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The articles [5], [3], [6], [7], [8], [9], [2], [1], and [4] provide the notation and terminology for this
paper.

In this paperX, Y, Z, x, y are sets.
The following propositions are true:

(1) field /0 = /0.

(2) /0 is reflexive.

(3) /0 is symmetric.

(4) /0 is irreflexive.

(5) /0 is antisymmetric.

(6) /0 is asymmetric.

(7) /0 is connected.

(8) /0 is strongly connected.

(9) /0 is transitive.

Let us observe that/0 is reflexive, irreflexive, symmetric, antisymmetric, asymmetric, connected,
strongly connected, and transitive.

Let us considerX. We introduce∇X as a synonym of∇X.
Let Rbe a binary relation and letY be a set. ThenR|2Y is a relation betweenY andY.
Next we state several propositions:

(12)1 dom(∇X) = X.

(13) rng(∇X) = X.

(15)2 For allx, y such thatx∈ X andy∈ X holds〈〈x, y〉〉 ∈ ∇X.

1Supported by Philippe le Hodey Foundation. This work had been done on Mizar Workshop ’89
(Foudrain, France) in Summer ’89.

1 The propositions (10) and (11) have been removed.
2 The proposition (14) has been removed.
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(16) For allx, y such thatx∈ field(∇X) andy∈ field(∇X) holds〈〈x, y〉〉 ∈ ∇X.

(19)3 ∇X is strongly connected.

(21)4 ∇X is connected.

In the sequelT, Rare tolerances ofX.
We now state several propositions:

(24)5 For every toleranceT of X holds domT = X.

(25) For every toleranceT of X holds rngT = X.

(27)6 For every total reflexive binary relationT onX holdsx∈ X iff 〈〈x, x〉〉 ∈ T.

(28) Every tolerance ofX is reflexive inX.

(29) Every tolerance ofX is symmetric inX.

(32)7 For every relationRbetweenX andY such thatR is symmetric holdsR|2 Z is symmetric.

Let us considerX, T and letY be a subset ofX. ThenT |2Y is a tolerance ofY.
The following proposition is true

(33) If Y ⊆ X, thenT |2Y is a tolerance ofY.

Let us considerX and letT be a tolerance ofX. A set is called a set of mutually elements w.r.t.
T if:

(Def. 3)8 For allx, y such thatx∈ it andy∈ it holds〈〈x, y〉〉 ∈ T.

We now state the proposition

(34) /0 is a set of mutually elements w.r.t.T.

Let us considerX, let T be a tolerance ofX, and letI1 be a set of mutually elements w.r.t.T. We
say thatI1 is tolerance class-like if and only if:

(Def. 4) For everyx such thatx /∈ I1 andx∈ X there existsy such thaty∈ I1 and〈〈x, y〉〉 /∈ T.

Let us considerX and letT be a tolerance ofX. Note that there exists a set of mutually elements
w.r.t. T which is tolerance class-like.

Let us considerX and letT be a tolerance ofX. A tolerance class ofT is a tolerance class-like
set of mutually elements w.r.t.T.

One can prove the following propositions:

(38)9 For every toleranceT of X such that/0 is a tolerance class ofT holdsT = /0.

(39) /0 is a tolerance of/0.

(40) For allx, y such that〈〈x, y〉〉 ∈ T holds{x,y} is a set of mutually elements w.r.t.T.

(41) For everyx such thatx∈ X holds{x} is a set of mutually elements w.r.t.T.

(42) Let givenY, Z. SupposeY is a set of mutually elements w.r.t.T andZ is a set of mutually
elements w.r.t.T. ThenY∩Z is a set of mutually elements w.r.t.T.

3 The propositions (17) and (18) have been removed.
4 The proposition (20) has been removed.
5 The propositions (22) and (23) have been removed.
6 The proposition (26) has been removed.
7 The propositions (30) and (31) have been removed.
8 The definitions (Def. 1) and (Def. 2) have been removed.
9 The propositions (35)–(37) have been removed.
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(43) If Y is a set of mutually elements w.r.t.T, thenY ⊆ X.

(45)10 For every setY of mutually elements w.r.t.T there exists a tolerance classZ of T such
thatY ⊆ Z.

(46) For allx, y such that〈〈x, y〉〉 ∈ T there exists a tolerance classZ of T such thatx ∈ Z and
y∈ Z.

(47) For everyx such thatx∈ X there exists a tolerance classZ of T such thatx∈ Z.

(49)11 T ⊆ ∇X.

(50) idX ⊆ T.

The schemeToleranceExdeals with a setA and a binary predicateP , and states that:
There exists a toleranceT of A such that for allx, y such thatx∈ A andy∈ A holds
〈〈x, y〉〉 ∈ T iff P [x,y]

provided the parameters satisfy the following conditions:
• For everyx such thatx∈ A holdsP [x,x], and
• For allx, y such thatx∈ A andy∈ A andP [x,y] holdsP [y,x].

Next we state three propositions:

(51) Let givenY. Then there exists a toleranceT of
⋃

Y such that for everyZ if Z ∈Y, thenZ is
a set of mutually elements w.r.t.T.

(52) LetY be a set andT, Rbe tolerances of
⋃

Y. Suppose that

(i) for all x, y holds〈〈x, y〉〉 ∈ T iff there existsZ such thatZ ∈Y andx∈ Z andy∈ Z, and

(ii) for all x, y holds〈〈x, y〉〉 ∈ R iff there existsZ such thatZ ∈Y andx∈ Z andy∈ Z.

ThenT = R.

(53) LetT, Rbe tolerances ofX. Suppose that for everyZ holdsZ is a tolerance class ofT iff Z
is a tolerance class ofR. ThenT = R.

Let us considerX, letT be a tolerance ofX, and let us considerx. We introduce neighbourhood(x,T)
as a synonym of[x]T .

The following three propositions are true:

(54) For every sety holdsy∈ neighbourhood(x,T) iff 〈〈x, y〉〉 ∈ T.

(58)12 For everyY such that for every setZ holdsZ ∈Y iff x∈ Z andZ is a tolerance class ofT
holds neighbourhood(x,T) =

⋃
Y.

(59) Let givenY. Suppose that for everyZ holdsZ ∈ Y iff x ∈ Z andZ is a set of mutually
elements w.r.t.T. Then neighbourhood(x,T) =

⋃
Y.

Let us considerX and letT be a tolerance ofX. The functor TolSetsT yielding a set is defined
by:

(Def. 6)13 For everyY holdsY ∈ TolSetsT iff Y is a set of mutually elements w.r.t.T.

The functor TolClassesT yielding a set is defined as follows:

(Def. 7) For everyY holdsY ∈ TolClassesT iff Y is a tolerance class ofT.

The following propositions are true:

10 The proposition (44) has been removed.
11 The proposition (48) has been removed.
12 The propositions (55)–(57) have been removed.
13 The definition (Def. 5) has been removed.
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(64)14 If TolClassesR⊆ TolClassesT, thenR⊆ T.

(65) For all tolerancesT, Rof X such that TolClassesT = TolClassesRholdsT = R.

(66)
⋃

TolClassesT = X.

(67)
⋃

TolSetsT = X.

(68) If for everyx such thatx∈ X holds neighbourhood(x,T) is a set of mutually elements w.r.t.
T, thenT is transitive.

(69) If T is transitive, then for everyx such thatx∈ X holds neighbourhood(x,T) is a tolerance
class ofT.

(70) For every x and for every tolerance classY of T such that x ∈ Y holds Y ⊆
neighbourhood(x,T).

(71) TolSetsR⊆ TolSetsT iff R⊆ T.

(72) TolClassesT ⊆ TolSetsT.

(73) If for everyx such thatx∈ X holds neighbourhood(x,R)⊆ neighbourhood(x,T), thenR⊆
T.

(74) T ⊆ T ·T.
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14 The propositions (60)–(63) have been removed.
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