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Summary. The paper introduces some preliminary notions concerning the Wroclaw
taxonomy according to [14]. The classifications and tolerances are defined and considered
w.r.t. sets and metric spaces. We prove theorems showing various classifications based on
tolerances.
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The articles [18], [8], [20], [2], [19], [7], [21], [23], [5], [22], [6], [13], [16], [12], [11], [10], [17],
[3], [4], [15], [1], and [9] provide the notation and terminology for this paper.

1. PRELIMINARIES

In this paperA, X denote non empty sets,f denotes a partial function from[:X, X :] to R, anda
denotes a real number.

Let us observe that there exists a real number which is non negative.
We now state a number of propositions:

(1) For every finite sequencep and for every natural numberk such thatk+ 1 ∈ domp and
k /∈ domp holdsk = 0.

(2) Let p be a finite sequence andi, j be natural numbers. Supposei ∈ domp and j ∈ domp
and for every natural numberk such thatk∈ domp andk+1∈ domp holdsp(k) = p(k+1).
Thenp(i) = p( j).

(3) For every setX and for every binary relationR on X such thatR is reflexive inX holds
domR= X.

(4) For every setX and for every binary relationR on X such thatR is reflexive inX holds
rngR= X.

(5) For every setX and for every binary relationR on X such thatR is reflexive inX holdsR∗

is reflexive inX.

(6) LetX, x, y be sets andRbe a binary relation onX. SupposeR is reflexive inX. If R reduces
x to y andx∈ X, then〈〈x, y〉〉 ∈ R∗.

(7) Let X be a set andR be a binary relation onX. If R is reflexive inX and symmetric inX,
thenR∗ is symmetric inX.
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(8) For every setX and for every binary relationR on X such thatR is reflexive inX holdsR∗

is transitive inX.

(9) Let X be a non empty set andR be a binary relation onX. SupposeR is reflexive inX and
symmetric inX. ThenR∗ is an equivalence relation ofX.

(10) For all binary relationsR1, R2 onX such thatR1 ⊆ R2 holdsR1
∗ ⊆ R2

∗.

(11) SmallestPartition(A) is finer than{A}.

2. THE NOTION OF CLASSIFICATION

Let A be a non empty set. A subset of PARTITIONS(A) is called a classification ofA if:

(Def. 1) For all partitionsX, Y of A such thatX ∈ it andY ∈ it holdsX is finer thanY or Y is finer
thanX.

The following three propositions are true:

(12) {{A}} is a classification ofA.

(13) {SmallestPartition(A)} is a classification ofA.

(14) For every subsetSof PARTITIONS(A) such thatS= {{A},SmallestPartition(A)} holdsS
is a classification ofA.

Let A be a non empty set. A subset of PARTITIONS(A) is called a strong classification ofA if:

(Def. 2) It is a classification ofA and{A} ∈ it and SmallestPartition(A) ∈ it.

We now state the proposition

(15) For every subsetSof PARTITIONS(A) such thatS= {{A},SmallestPartition(A)} holdsS
is a strong classification ofA.

3. THE TOLERANCE ON A NON EMPTY SET

Let X be a non empty set, letf be a partial function from[:X, X :] to R, and leta be a real number.
The functor Tl( f ,a) yields a binary relation onX and is defined by:

(Def. 3) For all elementsx, y of X holds〈〈x, y〉〉 ∈ Tl( f ,a) iff f (x, y)≤ a.

One can prove the following propositions:

(16) If f is Reflexive anda≥ 0, then Tl( f ,a) is reflexive inX.

(17) If f is symmetric, then Tl( f ,a) is symmetric inX.

(18) If a≥ 0 and f is Reflexive and symmetric, then Tl( f ,a) is a tolerance ofX.

(19) Let X be a non empty set,f be a partial function from[:X, X :] to R, anda1, a2 be real
numbers. Ifa1 ≤ a2, then Tl( f ,a1)⊆ Tl( f ,a2).

Let X be a set and letf be a partial function from[:X, X :] to R. We say thatf is non-negative if
and only if:

(Def. 4) For all elementsx, y of X holds f (x, y)≥ 0.

One can prove the following three propositions:

(20) Let X be a non empty set,f be a partial function from[:X, X :] to R, andx, y be sets.
Supposef is non-negative, Reflexive, and discernible. If〈〈x, y〉〉 ∈ Tl( f ,0), thenx = y.

(21) LetX be a non empty set,f be a partial function from[:X, X :] to R, andx be an element of
X. If f is Reflexive and discernible, then〈〈x, x〉〉 ∈ Tl( f ,0).

(22) LetX be a non empty set,f be a partial function from[:X, X :] to R, anda be a real number.
Suppose Tl( f ,a) is reflexive inX and f is symmetric. Then(Tl( f ,a))∗ is an equivalence
relation ofX.



LOWER TOLERANCE. PRELIMINARIES TO . . . 3

4. THE PARTITIONS DEFINED BY LOWER TOLERANCE

The following propositions are true:

(23) Let X be a non empty set andf be a partial function from[:X, X :] to R. Supposef is
non-negative, Reflexive, and discernible. Then(Tl( f ,0))∗ = Tl( f ,0).

(24) LetX be a non empty set,f be a partial function from[:X, X :] to R, andRbe an equivalence
relation ofX. SupposeR= (Tl( f ,0))∗ and f is non-negative, Reflexive, and discernible. Then
R= idX.

(25) LetX be a non empty set,f be a partial function from[:X, X :] to R, andRbe an equivalence
relation ofX. SupposeR= (Tl( f ,0))∗ and f is non-negative, Reflexive, and discernible. Then
ClassesR= SmallestPartition(X).

(26) LetX be a finite non empty subset ofR, f be a function from[:X, X :] into R, z be a finite
non empty subset ofR, andA be a real number. Ifz = rng f andA ≥ maxz, then for all
elementsx, y of X holds f (x, y)≤ A.

(27) LetX be a finite non empty subset ofR, f be a function from[:X, X :] into R, z be a finite
non empty subset ofR, andA be a real number. Supposez= rng f andA≥ maxz. Let R be
an equivalence relation ofX. If R= (Tl( f ,A))∗, then ClassesR= {X}.

(28) Let X be a finite non empty subset ofR, f be a function from[:X, X :] into R, z be a
finite non empty subset ofR, andA be a real number. Ifz = rng f and A ≥ maxz, then
(Tl( f ,A))∗ = Tl( f ,A).

5. THE CLASSIFICATION ON A NON EMPTY SET

Let X be a non empty set and letf be a partial function from[:X, X :] to R. The functor FamClassf
yielding a subset of PARTITIONS(X) is defined by the condition (Def. 5).

(Def. 5) Letx be a set. Thenx∈ FamClassf if and only if there exists a non negative real number
a and there exists an equivalence relationRof X such thatR= (Tl( f ,a))∗ and ClassesR= x.

Next we state four propositions:

(29) LetX be a non empty set,f be a partial function from[:X, X :] to R, anda be a non negative
real number. If Tl( f ,a) is reflexive inX and f is symmetric, then FamClassf is a non empty
set.

(30) LetX be a finite non empty subset ofR and f be a function from[:X, X :] into R. If f is
symmetric and non-negative, then{X} ∈ FamClassf .

(31) For every non empty setX and for every partial functionf from [:X, X :] to R holds
FamClassf is a classification ofX.

(32) LetX be a finite non empty subset ofR and f be a function from[:X, X :] into R. Suppose
SmallestPartition(X) ∈ FamClassf and f is symmetric and non-negative. Then FamClassf
is a strong classification ofX.

6. THE CLASSIFICATION ON A METRIC SPACE

Let M be a metric structure, leta be a real number, and letx, y be elements ofM. We say thatx, y
are in tolerance w.r.t.a if and only if:

(Def. 6) ρ(x,y)≤ a.

Let M be a non empty metric structure and leta be a real number. The functor Tm(M,a) yields
a binary relation onM and is defined by:
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(Def. 7) For all elementsx, y of M holds〈〈x, y〉〉 ∈ Tm(M,a) iff x, y are in tolerance w.r.t.a.

One can prove the following two propositions:

(33) For every non empty metric structureM and for every real numbera holds Tm(M,a) =
Tl(the distance ofM, a).

(34) LetM be a non empty Reflexive symmetric metric structure,a be a real number, andT be
a relation between the carrier ofM and the carrier ofM. If T = Tm(M,a) anda≥ 0, thenT
is a tolerance of the carrier ofM.

Let M be a Reflexive symmetric non empty metric structure. The functor MetricFamClassM
yielding a subset of PARTITIONS(the carrier ofM) is defined by the condition (Def. 8).

(Def. 8) Letx be a set. Thenx∈ MetricFamClassM if and only if there exists a non negative real
numbera and there exists an equivalence relationR of M such thatR = (Tm(M,a))∗ and
ClassesR= x.

Next we state several propositions:

(35) For every Reflexive symmetric non empty metric structureM holds MetricFamClassM =
FamClassthe distance ofM.

(36) Let M be a non empty metric space andR be an equivalence relation ofM. If R =
(Tm(M,0))∗, then ClassesR= SmallestPartition(the carrier ofM).

(37) For every Reflexive symmetric bounded non empty metric structureM such thata ≥
Ø(ΩM) holds Tm(M,a) = ∇the carrier ofM.

(38) For every Reflexive symmetric bounded non empty metric structureM such thata ≥
Ø(ΩM) holds Tm(M,a) = (Tm(M,a))∗.

(39) For every Reflexive symmetric bounded non empty metric structureM such thata ≥
Ø(ΩM) holds(Tm(M,a))∗ = ∇the carrier ofM.

(40) LetM be a Reflexive symmetric bounded non empty metric structure,R be an equivalence
relation ofM, anda be a non negative real number. Ifa≥Ø(ΩM) andR= (Tm(M,a))∗, then
ClassesR= {the carrier ofM}.

Let M be a Reflexive symmetric triangle non empty metric structure and letC be a non empty
bounded subset ofM. Note that ØC is non negative.

One can prove the following propositions:

(41) For every bounded non empty metric spaceM holds {the carrier of M} ∈
MetricFamClassM.

(42) For every Reflexive symmetric non empty metric structureM holds MetricFamClassM is
a classification of the carrier ofM.

(43) For every bounded non empty metric spaceM holds MetricFamClassM is a strong classi-
fication of the carrier ofM.
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