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The articles([8],[[10],[[5],118],[[12],0114] 2], [83],02],06],14],9], and 7] provide the notation and
terminology for this paper.
One can prove the following two propositions:

(1) LetA Bbe nonempty sets ariR}, R, be relations betweedandB. Suppose that for every
elementx of A and for every elementof B holds(x, y) € Ry iff (X, y) € Rx. ThenR; =Ro.

(2) LetX,Y be non empty setd, be a function fronX intoY, andA be a subset of. Suppose
that for all elementsy, Xo of X such thatx; € A and f(x;) = f(x2) holdsxz € A. Then
f=1(f°A) = A

LetT, Sbe topological structures. We say tHaaindSare homeomorphic if and only if:
(Def. 1) There exists a map frominto Swhich is a homeomorphism.

LetT, Sbe topological structures and lebe a map fronT into S. We say thaf is open if and
only if:

(Def. 2) For every subsé&t of T such thatA is open holds °A is open.

Let T be a non empty topological structure. The functor Indiscernilfili}yyields an equiva-
lence relation of the carrier af and is defined by the condition (Def. 3).

(Def. 3) Letp, qbe points ofT. Then(p, q) € Indiscernibility(T) if and only if for every subseA
of T such thatA is open holdp € Aiff g€ A.

Let T be a non empty topological structure. The funcIppgiscemiviityr Yielding a non empty
partition of the carrier of is defined as follows:

(Def. 4)  Tindiscemibiityr = Classes Indiscernibiliy ).

Let T be a non empty topological space. The fundigireflex(T) yielding a topological space
is defined as follows:

(Def. 5) To-reflexT) = the decomposition space BfingiscemivilityT -

Let T be a non empty topological space. Note thateflex T) is non empty.
Let T be a non empty topological space. The fundigimap(T) yields a continuous map from
T into To-reflexT) and is defined as follows:

(Def. 6) To-map(T) = the projection ontd |giscermnibilityT -
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We now state a number of propositions:

(3) For every non empty topological spade and for every pointp of T holds p €

(To-map(T))(p)-

(4) For every non empty topological spa€eholds donTo-mapT) = the carrier of T and
rgTo-map(T) C the carrier ofTp-reflex(T).

(5) LetT be a non empty topological space. Then the carri@ioa@®flexT) = T/ indiscemibilityT
and the topology offp-reflexT) = {A;A ranges over subsets &f ngiscernibiityr: UA € the
topology ofT}.

(6) LetT be anon empty topological space ahthe a subset ofp-reflexT). ThenV is open
if and only if JV € the topology ofT.

(7) LetT be anon empty topological space @be a set. The@ is a point ofTo-reflex(T) if
and only if there exists a poimtof T such that = [p]giscemibilityT) -

(8) For every non empty topological space and for every pointp of T holds
(To-map(T))(P) = [PlindiscermibilityT)-
(9) For every non empty topological spade and for all pointsp, q of T holds
(To-map(T))(q) = (To-mapT))(p) iff (g, p) € Indiscernibility(T).
(10) LetT be a non empty topological space ahlle a subset of . Suppose\ is open. Letp,
g be points ofT. If pe Aand(To-mapT))(p) = (To-mapT))(q), theng € A.

(11) LetT be a non empty topological space ahble a subset of . Supposei is open. LeC
be a subset of . If C € T/ ndiscemiviiyr @ndC meetsA, thenC C A.

(12) For every non empty topological spatdoldsTo-map(T) is open.

Let |1 be a topological structure. We say tHatis discernible if and only if the conditions
(Def. 7) are satisfied.

(Def. 7)(i) 1 is empty, or

(i) for all pointsx, y of 11 such thaix # y there exists a subs®tof |, such thaV is open but
xeVandy¢VoryeV andx ¢ V.

Let us note that there exists a topological space which is discernible and non empty.
A To-space is a discernible non empty topological space.
The following propositions are true:

(13) For every non empty topological spatéoldsTy-reflexT) is aTp-space.

(14) LetT, S be non empty topological spaces. Given a niafrom Tp-reflexS) into
To-reflexXT) such thath is a homeomorphism anty-mapT) andh- To-map(S) are fiber-
wise equipotent. Thel andSare homeomorphic.

(15) LetT be a non empty topological spadg,be aTg-space,f be a continuous map frorh
into To, andp, g be points ofT. If (p, ) € Indiscernibility(T), thenf(p) = f(q).

(16) LetT be a non empty topological spade,be aTp-space,f be a continuous map from
into To, andp be a point ofT. Then f*([p]ngiscemibiity)) = { f(P)}-

(17) LetT be a non empty topological spack, be aTp-space, and be a continuous map
from T into To. Then there exists a continuous mafrom To-reflexT) into To such that
f =h-To-mapT).
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