Relations of Tolerance¹

Krzysztof Hryniewiecki Warsaw University

Summary. Introduces notions of relations of tolerance, tolerance set and neighbourhood of an element. The basic properties of relations of tolerance are proved.

 $MML\ Identifier\hbox{:}\ {\tt TOLER_1}.$

WWW: http://mizar.org/JFM/Vol2/toler_1.html

The articles [5], [3], [6], [7], [8], [9], [1], and [4] provide the notation and terminology for this paper.

In this paper X, Y, Z, x, y are sets.

The following propositions are true:

- (1) field $\emptyset = \emptyset$.
- (2) 0 is reflexive.
- (3) 0 is symmetric.
- (4) 0 is irreflexive.
- (5) \emptyset is antisymmetric.
- (6) 0 is asymmetric.
- (7) \emptyset is connected.
- (8) \emptyset is strongly connected.
- (9) 0 is transitive.

Let us observe that \emptyset is reflexive, irreflexive, symmetric, antisymmetric, asymmetric, connected, strongly connected, and transitive.

Let us consider X. We introduce ∇_X as a synonym of ∇_X .

Let R be a binary relation and let Y be a set. Then $R|^2Y$ is a relation between Y and Y.

Next we state several propositions:

- $(12)^1 \quad \text{dom}(\nabla_X) = X.$
- (13) $\operatorname{rng}(\nabla_X) = X$.
- (15)² For all x, y such that $x \in X$ and $y \in X$ holds $\langle x, y \rangle \in \nabla_X$.

¹Supported by Philippe le Hodey Foundation. This work had been done on Mizar Workshop '89 (Foudrain, France) in Summer '89.

¹ The propositions (10) and (11) have been removed.

² The proposition (14) has been removed.

- (16) For all x, y such that $x \in \text{field}(\nabla_X)$ and $y \in \text{field}(\nabla_X)$ holds $\langle x, y \rangle \in \nabla_X$.
- $(19)^3$ ∇_X is strongly connected.
- $(21)^4$ ∇_X is connected.

In the sequel T, R are tolerances of X.

We now state several propositions:

- (24)⁵ For every tolerance T of X holds dom T = X.
- (25) For every tolerance T of X holds rng T = X.
- (27)⁶ For every total reflexive binary relation T on X holds $x \in X$ iff $\langle x, x \rangle \in T$.
- (28) Every tolerance of X is reflexive in X.
- (29) Every tolerance of X is symmetric in X.
- $(32)^7$ For every relation R between X and Y such that R is symmetric holds $R|^2Z$ is symmetric.

Let us consider X, T and let Y be a subset of X. Then $T \mid^2 Y$ is a tolerance of Y. The following proposition is true

(33) If $Y \subseteq X$, then $T \mid^2 Y$ is a tolerance of Y.

Let us consider *X* and let *T* be a tolerance of *X*. A set is called a set of mutually elements w.r.t. *T* if:

(Def. 3)⁸ For all x, y such that $x \in \text{it and } y \in \text{it holds } \langle x, y \rangle \in T$.

We now state the proposition

(34) \emptyset is a set of mutually elements w.r.t. T.

Let us consider X, let T be a tolerance of X, and let I_1 be a set of mutually elements w.r.t. T. We say that I_1 is tolerance class-like if and only if:

(Def. 4) For every x such that $x \notin I_1$ and $x \in X$ there exists y such that $y \in I_1$ and $\langle x, y \rangle \notin T$.

Let us consider X and let T be a tolerance of X. Note that there exists a set of mutually elements w.r.t. T which is tolerance class-like.

Let us consider X and let T be a tolerance of X. A tolerance class of T is a tolerance class-like set of mutually elements w.r.t. T.

One can prove the following propositions:

- (38)⁹ For every tolerance T of X such that \emptyset is a tolerance class of T holds $T = \emptyset$.
- (39) \emptyset is a tolerance of \emptyset .
- (40) For all x, y such that $\langle x, y \rangle \in T$ holds $\{x, y\}$ is a set of mutually elements w.r.t. T.
- (41) For every x such that $x \in X$ holds $\{x\}$ is a set of mutually elements w.r.t. T.
- (42) Let given Y, Z. Suppose Y is a set of mutually elements w.r.t. T and Z is a set of mutually elements w.r.t. T. Then $Y \cap Z$ is a set of mutually elements w.r.t. T.

³ The propositions (17) and (18) have been removed.

⁴ The proposition (20) has been removed.

⁵ The propositions (22) and (23) have been removed.

⁶ The proposition (26) has been removed.

⁷ The propositions (30) and (31) have been removed.

⁸ The definitions (Def. 1) and (Def. 2) have been removed.

⁹ The propositions (35)–(37) have been removed.

- (43) If Y is a set of mutually elements w.r.t. T, then $Y \subseteq X$.
- (45)¹⁰ For every set Y of mutually elements w.r.t. T there exists a tolerance class Z of T such that $Y \subseteq Z$.
- (46) For all x, y such that $\langle x, y \rangle \in T$ there exists a tolerance class Z of T such that $x \in Z$ and $y \in Z$.
- (47) For every x such that $x \in X$ there exists a tolerance class Z of T such that $x \in Z$.
- $(49)^{11}$ $T \subseteq \nabla_X$.
- (50) $id_X \subseteq T$.

The scheme *ToleranceEx* deals with a set \mathcal{A} and a binary predicate \mathcal{P} , and states that: There exists a tolerance T of \mathcal{A} such that for all x, y such that $x \in \mathcal{A}$ and $y \in \mathcal{A}$ holds $\langle x, y \rangle \in T$ iff $\mathcal{P}[x, y]$

provided the parameters satisfy the following conditions:

- For every x such that $x \in \mathcal{A}$ holds $\mathcal{P}[x,x]$, and
- For all x, y such that $x \in \mathcal{A}$ and $y \in \mathcal{A}$ and $\mathcal{P}[x,y]$ holds $\mathcal{P}[y,x]$.

Next we state three propositions:

- (51) Let given Y. Then there exists a tolerance T of $\bigcup Y$ such that for every Z if $Z \in Y$, then Z is a set of mutually elements w.r.t. T.
- (52) Let Y be a set and T, R be tolerances of $\bigcup Y$. Suppose that
 - (i) for all x, y holds $\langle x, y \rangle \in T$ iff there exists Z such that $Z \in Y$ and $x \in Z$ and $y \in Z$, and
- (ii) for all x, y holds $\langle x, y \rangle \in R$ iff there exists Z such that $Z \in Y$ and $x \in Z$ and $y \in Z$. Then T = R.
- (53) Let T, R be tolerances of X. Suppose that for every Z holds Z is a tolerance class of T iff Z is a tolerance class of R. Then T = R.

Let us consider X, let T be a tolerance of X, and let us consider x. We introduce neighbourhood (x, T) as a synonym of $[x]_T$.

The following three propositions are true:

- (54) For every set y holds $y \in \text{neighbourhood}(x, T)$ iff $\langle x, y \rangle \in T$.
- (58)¹² For every *Y* such that for every set *Z* holds $Z \in Y$ iff $x \in Z$ and *Z* is a tolerance class of *T* holds neighbourhood(x, T) = $\bigcup JY$.
- (59) Let given Y. Suppose that for every Z holds $Z \in Y$ iff $x \in Z$ and Z is a set of mutually elements w.r.t. T. Then neighbourhood $(x, T) = \bigcup Y$.

Let us consider X and let T be a tolerance of X. The functor TolSets T yielding a set is defined by:

(Def. 6)¹³ For every Y holds $Y \in \text{TolSets } T \text{ iff } Y \text{ is a set of mutually elements w.r.t. } T$.

The functor TolClasses T yielding a set is defined as follows:

(Def. 7) For every Y holds $Y \in \text{TolClasses } T$ iff Y is a tolerance class of T.

The following propositions are true:

¹⁰ The proposition (44) has been removed.

¹¹ The proposition (48) has been removed.

¹² The propositions (55)–(57) have been removed.

¹³ The definition (Def. 5) has been removed.

- $(64)^{14}$ If TolClasses $R \subseteq$ TolClasses T, then $R \subseteq T$.
- (65) For all tolerances T, R of X such that TolClasses T = TolClasses R holds T = R.
- (66) $\bigcup \text{TolClasses } T = X$.
- (67) \bigcup TolSets T = X.
- (68) If for every x such that $x \in X$ holds neighbourhood(x, T) is a set of mutually elements w.r.t. T, then T is transitive.
- (69) If T is transitive, then for every x such that $x \in X$ holds neighbourhood(x, T) is a tolerance class of T.
- (70) For every x and for every tolerance class Y of T such that $x \in Y$ holds $Y \subseteq \text{neighbourhood}(x,T)$.
- (71) TolSets $R \subseteq \text{TolSets } T \text{ iff } R \subseteq T.$
- (72) TolClasses $T \subseteq \text{TolSets } T$.
- (73) If for every x such that $x \in X$ holds neighbourhood $(x, R) \subseteq$ neighbourhood(x, T), then $R \subseteq T$.
- (74) $T \subseteq T \cdot T$.

REFERENCES

- Grzegorz Bancerek. The well ordering relations. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/wellordl.html.
- [2] Czesław Byliński. Partial functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/partfunl.html.
- [3] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/zfmisc_ 1.html.
- [4] Konrad Raczkowski and Paweł Sadowski. Equivalence relations and classes of abstraction. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/eqrel_1.html.
- [5] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [6] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.
- [7] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/relat 1.html.
- [8] Edmund Woronowicz. Relations defined on sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/relset_1.html.
- [9] Edmund Woronowicz and Anna Zalewska. Properties of binary relations. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relat_2.html.

Received September 20, 1990

Published January 2, 2004

¹⁴ The propositions (60)–(63) have been removed.