then the carrier ofM = the carrier ofMtop and the topology
of Mtop = the open set family ofM.

(19)2 Atop is a subspace ofMtop.

(20) For every subsetP of En
T and for every non empty subsetQ of En such thatP = Q holds

(En
T)�P = (En�Q)top.

(21) Let r be a real number,M be a triangle metric structure,p be a point ofM, andP be a
subset ofMtop. If P = Ball(p, r), thenP is open.

(22) LetP be a subset ofMtop. ThenP is open if and only if for every pointp of M such that
p∈ P there exists a real numberr such thatr > 0 and Ball(p, r)⊆ P.

Let M be a metric structure. We say thatM is compact if and only if:

(Def. 6) Mtop is compact.

One can prove the following proposition

(23) M is compact if and only if for everyF such thatF is a family of balls and a cover ofM
there existsG such thatG⊆ F andG is a cover ofM and finite.

The strict topological spaceR1 is defined by:

(Def. 7) R1 = (the metric space of real numbers)top.

Let us note thatR1 is non empty.
The following proposition is true

(24) The carrier ofR1 = R.

Let C be a set, letf be a partial function fromC to the carrier ofR1, and letx be a set. One can
verify that f (x) is real.

Let a, b be real numbers. The functor[a, b]T yields a strict non empty subspace ofR1 and is
defined by:

(Def. 8) [a, b]T = ([a, b]M)top.

The following propositions are true:

(25) If a≤ b, then the carrier of[a, b]T = [a,b].

(26) If a≤ b, then for every subsetP of R1 such thatP = [a,b] holds[a, b]T = R1�P.

(27) [0, 1]T = I.

I is a strict subspace ofR1.
Next we state the proposition

(28) Let f be a map fromR1 into R1. Given real numbersa, b such that letx be a real number.
Then f (x) = a·x+b. Then f is continuous.

2 The propositions (17) and (18) have been removed.



METRIC SPACES AS TOPOLOGICAL SPACES— . . . 4

REFERENCES

[1] Grzegorz Bancerek. The ordinal numbers.Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/ordinal1.
html.

[2] Leszek Borys. Paracompact and metrizable spaces.Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/
pcomps_1.html.
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[6] Czesław Bylínski. Partial functions.Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/partfun1.html.
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