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The articles[[15],171,[[20],[21],[19],14],[16],[13], [12],[[11],[[18],[19] [ [10], 113],[22] [ [8] L [2] [ T1],
[16], [23], [14], [5], and [17] provide the notation and terminology for this paper.

1. PRELIMINARIES

For simplicity, we follow the rulesSis a 1-sorted structur® is a non empty 1-sorted structudé,
is a subset oR, T is a non empty topological structure, and a set.
Let X be a set. Observe that there exists a function floimto X which is one-to-one and onto.
We now state the proposition

1) mgids) = Qs.

Let Rbe a non empty 1-sorted structure. Note that UNKNOWN) is one-to-one.
One can prove the following propositions:

(2) UNKNOWN(idg) = idg.
(3) (idr)L(X) =X.

Let Sbe a 1-sorted structure. One can check that there exists a magSfiotm S which is
one-to-one and onto.

2. ON THE GROUPS

We adopt the following conventiord denotes a non empty groupoid, Q, P1, Q; denote subsets
of H, andh denotes an element bf.
We now state three propositions:

(4) fPCPLandQC Qq,thenP-QC P;-Q;.
(5) fPCQ,thenP-hCQ-h.
(6) IfPCQ,thenh-PCh-Q.

In the sequet denotes a grou@, B denote subsets @, anda denotes an element &.
The following propositions are true:
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(7) acAliffalecA
@ (AhHt=A
(9) ACBIff A"lcBL
(10) -G'A=AL
11 A=Al
(12) -g'is one-to-one.
(13) rngg = the carrier ofG.

Let G be a group. Observe thegl is one-to-one and onto.
One can prove the following propositions:

(14) =gt
(15) (The multiplication oH)°[P, Q] =P-Q.

Let G be a non empty groupoid and kbe an element db. The functora* yields a map from
Ginto G and is defined as follows:

(Def. 1) For every elementof G holdsa*(x) = a- x.
The functor-ayields a map fronG into G and is defined as follows:
(Def. 2) For every elementof G holds(-a)(x) = x-a.

Let G be a group and let be an element db. Observe thaa* is one-to-one and onto andis
one-to-one and onto.
The following four propositions are true:

(16) (h*)°P=h-P.
(17) (-h°’P=P-h.
(18) UNKNOWN(a*) = (a1)*.
(19) UNKNOWN(-a) = -a~*.

3. ON THE TOPOLOGICAL SPACES

Let T be a non empty topological structure. Observe that UNKNQWH is continuous.
We now state the proposition

(20) idr is a homeomorphism.

Let T be a non empty topological space andddte a point ofT . Observe that every neighbour-
hood ofp is non empty.
We now state the proposition

(21) For every non empty topological spatend for every poinp of T holdsQr is a neigh-
bourhood ofp.

Let T be a non empty topological space andpdie a point ofT. Observe that there exists a
neighbourhood op which is non empty and open.
One can prove the following propositions:

(22) LetS T be non empty topological spaces anlbde a map fronSinto T. Suppose is open.
Let pbe a point ofSandP be a neighbourhood ¢f. Then there exists an open neighbourhood
Rof f(p) such thaRC f°P.
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(23) LetS T be non empty topological spaces ahte a map fronsinto T. Suppose that for
every pointp of Sand for every open neighbourho®bf p there exists a neighbourho&
of f(p) such thaR C f°P. Thenf is open.

(24) LetS T be non empty topological structures afde a map fronSinto T. Thenf is a
homeomorphism if and only if the following conditions are satisfied:
(i) domf =Qsg,
@iy rngf=Qr,
(i)  f is one-to-one, and
(iv) for every subseP of T holdsP is closed ifff ~1(P) is closed.
(25) LetS T be non empty topological structures ahdbe a map fronSinto T. Thenf is a
homeomorphism if and only if the following conditions are satisfied:
(i) domf =Qsg,
(i) rngf=Qr,
(i) f is one-to-one, and
(iv) for every subseP of SholdsP is open iff f°P is open.
(26) LetS, T be non empty topological structures afidbe a map fronSinto T. Thenf is a
homeomorphism if and only if the following conditions are satisfied:
(i) domf =Qsg,
@iy rngf=Qr,
(i)  f is one-to-one, and
(iv) for every subseP of T holdsP is open iff f ~1(P) is open.

(27) LetSbe a topological spacd, be a non empty topological space, ahthe a map from
Sinto T. Thenf is continuous if and only if for every subsBtof T holds f~%(IntP) C

Int(f-1(P)).

Let T be a non empty topological space. Observe that there exists a sufisethoch is non
empty and dense.
The following two propositions are true:

(28) LetS T be non empty topological spacefsbe a map fronSinto T, andA be a dense
subset ofS. If f is a homeomorphism, thef?fA is dense.

(29) LetS T be non empty topological spacelshbe a map fronSinto T, andA be a dense
subset ofT. If f is a homeomorphism, theiT1(A) is dense.

Let S T be non empty topological structures. Observe that every map &omo T which is
homeomorphism is also onto, one-to-one, continuous, and open.

Let T be a non empty topological structure. Note that there exists a mapffiomo T which is
homeomorphism.

Let T be a non empty topological structure and fehe homeomorphism map frofinto T.
One can check that UNKNOWN ) is homeomorphism.

4. THE GROUP OFHOMEOMORPHISMS

Let T be a non empty topological structure. A map franinto T is said to be a homeomorphism
of T if:

(Def. 3) Itis a homeomorphism.



THE DEFINITION AND BASIC PROPERTIES OF.. 4

Let T be a non empty topological structure. Thef id a homeomorphism af.

Let T be a non empty topological structure. Note that every homeomorphidhmshomeo-
morphism.

We now state two propositions:

(30) For every homeomorphisimof T holds UNKNOWN f) is a homeomorphism df.
(81) For all homeomorphismi g of T holdsf - gis a homeomorphism oF.

Let T be a non empty topological structure. The group of homeomorphismisisfa strict
groupoid and is defined by the conditions (Def. 4).

(Def. 4)() x € the carrier of the group of homeomorphismsloiff x is a homeomorphism of,
and

(i)  for all homeomorphismd, g of T holds (the multiplication of the group of homeomor-
phisms ofT)(f,g) =g- f.

Let T be a non empty topological structure. Note that the group of homeomorphismssof
non empty.
We now state the proposition

(32) Letf, gbe homeomorphisms df anda, b be elements of the group of homeomorphisms
of T. If f =aandg=b, thena-b=g-f.

Let T be a non empty topological structure. One can check that the group of homeomorphisms
of T is group-like and associative.
Next we state two propositions:

(33) idT = 1the group of homeomorphisms of-

(34) Letf be a homeomorphism df anda be an element of the group of homeomorphisms of
T.If f =a, thena * = UNKNOWN(f).

Let T be a non empty topological structure. We say thag homogeneous if and only if:
(Def. 5) For all pointsp, q of T there exists a homeomorphisfrof T such thatf (p) =q.

Let us note that every non empty topological structure which is trivial is also homogeneous.
Let us observe that there exists a topological space which is strict, trivial, and non empty.
One can prove the following two propositions:

(35) LetT be a homogeneous non empty topological space. If there exists appafifit such
that{p} is closed, thefT is aT; space.

(36) LetT be a homogeneous non empty topological space. Given a pahT such that let
Abe a subset of . Suppose\ is open and € A. Then there exists a subdgbf T such that
p € BandBis open and C A. ThenT is aTs space.

5. ON THE TOPOLOGICAL GROUPS

We introduce topological group structures which are extensions of groupoid and topological struc-
ture and are systems

( a carrier, a multiplication, a topology
where the carrier is a set, the multiplication is a binary operation on the carrier, and the topology is
a family of subsets of the carrier.

Let Abe a non empty set, I&be a binary operation ofy, and letT be a family of subsets @k
Observe thatA,R, T) is non empty.

Let x be a set, leR be a binary operation ofx}, and letT be a family of subsets dfx}. One
can check that{x},R, T) is trivial.
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One can check that every non empty groupoid which is trivial is also group-like, associative,
and commutative.

Letabe a set. One can check tHd&} }op is trivial.

Let us note that there exists a topological group structure which is strict and non empty.

One can verify that there exists a non empty topological group structure which is strict, topo-
logical space-like, and trivial.

Let G be a group-like associative non empty topological group structure. Tlgfreis a map
from G into G.

Let G be a group-like associative non empty topological group structure. We sagtisat
inverse-continuous if and only if:

(Def. ) -g' is continuous.

Let G be a topological space-like topological group structure. We sayGhatcontinuous if
and only if:

(Def. 7) For every magf from G, G] into G such thatf = the multiplication ofG holds f is
continuous.

Let us note that there exists a topological space-like group-like associative non empty topologi-
cal group structure which is strict, commutative, trivial, inverse-continuous, and continuous.

A semi topological group is a topological space-like group-like associative non empty topolog-
ical group structure.

A topological group is an inverse-continuous continuous semi topological group.

We now state several propositions:

(37) LetT be a continuous non empty topological space-like topological group struatlirbe
elements ofl, andW be a neighbourhood &- b. Then there exists an open neighbourhood
A of aand there exists an open neighbourh@&aaf b such thatA- B C W.

(38) LetT be atopological space-like non empty topological group structure. Suppose that for
all elements, b of T and for every neighbourhodd of a- b there exists a neighbourhodd
of aand there exists a neighbourho®af b such thatA-B C W. ThenT is continuous.

(39) LetT be an inverse-continuous semi topological graaupe an element of, andW be a
neighbourhood of 1. Then there exists an open neighbourhdaaf a such thatA—1 C W.

(40) LetT be a semi topological group. Suppose that for every elemehtlT and for every
neighbourhoodV of a~ there exists a neighbourhoddof a such thatA~! C W. ThenT is
inverse-continuous.

(41) LetT be a topological grou, b be elements of , andW be a neighbourhood @f- b,
Then there exists an open neighbourhdaaf a and there exists an open neighbourh&oaf
b such thata-B~1 C W.

(42) LetT be a semi topological group. Suppose that for all elemantsof T and for every
neighbourhoodV of a-b~1 there exists a neighbourhoddf a and there exists a neighbour-
hoodB of b such thatA-B~1 C W. ThenT is a topological group.

Let G be a continuous non empty topological space-like topological group structure arklet
an element 06. One can verify thad* is continuous anea is continuous.
The following two propositions are true:

(43) For every continuous semi topological graamnd for every elemera of G holdsa* is a
homeomorphism o.

(44) For every continuous semi topological gradB@and for every elemera of G holds-ais a
homeomorphism o6.
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Let G be a continuous semi topological group andddbie an element o6s. Thena* is a
homeomorphism o6. Then-ais a homeomorphism db.
Next we state the proposition

(45) For every inverse-continuous semi topological grﬁljlpmolds-(gl is @ homeomorphism of
G.

Let G be an inverse-continuous semi topological group. T-@ér’rs a homeomorphism d@&.
One can check that every semi topological group which is continuous is also homogeneous.
Next we state two propositions:

(46) LetG be a continuous semi topological group,be a closed subset &, anda be an
element ofG. ThenF - ais closed.

(47) LetG be a continuous semi topological group,be a closed subset &, anda be an
element ofG. Thena- F is closed.

Let G be a continuous semi topological group, febe a closed subset @&, and leta be an
element ofG. One can verify thaF - ais closed and- F is closed.
Next we state the proposition

(48) For every inverse-continuous semi topological gr@umnd for every closed subgéetof G
holdsF 1 is closed.

Let G be an inverse-continuous semi topological group ané Ieé a closed subset &. One
can check thaf ~* is closed.
One can prove the following propositions:

(49) LetG be a continuous semi topological group,be an open subset &, anda be an
element ofG. ThenO-ais open.

(50) LetG be a continuous semi topological group,be an open subset &, anda be an
element ofG. Thena- Qs open.

Let G be a continuous semi topological group, Aebe an open subset @&, and leta be an
element ofG. One can check th&- ais open and- A is open.
The following proposition is true

(51) For every inverse-continuous semi topological gr@ugnd for every open subsétof G
holdsO~1 is open.

Let G be an inverse-continuous semi topological group anél bet an open subset & Observe
thatA~1 is open.
One can prove the following two propositions:

(52) For every continuous semi topological grdajand for all subsets, O of G such thaD is
open hold®- Ais open.

(53) For every continuous semi topological grdajand for all subsets, O of G such thaD is
open holdsA- O is open.

Let G be a continuous semi topological group,Adte an open subset & and letB be a subset
of G. Note thatA- B is open and- A is open.
The following propositions are true:

(54) LetG be an inverse-continuous semi topological groage a point ofG, andA be a
neighbourhood of. ThenA~1 is a neighbourhood af 1.

(55) LetG be a topological groum be a point 0fG, andA be a neighbourhood @f-a~1. Then
there exists an open neighbourhddf a such thaB-B~1 C A.
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(56) For every inverse-continuous semi topological gr@ugnd for every dense subskbf G

holdsA—1 is dense.

Let G be an inverse-continuous semi topological group and et a dense subset@f Observe

thatA—1is dense.

Next we state two propositions:

(57) LetG be a continuous semi topological grodpbe a dense subset & anda be a point

of G. Thena-A s dense.

(58) LetG be a continuous semi topological grodpbe a dense subset & anda be a point

of G. ThenA-ais dense.

Let G be a continuous semi topological group,Adbe a dense subset Gf and leta be a point

of G. Observe thaf-ais dense and- A is dense.

We now state two propositions:

(59) LetG be a topological groupB be a basis of 3, andM be a dense subset & Then

{V-x;V ranges over subsets Gf x ranges over points @: V € B A x€ M} is a basis o.

(60) Every topological group is & space.
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Let us mention that every topological groupTis
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