Totally Bounded Metric Spaces

Alicia de la Cruz Universidad Politecnica de Madrid

MML Identifier: TBSP_1.

WWW: http://mizar.org/JFM/Vol3/tbsp_1.html

The articles [16], [18], [17], [10], [1], [19], [2], [5], [3], [12], [6], [8], [13], [7], [11], [15], [4], [9], and [14] provide the notation and terminology for this paper.

Next we state three propositions:

- (1) For every L such that 0 < L and L < 1 and for all n, m such that $n \le m$ holds $L^m \le L^n$.
- (2) For every L such that 0 < L and L < 1 and for every k holds $L^k \le 1$ and $0 < L^k$.
- (3) For every L such that 0 < L and L < 1 and for every s such that 0 < s there exists n such that $L^n < s$.

Let us consider N. We say that N is totally bounded if and only if the condition (Def. 1) is satisfied.

(Def. 1) Let given r. Suppose r > 0. Then there exists G such that G is finite and the carrier of $N = \bigcup G$ and for every C such that $C \in G$ there exists w such that C = Ball(w, r).

Let us consider N. We see that the sequence of N is a function and it can be characterized by the following (equivalent) condition:

(Def. 2) dom it = \mathbb{N} and rng it \subseteq the carrier of N.

In the sequel S_1 is a sequence of M and S_2 is a sequence of N. We now state the proposition

(5)¹ f is a sequence of N iff dom $f = \mathbb{N}$ and for every n holds f(n) is an element of N.

Let us consider N, S_2 . We say that S_2 is convergent if and only if:

(Def. 3) There exists an element x of N such that for every r such that r > 0 there exists n such that for every m such that $n \le m$ holds $\rho(S_2(m), x) < r$.

Let us consider M, S_1 . Let us assume that S_1 is convergent. The functor $\lim S_1$ yields an element of M and is defined by:

1

¹ The proposition (4) has been removed.

(Def. 4) For every r such that r > 0 there exists n such that for every m such that $m \ge n$ holds $\rho(S_1(m), \lim S_1) < r$.

Let us consider N, S_2 . We say that S_2 is Cauchy if and only if:

(Def. 5) For every r such that r > 0 there exists p such that for all n, m such that $p \le n$ and $p \le m$ holds $\rho(S_2(n), S_2(m)) < r$.

Let us consider *N*. We say that *N* is complete if and only if:

(Def. 6) For every S_2 such that S_2 is Cauchy holds S_2 is convergent.

Next we state the proposition

 $(7)^2$ If N is triangle and symmetric and S_2 is convergent, then S_2 is Cauchy.

Let *M* be a triangle symmetric non empty metric structure. Note that every sequence of *M* which is convergent is also Cauchy.

One can prove the following propositions:

- (8) Suppose *N* is symmetric. Then S_2 is Cauchy if and only if for every *r* such that r > 0 there exists *p* such that for all *n*, *k* such that $p \le n$ holds $\rho(S_2(n+k), S_2(n)) < r$.
- (9) Let f be a contraction of M. Suppose M is complete. Then there exists c such that f(c) = c and for every element y of M such that f(y) = y holds y = c.
- (10) If T_{top} is compact, then T is complete.
- $(12)^3$ If N is Reflexive and triangle and N_{top} is compact, then N is totally bounded.

Let us consider N. We say that N is bounded if and only if:

(Def. 8)⁴ There exists r such that 0 < r and for all points x, y of N holds $\rho(x, y) \le r$.

Let *C* be a subset of *N*. We say that *C* is bounded if and only if:

(Def. 9) There exists r such that 0 < r and for all points x, y of N such that $x \in C$ and $y \in C$ holds $\rho(x,y) \le r$.

Let A be a non empty set. Observe that the discrete space on A is bounded.

One can check that there exists a non empty metric space which is bounded.

We now state several propositions:

- $(14)^5$ \emptyset_N is bounded.
- (15) Let C be a subset of N. Then
 - (i) if $C \neq \emptyset$ and C is bounded, then there exist r, w such that 0 < r and $w \in C$ and for every point z of N such that $z \in C$ holds $\rho(w, z) \leq r$, and
- (ii) if *N* is symmetric and triangle and there exist *r*, *w* such that 0 < r and $w \in C$ and for every point *z* of *N* such that $z \in C$ holds $\rho(w, z) \le r$, then *C* is bounded.
- (16) If *N* is Reflexive and 0 < r, then $w \in Ball(w, r)$ and $Ball(w, r) \neq \emptyset$.
- (17) If $r \le 0$, then Ball $(t_1, r) = \emptyset$.
- $(19)^6$ Ball (t_1, r) is bounded.
- (20) For all subsets P, Q of T such that P is bounded and Q is bounded holds $P \cup Q$ is bounded.

² The proposition (6) has been removed.

³ The proposition (11) has been removed.

⁴ The definition (Def. 7) has been removed.

⁵ The proposition (13) has been removed.

⁶ The proposition (18) has been removed.

- (21) For all subsets C, D of N such that C is bounded and $D \subseteq C$ holds D is bounded.
- (22) For every subset *P* of *T* such that $P = \{t_1\}$ holds *P* is bounded.
- (23) For every subset *P* of *T* such that *P* is finite holds *P* is bounded.

Let us consider T. One can verify that every subset of T which is finite is also bounded. Let us consider T. Observe that there exists a subset of T which is finite and non empty. We now state two propositions:

- (24) If *Y* is finite and for every subset *P* of *T* such that $P \in Y$ holds *P* is bounded, then $\bigcup Y$ is bounded.
- (25) N is bounded iff Ω_N is bounded.

Let *N* be a bounded non empty metric structure. Note that Ω_N is bounded. Next we state the proposition

(26) If *T* is totally bounded, then *T* is bounded.

Let N be a Reflexive non empty metric structure and let C be a subset of N. Let us assume that C is bounded. The functor $\emptyset C$ yielding a real number is defined by:

- (Def. 10)(i) For all points x, y of N such that $x \in C$ and $y \in C$ holds $\rho(x, y) \leq \emptyset C$ and for every s such that for all points x, y of N such that $x \in C$ and $y \in C$ holds $\rho(x, y) \leq s$ holds $\emptyset C \leq s$ if $C \neq \emptyset$,
 - (ii) $\emptyset C = 0$, otherwise.

The following propositions are true:

- (28)⁷ For every subset P of T such that $P = \{x\}$ holds $\emptyset P = 0$.
- (29) For every subset *S* of *R* such that *S* is bounded holds $0 \le \emptyset S$.
- (30) For every subset A of M such that $A \neq \emptyset$ and A is bounded and $\emptyset A = 0$ there exists a point g of M such that $A = \{g\}$.
- (31) If 0 < r, then $\emptyset Ball(t_1, r) \le 2 \cdot r$.
- (32) For all subsets S, V of R such that S is bounded and $V \subseteq S$ holds $\emptyset V \le \emptyset S$.
- (33) For all subsets P, Q of T such that P is bounded and Q is bounded and P meets Q holds $\emptyset(P \cup Q) \leq \emptyset P + \emptyset Q$.

Let us consider N, S_2 . Then rng S_2 is a subset of N. Next we state the proposition

(34) For every sequence S_1 of T such that S_1 is Cauchy holds rng S_1 is bounded.

REFERENCES

- Grzegorz Bancerek. The fundamental properties of natural numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/nat_1.html.
- [2] Grzegorz Bancerek. The ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/ordinal1. html.
- [3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/finseg_1.html.
- [4] Leszek Borys. Paracompact and metrizable spaces. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/pcomps_1.html.
- [5] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_1.html.

⁷ The proposition (27) has been removed.

- [6] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_2.html.
- [7] Agata Darmochwał. Compact spaces. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/compts_1.html.
- [8] Agata Darmochwał. Finite sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/finset_1.html.
- [9] Alicia de la Cruz. Fix point theorem for compact spaces. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/ali2.html.
- [10] Krzysztof Hryniewiecki. Basic properties of real numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/real_1.html.
- [11] Stanisława Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/metric_1.html.
- [12] Beata Padlewska. Families of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/setfam_1.html.
- [13] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/pre_topc.html.
- [14] Jan Popiołek. Real normed space. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/normsp_1.html.
- [15] Konrad Raczkowski and Andrzej Nędzusiak. Real exponents and logarithms. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/power.html.
- [16] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [17] Andrzej Trybulec. Subsets of real numbers. *Journal of Formalized Mathematics*, Addenda, 2003. http://mizar.org/JFM/Addenda/numbers.btml
- [18] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.
- [19] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relat_1.html.

Received September 30, 1991

Published January 2, 2004