The Definition and Basic Properties of Topological Groups

Artur Korniłowicz University of Białystok

MML Identifier: TOPGRP_1.

WWW: http://mizar.org/JFM/Vol10/topgrp_1.html

The articles [15], [7], [20], [21], [9], [4], [6], [3], [12], [11], [18], [19], [10], [13], [22], [8], [2], [1], [16], [23], [14], [5], and [17] provide the notation and terminology for this paper.

1. Preliminaries

For simplicity, we follow the rules: S is a 1-sorted structure, R is a non empty 1-sorted structure, X is a subset of R, T is a non empty topological structure, and x is a set.

Let *X* be a set. Observe that there exists a function from *X* into *X* which is one-to-one and onto. We now state the proposition

(1) $\operatorname{rng}(\operatorname{id}_S) = \Omega_S$.

Let R be a non empty 1-sorted structure. Note that UNKNOWN(id $_R$) is one-to-one. One can prove the following propositions:

- (2) $UNKNOWN(id_R) = id_R$.
- (3) $(id_R)^{-1}(X) = X$.

Let S be a 1-sorted structure. One can check that there exists a map from S into S which is one-to-one and onto.

2. On the Groups

We adopt the following convention: H denotes a non empty groupoid, P, Q, P_1 , Q_1 denote subsets of H, and h denotes an element of H.

We now state three propositions:

- (4) If $P \subseteq P_1$ and $Q \subseteq Q_1$, then $P \cdot Q \subseteq P_1 \cdot Q_1$.
- (5) If $P \subseteq Q$, then $P \cdot h \subseteq Q \cdot h$.
- (6) If $P \subseteq Q$, then $h \cdot P \subseteq h \cdot Q$.

In the sequel *G* denotes a group, *A*, *B* denote subsets of *G*, and *a* denotes an element of *G*. The following propositions are true:

- (7) $a \in A^{-1} \text{ iff } a^{-1} \in A.$
- (8) $(A^{-1})^{-1} = A$.
- (9) $A \subseteq B \text{ iff } A^{-1} \subseteq B^{-1}.$
- (10) $\cdot_G^{-1}{}^{\circ} A = A^{-1}$.
- (11) $\cdot_G^{-1-1}(A) = A^{-1}$.
- (12) \cdot_G^{-1} is one-to-one.
- (13) $\operatorname{rng}_{G}^{-1} = \operatorname{the carrier of } G.$

Let *G* be a group. Observe that \cdot_G^{-1} is one-to-one and onto. One can prove the following propositions:

- (14) $\cdot_G^{-1-1} = \cdot_G^{-1}$.
- (15) (The multiplication of H)° $[:P,Q:] = P \cdot Q$.

Let G be a non empty groupoid and let a be an element of G. The functor a^* yields a map from G into G and is defined as follows:

(Def. 1) For every element x of G holds $a^*(x) = a \cdot x$.

The functor $\cdot a$ yields a map from G into G and is defined as follows:

(Def. 2) For every element *x* of *G* holds $(\cdot a)(x) = x \cdot a$.

Let G be a group and let a be an element of G. Observe that a^* is one-to-one and onto and $\cdot a$ is one-to-one and onto.

The following four propositions are true:

- (16) $(h^*)^{\circ}P = h \cdot P$.
- (17) $(\cdot h)^{\circ}P = P \cdot h$.
- (18) $UNKNOWN(a^*) = (a^{-1})^*$.
- (19) UNKNOWN($\cdot a$) = $\cdot a^{-1}$.

3. On the Topological Spaces

Let T be a non empty topological structure. Observe that $UNKNOWN(id_T)$ is continuous. We now state the proposition

(20) id_T is a homeomorphism.

Let T be a non empty topological space and let p be a point of T. Observe that every neighbourhood of p is non empty.

We now state the proposition

(21) For every non empty topological space T and for every point p of T holds Ω_T is a neighbourhood of p.

Let T be a non empty topological space and let p be a point of T. Observe that there exists a neighbourhood of p which is non empty and open.

One can prove the following propositions:

(22) Let S, T be non empty topological spaces and f be a map from S into T. Suppose f is open. Let p be a point of S and P be a neighbourhood of p. Then there exists an open neighbourhood R of f(p) such that $R \subseteq f^{\circ}P$.

- (23) Let S, T be non empty topological spaces and f be a map from S into T. Suppose that for every point p of S and for every open neighbourhood P of p there exists a neighbourhood R of f(p) such that $R \subseteq f^{\circ}P$. Then f is open.
- (24) Let S, T be non empty topological structures and f be a map from S into T. Then f is a homeomorphism if and only if the following conditions are satisfied:
 - (i) $\operatorname{dom} f = \Omega_S$,
- (ii) $\operatorname{rng} f = \Omega_T$,
- (iii) f is one-to-one, and
- (iv) for every subset *P* of *T* holds *P* is closed iff $f^{-1}(P)$ is closed.
- (25) Let S, T be non empty topological structures and f be a map from S into T. Then f is a homeomorphism if and only if the following conditions are satisfied:
 - (i) $\operatorname{dom} f = \Omega_S$,
- (ii) $\operatorname{rng} f = \Omega_T$,
- (iii) f is one-to-one, and
- (iv) for every subset P of S holds P is open iff $f^{\circ}P$ is open.
- (26) Let S, T be non empty topological structures and f be a map from S into T. Then f is a homeomorphism if and only if the following conditions are satisfied:
 - (i) dom $f = \Omega_S$,
- (ii) $\operatorname{rng} f = \Omega_T$,
- (iii) f is one-to-one, and
- (iv) for every subset P of T holds P is open iff $f^{-1}(P)$ is open.
- (27) Let S be a topological space, T be a non empty topological space, and f be a map from S into T. Then f is continuous if and only if for every subset P of T holds $f^{-1}(\operatorname{Int} P) \subseteq \operatorname{Int}(f^{-1}(P))$.

Let T be a non empty topological space. Observe that there exists a subset of T which is non empty and dense.

The following two propositions are true:

- (28) Let S, T be non empty topological spaces, f be a map from S into T, and A be a dense subset of S. If f is a homeomorphism, then f $^{\circ}A$ is dense.
- (29) Let S, T be non empty topological spaces, f be a map from S into T, and A be a dense subset of T. If f is a homeomorphism, then $f^{-1}(A)$ is dense.
- Let S, T be non empty topological structures. Observe that every map from S into T which is homeomorphism is also onto, one-to-one, continuous, and open.

Let T be a non empty topological structure. Note that there exists a map from T into T which is homeomorphism.

Let T be a non empty topological structure and let f be homeomorphism map from T into T. One can check that UNKNOWN(f) is homeomorphism.

4. The Group of Homeomorphisms

Let T be a non empty topological structure. A map from T into T is said to be a homeomorphism of T if:

(Def. 3) It is a homeomorphism.

Let T be a non empty topological structure. Then id_T is a homeomorphism of T.

Let T be a non empty topological structure. Note that every homeomorphism of T is homeomorphism.

We now state two propositions:

- (30) For every homeomorphism f of T holds UNKNOWN(f) is a homeomorphism of T.
- (31) For all homeomorphisms f, g of T holds $f \cdot g$ is a homeomorphism of T.

Let T be a non empty topological structure. The group of homeomorphisms of T is a strict groupoid and is defined by the conditions (Def. 4).

- (Def. 4)(i) $x \in \text{the carrier of the group of homeomorphisms of } T \text{ iff } x \text{ is a homeomorphism of } T,$
 - (ii) for all homeomorphisms f, g of T holds (the multiplication of the group of homeomorphisms of T) $(f,g) = g \cdot f$.

Let T be a non empty topological structure. Note that the group of homeomorphisms of T is non empty.

We now state the proposition

(32) Let f, g be homeomorphisms of T and a, b be elements of the group of homeomorphisms of T. If f = a and g = b, then $a \cdot b = g \cdot f$.

Let T be a non empty topological structure. One can check that the group of homeomorphisms of T is group-like and associative.

Next we state two propositions:

- (33) $id_T = 1_{the group of homeomorphisms of T}$.
- (34) Let f be a homeomorphism of T and a be an element of the group of homeomorphisms of T. If f = a, then $a^{-1} = \text{UNKNOWN}(f)$.

Let *T* be a non empty topological structure. We say that *T* is homogeneous if and only if:

(Def. 5) For all points p, q of T there exists a homeomorphism f of T such that f(p) = q.

Let us note that every non empty topological structure which is trivial is also homogeneous. Let us observe that there exists a topological space which is strict, trivial, and non empty. One can prove the following two propositions:

- (35) Let T be a homogeneous non empty topological space. If there exists a point p of T such that $\{p\}$ is closed, then T is a T_1 space.
- (36) Let T be a homogeneous non empty topological space. Given a point p of T such that let A be a subset of T. Suppose A is open and $p \in A$. Then there exists a subset B of T such that $p \in B$ and B is open and $\overline{B} \subseteq A$. Then T is a T_3 space.

5. ON THE TOPOLOGICAL GROUPS

We introduce topological group structures which are extensions of groupoid and topological structure and are systems

⟨ a carrier, a multiplication, a topology ⟩,

where the carrier is a set, the multiplication is a binary operation on the carrier, and the topology is a family of subsets of the carrier.

Let *A* be a non empty set, let *R* be a binary operation on *A*, and let *T* be a family of subsets of *A*. Observe that $\langle A, R, T \rangle$ is non empty.

Let x be a set, let R be a binary operation on $\{x\}$, and let T be a family of subsets of $\{x\}$. One can check that $\langle \{x\}, R, T \rangle$ is trivial.

One can check that every non empty groupoid which is trivial is also group-like, associative, and commutative.

Let a be a set. One can check that $\{\{a\}\}_{top}$ is trivial.

Let us note that there exists a topological group structure which is strict and non empty.

One can verify that there exists a non empty topological group structure which is strict, topological space-like, and trivial.

Let G be a group-like associative non empty topological group structure. Then G is a map from G into G.

Let G be a group-like associative non empty topological group structure. We say that G is inverse-continuous if and only if:

(Def. 6) \cdot_G^{-1} is continuous.

Let G be a topological space-like topological group structure. We say that G is continuous if and only if:

(Def. 7) For every map f from [:G,G:] into G such that f = the multiplication of G holds f is continuous.

Let us note that there exists a topological space-like group-like associative non empty topological group structure which is strict, commutative, trivial, inverse-continuous, and continuous.

A semi topological group is a topological space-like group-like associative non empty topological group structure.

A topological group is an inverse-continuous continuous semi topological group.

We now state several propositions:

- (37) Let T be a continuous non empty topological space-like topological group structure, a, b be elements of T, and W be a neighbourhood of $a \cdot b$. Then there exists an open neighbourhood A of a and there exists an open neighbourhood B of b such that $A \cdot B \subseteq W$.
- (38) Let T be a topological space-like non empty topological group structure. Suppose that for all elements a, b of T and for every neighbourhood W of $a \cdot b$ there exists a neighbourhood A of A and there exists a neighbourhood A of A such that $A \cdot B \subseteq W$. Then A is continuous.
- (39) Let T be an inverse-continuous semi topological group, a be an element of T, and W be a neighbourhood of a^{-1} . Then there exists an open neighbourhood A of a such that $A^{-1} \subseteq W$.
- (40) Let T be a semi topological group. Suppose that for every element a of T and for every neighbourhood W of a^{-1} there exists a neighbourhood A of a such that $A^{-1} \subseteq W$. Then T is inverse-continuous.
- (41) Let T be a topological group, a, b be elements of T, and W be a neighbourhood of $a \cdot b^{-1}$. Then there exists an open neighbourhood A of a and there exists an open neighbourhood B of b such that $A \cdot B^{-1} \subset W$.
- (42) Let T be a semi topological group. Suppose that for all elements a, b of T and for every neighbourhood W of $a \cdot b^{-1}$ there exists a neighbourhood A of a and there exists a neighbourhood B of b such that $A \cdot B^{-1} \subseteq W$. Then T is a topological group.

Let G be a continuous non empty topological space-like topological group structure and let a be an element of G. One can verify that a^* is continuous and $\cdot a$ is continuous.

The following two propositions are true:

- (43) For every continuous semi topological group G and for every element a of G holds a^* is a homeomorphism of G.
- (44) For every continuous semi topological group G and for every element a of G holds $\cdot a$ is a homeomorphism of G.

Let G be a continuous semi topological group and let a be an element of G. Then a^* is a homeomorphism of G. Then $\cdot a$ is a homeomorphism of G.

Next we state the proposition

(45) For every inverse-continuous semi topological group G holds \cdot_G^{-1} is a homeomorphism of G.

Let G be an inverse-continuous semi topological group. Then \cdot_G^{-1} is a homeomorphism of G. One can check that every semi topological group which is continuous is also homogeneous. Next we state two propositions:

- (46) Let G be a continuous semi topological group, F be a closed subset of G, and a be an element of G. Then $F \cdot a$ is closed.
- (47) Let G be a continuous semi topological group, F be a closed subset of G, and a be an element of G. Then $a \cdot F$ is closed.

Let G be a continuous semi topological group, let F be a closed subset of G, and let a be an element of G. One can verify that $F \cdot a$ is closed and $a \cdot F$ is closed.

Next we state the proposition

(48) For every inverse-continuous semi topological group G and for every closed subset F of G holds F^{-1} is closed.

Let G be an inverse-continuous semi topological group and let F be a closed subset of G. One can check that F^{-1} is closed.

One can prove the following propositions:

- (49) Let G be a continuous semi topological group, O be an open subset of G, and a be an element of G. Then $O \cdot a$ is open.
- (50) Let G be a continuous semi topological group, O be an open subset of G, and a be an element of G. Then $a \cdot O$ is open.

Let G be a continuous semi topological group, let A be an open subset of G, and let a be an element of G. One can check that $A \cdot a$ is open and $a \cdot A$ is open.

The following proposition is true

(51) For every inverse-continuous semi topological group G and for every open subset O of G holds O^{-1} is open.

Let G be an inverse-continuous semi topological group and let A be an open subset of G. Observe that A^{-1} is open.

One can prove the following two propositions:

- (52) For every continuous semi topological group G and for all subsets A, O of G such that O is open holds $O \cdot A$ is open.
- (53) For every continuous semi topological group G and for all subsets A, O of G such that O is open holds $A \cdot O$ is open.

Let G be a continuous semi topological group, let A be an open subset of G, and let B be a subset of G. Note that $A \cdot B$ is open and $B \cdot A$ is open.

The following propositions are true:

- (54) Let G be an inverse-continuous semi topological group, a be a point of G, and A be a neighbourhood of a. Then A^{-1} is a neighbourhood of a^{-1} .
- (55) Let G be a topological group, a be a point of G, and A be a neighbourhood of $a \cdot a^{-1}$. Then there exists an open neighbourhood B of a such that $B \cdot B^{-1} \subseteq A$.

(56) For every inverse-continuous semi topological group G and for every dense subset A of G holds A^{-1} is dense.

Let G be an inverse-continuous semi topological group and let A be a dense subset of G. Observe that A^{-1} is dense.

Next we state two propositions:

- (57) Let G be a continuous semi topological group, A be a dense subset of G, and a be a point of G. Then $a \cdot A$ is dense.
- (58) Let G be a continuous semi topological group, A be a dense subset of G, and a be a point of G. Then $A \cdot a$ is dense.

Let G be a continuous semi topological group, let A be a dense subset of G, and let a be a point of G. Observe that $A \cdot a$ is dense and $a \cdot A$ is dense.

We now state two propositions:

- (59) Let G be a topological group, B be a basis of 1_G , and M be a dense subset of G. Then $\{V \cdot x; V \text{ ranges over subsets of } G, x \text{ ranges over points of } G: V \in B \land x \in M\}$ is a basis of G.
- (60) Every topological group is a T_3 space.

Let us mention that every topological group is T_3 .

REFERENCES

- Józef Białas and Yatsuka Nakamura. Dyadic numbers and T₄ topological spaces. Journal of Formalized Mathematics, 7, 1995. http://mizar.org/JFM/Vol7/urysohn1.html.
- [2] Leszek Borys. Paracompact and metrizable spaces. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/pcomps_1.html.
- [3] Czesław Byliński. Binary operations. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/binop_1.html.
- [4] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funct_1.html.
- [5] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_ 2.html.
- [6] Czesław Byliński. Partial functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/partfunl.html.
- [7] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/zfmisc_1.html.
- [8] Agata Darmochwał. Compact spaces. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/compts_1.html.
- [9] Agata Darmochwał. Families of subsets, subspaces and mappings in topological spaces. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/tops_2.html.
- [10] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/vectsp_1.html.
- [11] Michał Muzalewski. Categories of groups. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/grcat_1.
- [12] Beata Padlewska. Families of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/setfam_1.html.
- [13] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/pre_topo.html.
- [14] Alexander Yu. Shibakov and Andrzej Trybulec. The Cantor set. Journal of Formalized Mathematics, 7, 1995. http://mizar.org/ JFM/Vol7/cantor_1.html.
- [15] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [16] Andrzej Trybulec. A Borsuk theorem on homotopy types. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/borsuk_1.html.
- [17] Andrzej Trybulec. Baire spaces, Sober spaces. Journal of Formalized Mathematics, 9, 1997. http://mizar.org/JFM/Vol9/yellow_8.html.
- [18] Wojciech A. Trybulec. Groups. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/group_1.html.

- [19] Wojciech A. Trybulec. Subgroup and cosets of subgroups. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/group_2.html.
- [20] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.
- [21] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relat_1.html.
- [22] Mirosław Wysocki and Agata Darmochwał. Subsets of topological spaces. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/tops_1.html.
- [23] Mariusz Żynel and Adam Guzowski. T_0 topological spaces. Journal of Formalized Mathematics, 6, 1994. http://mizar.org/JFM/Vol6/t_Otopsp.html.

Received September 7, 1998

Published January 2, 2004