Infimum and Supremum of the Set of Real Numbers. Measure Theory

Józef Białas University of Łódź

Summary. We introduce some properties of the least upper bound and the greatest lower bound of the subdomain of $\overline{\mathbb{R}}$ numbers, where $\overline{\mathbb{R}}$ denotes the enlarged set of real numbers, $\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, +\infty\}$. The paper contains definitions of majorant and minorant elements, bounded from above, bounded from below and bounded sets, sup and inf of set, for nonempty subset of $\overline{\mathbb{R}}$. We prove theorems describing the basic relationships among those definitions. The work is the first part of the series of articles concerning the Lebesgue measure theory.

MML Identifier: SUPINF_1.

WWW: http://mizar.org/JFM/Vol2/supinf_1.html

The articles [3], [2], [5], [1], and [4] provide the notation and terminology for this paper. The set $+\infty$ is defined by:

(Def. 1) $+\infty = \mathbb{R}$.

We now state the proposition

 $(2)^1 + \infty \notin \mathbb{R}.$

Let I_1 be a set. We say that I_1 is positive infinite number-like if and only if:

(Def. 2) $I_1 = +\infty$.

Let us observe that there exists a set which is positive infinite number-like. A positive infinite number is a positive infinite number-like set.

We now state the proposition

 $(4)^2 + \infty$ is a positive infinite number.

The set $-\infty$ is defined by:

(Def. 3) $-\infty = \{\mathbb{R}\}.$

Next we state the proposition

 $(6)^3 -\infty \notin \mathbb{R}.$

Let I_1 be a set. We say that I_1 is negative infinite number-like if and only if:

¹ The proposition (1) has been removed.

² The proposition (3) has been removed.

³ The proposition (5) has been removed.

(Def. 4) $I_1 = -\infty$.

One can verify that there exists a set which is negative infinite number-like.

A negative infinite number is a negative infinite number-like set.

One can prove the following proposition

 $(8)^4$ $-\infty$ is a negative infinite number.

Let I_1 be a set. We say that I_1 is extended real if and only if:

(Def. 5)
$$I_1 \in \mathbb{R} \cup \{-\infty, +\infty\}$$
.

Let us note that there exists a set which is extended real.

The set $\overline{\mathbb{R}}$ is defined as follows:

(Def. 6)
$$\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, +\infty\}.$$

Let us mention that every element of $\overline{\mathbb{R}}$ is extended real.

An extended real number is an element of $\overline{\mathbb{R}}$.

Let us note that every real number is extended real.

The following propositions are true:

- (10)⁵ Every real number is an extended real number.
- (11) For every set x such that $x = -\infty$ or $x = +\infty$ holds x is an extended real number.

 $+\infty$ is an extended real number. Then $-\infty$ is an extended real number.

The following proposition is true

$$(14)^6 \quad -\infty \neq +\infty.$$

Let x, y be extended real numbers. The predicate $x \le y$ is defined as follows:

- (Def. 7)(i) There exist real numbers p, q such that p = x and q = y and $p \le q$ if $x \in \mathbb{R}$ and $y \in \mathbb{R}$,
 - (ii) $x = -\infty$ or $y = +\infty$, otherwise.

Let us notice that the predicate $x \le y$ is reflexive and connected. We introduce y < x as an antonym of $x \le y$.

Next we state several propositions:

- (16)⁷ Let x, y be extended real numbers. Suppose x is a real number and y is a real number. Then $x \le y$ if and only if there exist real numbers p, q such that p = x and q = y and $p \le q$.
- (17) For every extended real number x such that $x \in \mathbb{R}$ holds $x \nleq -\infty$.
- (18) For every extended real number x such that $x \in \mathbb{R}$ holds $+\infty \nleq x$.
- $(19) +\infty \nleq -\infty.$
- (20) For every extended real number *x* holds $x \le +\infty$.
- (21) For every extended real number x holds $-\infty \le x$.
- (22) For all extended real numbers x, y such that $x \le y$ and $y \le x$ holds x = y.
- (23) For every extended real number x such that $x \le -\infty$ holds $x = -\infty$.
- (24) For every extended real number x such that $+\infty \le x$ holds $x = +\infty$.

⁴ The proposition (7) has been removed.

⁵ The proposition (9) has been removed.

⁶ The propositions (12) and (13) have been removed.

⁷ The proposition (15) has been removed.

The scheme SepR eal concerns a unary predicate \mathcal{P} , and states that:

There exists a subset X of $\mathbb{R} \cup \{-\infty, +\infty\}$ such that for every extended real number x holds $x \in X$ iff $\mathcal{P}[x]$

for all values of the parameters.

We now state three propositions:

- $(26)^8$ $\overline{\mathbb{R}}$ is a non empty set.
- (27) For every set *x* holds *x* is an extended real number iff $x \in \overline{\mathbb{R}}$.
- (29)⁹ For all extended real numbers x, y, z such that $x \le y$ and $y \le z$ holds $x \le z$.

Let us observe that $\overline{\mathbb{R}}$ is non empty.

One can prove the following proposition

(31)¹⁰ For every extended real number x such that $x \in \mathbb{R}$ holds $-\infty < x$ and $x < +\infty$.

Let *X* be a non empty subset of $\overline{\mathbb{R}}$. An extended real number is said to be a majorant of *X* if:

(Def. 9)¹¹ For every extended real number x such that $x \in X$ holds $x \le it$.

Next we state two propositions:

- $(33)^{12}$ For every non empty subset X of $\overline{\mathbb{R}}$ holds $+\infty$ is a majorant of X.
- (34) Let X, Y be non empty subsets of $\overline{\mathbb{R}}$. Suppose $X \subseteq Y$. Let U_1 be an extended real number. If U_1 is a majorant of Y, then U_1 is a majorant of X.

Let *X* be a non empty subset of $\overline{\mathbb{R}}$. An extended real number is said to be a minorant of *X* if:

(Def. 10) For every extended real number x such that $x \in X$ holds it $\leq x$.

We now state two propositions:

- (36)¹³ For every non empty subset *X* of $\overline{\mathbb{R}}$ holds $-\infty$ is a minorant of *X*.
- (39)¹⁴ Let X, Y be non empty subsets of $\overline{\mathbb{R}}$. Suppose $X \subseteq Y$. Let L_1 be an extended real number. If L_1 is a minorant of Y, then L_1 is a minorant of X.

 \mathbb{R} is a non empty subset of $\overline{\mathbb{R}}$.

One can prove the following two propositions:

- $(41)^{15}$ + ∞ is a majorant of \mathbb{R} .
- (42) $-\infty$ is a minorant of \mathbb{R} .

Let *X* be a non empty subset of $\overline{\mathbb{R}}$. We say that *X* is upper bounded if and only if:

(Def. 11) There exists a majorant U_1 of X such that $U_1 \in \mathbb{R}$.

We now state two propositions:

(44)¹⁶ For all non empty subsets X, Y of $\overline{\mathbb{R}}$ such that $X \subseteq Y$ holds if Y is upper bounded, then X is upper bounded.

⁸ The proposition (25) has been removed.

⁹ The proposition (28) has been removed.

¹⁰ The proposition (30) has been removed.

¹¹ The definition (Def. 8) has been removed.

¹² The proposition (32) has been removed.

¹³ The proposition (35) has been removed.

¹⁴ The propositions (37) and (38) have been removed.

The proposition (40) has been removed.

¹⁶ The proposition (43) has been removed.

(45) \mathbb{R} is not upper bounded.

Let *X* be a non empty subset of $\overline{\mathbb{R}}$. We say that *X* is lower bounded if and only if:

(Def. 12) There exists a minorant L_1 of X such that $L_1 \in \mathbb{R}$.

One can prove the following two propositions:

- (47)¹⁷ For all non empty subsets X, Y of $\overline{\mathbb{R}}$ such that $X \subseteq Y$ holds if Y is lower bounded, then X is lower bounded.
- (48) \mathbb{R} is not lower bounded.

Let *X* be a non empty subset of $\overline{\mathbb{R}}$. We say that *X* is bounded if and only if:

(Def. 13) X is upper bounded and lower bounded.

We now state two propositions:

- (50)¹⁸ For all non empty subsets X, Y of $\overline{\mathbb{R}}$ such that $X \subseteq Y$ holds if Y is bounded, then X is bounded.
- (51) Let X be a non empty subset of $\overline{\mathbb{R}}$. Then there exists a non empty subset Y of $\overline{\mathbb{R}}$ such that for every extended real number x holds $x \in Y$ if and only if x is a majorant of X.

Let *X* be a non empty subset of $\overline{\mathbb{R}}$. The functor \overline{X} yields a subset of $\overline{\mathbb{R}}$ and is defined by:

(Def. 14) For every extended real number x holds $x \in \overline{X}$ iff x is a majorant of X.

Let X be a non empty subset of $\overline{\mathbb{R}}$. One can verify that \overline{X} is non empty. One can prove the following two propositions:

- (54)¹⁹ For all non empty subsets X, Y of $\overline{\mathbb{R}}$ such that $X \subseteq Y$ and for every extended real number x such that $x \in \overline{Y}$ holds $x \in \overline{X}$.
- (55) Let X be a non empty subset of $\overline{\mathbb{R}}$. Then there exists a non empty subset Y of $\overline{\mathbb{R}}$ such that for every extended real number x holds $x \in Y$ if and only if x is a minorant of X.

Let *X* be a non empty subset of $\overline{\mathbb{R}}$. The functor *X* yields a subset of $\overline{\mathbb{R}}$ and is defined by:

(Def. 15) For every extended real number x holds $x \in \underline{X}$ iff x is a minorant of X.

Let *X* be a non empty subset of $\overline{\mathbb{R}}$. Note that \underline{X} is non empty. We now state a number of propositions:

- (58)²⁰ For all non empty subsets X, Y of $\overline{\mathbb{R}}$ such that $X \subseteq Y$ and for every extended real number x such that $x \in Y$ holds $x \in X$.
- (59) Let *X* be a non empty subset of $\overline{\mathbb{R}}$. Suppose *X* is upper bounded and $X \neq \{-\infty\}$. Then there exists a real number *x* such that $x \in X$ and $x \neq -\infty$.
- (60) Let X be a non empty subset of $\overline{\mathbb{R}}$. Suppose X is lower bounded and $X \neq \{+\infty\}$. Then there exists a real number x such that $x \in X$ and $x \neq +\infty$.
- $(62)^{21}$ Let X be a non empty subset of $\overline{\mathbb{R}}$. Suppose X is upper bounded and $X \neq \{-\infty\}$. Then there exists an extended real number U_1 such that U_1 is a majorant of X and for every extended real number y such that y is a majorant of X holds $U_1 \leq y$.

¹⁷ The proposition (46) has been removed.

¹⁸ The proposition (49) has been removed.

¹⁹ The propositions (52) and (53) have been removed.

²⁰ The propositions (56) and (57) have been removed.

²¹ The proposition (61) has been removed.

- (63) Let X be a non empty subset of $\overline{\mathbb{R}}$. Suppose X is lower bounded and $X \neq \{+\infty\}$. Then there exists an extended real number L_1 such that L_1 is a minorant of X and for every extended real number y such that y is a minorant of X holds $y \leq L_1$.
- (64) For every non empty subset *X* of $\overline{\mathbb{R}}$ such that $X = \{-\infty\}$ holds *X* is upper bounded.
- (65) For every non empty subset *X* of $\overline{\mathbb{R}}$ such that $X = \{+\infty\}$ holds *X* is lower bounded.
- (66) Let X be a non empty subset of $\overline{\mathbb{R}}$. Suppose $X = \{-\infty\}$. Then there exists an extended real number U_1 such that U_1 is a majorant of X and for every extended real number Y such that Y is a majorant of Y holds $Y_1 \le Y$.
- (67) Let X be a non empty subset of $\overline{\mathbb{R}}$. Suppose $X = \{+\infty\}$. Then there exists an extended real number L_1 such that L_1 is a minorant of X and for every extended real number y such that y is a minorant of X holds $y \le L_1$.
- (68) Let X be a non empty subset of $\overline{\mathbb{R}}$. Suppose X is upper bounded. Then there exists an extended real number U_1 such that U_1 is a majorant of X and for every extended real number Y such that Y is a majorant of Y holds Y holds Y holds Y is a majorant of Y holds Y holds
- (69) Let X be a non empty subset of $\overline{\mathbb{R}}$. Suppose X is lower bounded. Then there exists an extended real number L_1 such that L_1 is a minorant of X and for every extended real number y such that y is a minorant of X holds $y < L_1$.
- (70) Let X be a non empty subset of $\overline{\mathbb{R}}$. Suppose X is not upper bounded. Let y be an extended real number. If y is a majorant of X, then $y = +\infty$.
- (71) Let X be a non empty subset of $\overline{\mathbb{R}}$. Suppose X is not lower bounded. Let y be an extended real number. If y is a minorant of X, then $y = -\infty$.
- (72) Let X be a non empty subset of $\overline{\mathbb{R}}$. Then there exists an extended real number U_1 such that U_1 is a majorant of X and for every extended real number y such that y is a majorant of X holds $U_1 \leq y$.
- (73) Let X be a non empty subset of $\overline{\mathbb{R}}$. Then there exists an extended real number L_1 such that L_1 is a minorant of X and for every extended real number y such that y is a minorant of X holds $y \le L_1$.

Let *X* be a non empty subset of $\overline{\mathbb{R}}$. The functor $\sup X$ yielding an extended real number is defined by:

(Def. 16) $\sup X$ is a majorant of X and for every extended real number y such that y is a majorant of X holds $\sup X \leq y$.

Next we state the proposition

(76)²² For every non empty subset X of $\overline{\mathbb{R}}$ and for every extended real number x such that $x \in X$ holds $x \le \sup X$.

Let X be a non empty subset of $\overline{\mathbb{R}}$. The functor $\inf X$ yields an extended real number and is defined as follows:

(Def. 17) in fX is a minorant of X and for every extended real number y such that y is a minorant of X holds $y \le \inf X$.

The following propositions are true:

(79)²³ For every non empty subset X of $\overline{\mathbb{R}}$ and for every extended real number x such that $x \in X$ holds inf $X \le x$.

²² The propositions (74) and (75) have been removed.

²³ The propositions (77) and (78) have been removed.

- (80) For every non empty subset X of $\overline{\mathbb{R}}$ and for every majorant x of X such that $x \in X$ holds $x = \sup X$.
- (81) For every non empty subset X of $\overline{\mathbb{R}}$ and for every minorant x of X such that $x \in X$ holds $x = \inf X$.
- (82) For every non empty subset X of $\overline{\mathbb{R}}$ holds $\sup X = \inf \overline{X}$ and $\inf X = \sup X$.
- (83) For every non empty subset X of $\overline{\mathbb{R}}$ such that X is upper bounded and $X \neq \{-\infty\}$ holds $\sup X \in \mathbb{R}$.
- (84) For every non empty subset X of $\overline{\mathbb{R}}$ such that X is lower bounded and $X \neq \{+\infty\}$ holds inf $X \in \mathbb{R}$.

Let x be an extended real number. Then $\{x\}$ is a subset of $\overline{\mathbb{R}}$. Let x, y be extended real numbers. Then $\{x,y\}$ is a subset of $\overline{\mathbb{R}}$. We now state a number of propositions:

- (85) For every extended real number x holds $\sup\{x\} = x$.
- (86) For every extended real number x holds $\inf\{x\} = x$.
- $(87) \quad \sup\{-\infty\} = -\infty.$
- (88) $\sup\{+\infty\} = +\infty$
- (89) $\inf\{-\infty\} = -\infty$.
- $(90) \quad \inf\{+\infty\} = +\infty.$
- (91) For all non empty subsets X, Y of $\overline{\mathbb{R}}$ such that $X \subseteq Y$ holds $\sup X \leq \sup Y$.
- (92) For all extended real numbers x, y and for every extended real number a such that $x \le a$ and $y \le a$ holds $\sup\{x,y\} \le a$.
- (93) For all extended real numbers x, y holds if $x \le y$, then $\sup\{x,y\} = y$ and if $y \le x$, then $\sup\{x,y\} = x$.
- (94) For all non empty subsets X, Y of $\overline{\mathbb{R}}$ such that $X \subseteq Y$ holds $\inf Y \leq \inf X$.
- (95) For all extended real numbers x, y and for every extended real number a such that $a \le x$ and $a \le y$ holds $a \le \inf\{x, y\}$.
- (96) For all extended real numbers x, y holds if $x \le y$, then $\inf\{x,y\} = x$ and if $y \le x$, then $\inf\{x,y\} = y$.
- (97) Let X be a non empty subset of $\overline{\mathbb{R}}$ and x be an extended real number. If there exists an extended real number y such that $y \in X$ and $x \le y$, then $x \le \sup X$.
- (98) Let X be a non empty subset of $\overline{\mathbb{R}}$ and x be an extended real number. If there exists an extended real number y such that $y \in X$ and $y \le x$, then $\inf X \le x$.
- (99) Let X, Y be non empty subsets of $\overline{\mathbb{R}}$. Suppose that for every extended real number x such that $x \in X$ there exists an extended real number y such that $y \in Y$ and $x \le y$. Then $\sup X \le \sup Y$.
- (100) Let X, Y be non empty subsets of $\overline{\mathbb{R}}$. Suppose that for every extended real number y such that $y \in Y$ there exists an extended real number x such that $x \in X$ and $x \leq y$. Then $\inf X \leq \inf Y$.
- (101) Let X, Y be non empty subsets of $\overline{\mathbb{R}}$, U_2 be a majorant of X, and U_3 be a majorant of Y. Then $\sup\{U_2, U_3\}$ is a majorant of $X \cup Y$.
- (102) Let X, Y be non empty subsets of $\overline{\mathbb{R}}$, L_2 be a minorant of X, and L_3 be a minorant of Y. Then $\inf\{L_2, L_3\}$ is a minorant of $X \cup Y$.

- (103) Let X, Y, S be non empty subsets of $\overline{\mathbb{R}}$, U_2 be a majorant of X, and U_3 be a majorant of Y. If $S = X \cap Y$, then inf $\{U_2, U_3\}$ is a majorant of S.
- (104) Let X, Y, S be non empty subsets of $\overline{\mathbb{R}}$, L_2 be a minorant of X, and L_3 be a minorant of Y. If $S = X \cap Y$, then $\sup\{L_2, L_3\}$ is a minorant of S.
- (105) For all non empty subsets X, Y of $\overline{\mathbb{R}}$ holds $\sup(X \cup Y) = \sup\{\sup X, \sup Y\}$.
- (106) For all non empty subsets X, Y of $\overline{\mathbb{R}}$ holds $\inf(X \cup Y) = \inf\{\inf X, \inf Y\}$.
- (107) For all non empty subsets X, Y, S of $\overline{\mathbb{R}}$ such that $S = X \cap Y$ holds $\sup S \leq \inf\{\sup X, \sup Y\}$.
- (108) For all non empty subsets X, Y, S of $\overline{\mathbb{R}}$ such that $S = X \cap Y$ holds $\sup\{\inf X, \inf Y\} \leq \inf S$.

Let *X* be a non empty set. A set is called a non empty set of non empty subsets of *X* if:

(Def. 18) It is a non empty subset of 2^X and for every set A such that $A \in \text{it holds } A$ is a non empty set.

Let F be a non empty set of non empty subsets of $\overline{\mathbb{R}}$. The functor $\sup_{\overline{\mathbb{R}}} F$ yielding a subset of $\overline{\mathbb{R}}$ is defined as follows:

(Def. 19) For every extended real number a holds $a \in \sup_{\mathbb{R}} F$ iff there exists a non empty subset A of \mathbb{R} such that $A \in F$ and $a = \sup A$.

Let F be a non empty set of non empty subsets of $\overline{\mathbb{R}}$. Observe that $\sup_{\overline{\mathbb{R}}} F$ is non empty. One can prove the following three propositions:

- (112)²⁴ Let F be a non empty set of non empty subsets of $\overline{\mathbb{R}}$ and S be a non empty subset of $\overline{\mathbb{R}}$. If $S = \bigcup F$, then $\sup S$ is a majorant of $\sup_{\overline{\mathbb{R}}} F$.
- (113) Let F be a non empty set of non empty subsets of $\overline{\mathbb{R}}$ and S be a non empty subset of $\overline{\mathbb{R}}$. If $S = \bigcup F$, then $\sup \sup_{\overline{\mathbb{R}}} F$ is a majorant of S.
- (114) Let F be a non empty set of non empty subsets of $\overline{\mathbb{R}}$ and S be a non empty subset of $\overline{\mathbb{R}}$. If $S = \bigcup F$, then $\sup S = \sup \sup_{\overline{\mathbb{R}}} F$.

Let F be a non empty set of non empty subsets of $\overline{\mathbb{R}}$. The functor $\inf_{\overline{\mathbb{R}}} F$ yields a subset of $\overline{\mathbb{R}}$ and is defined by:

(Def. 20) For every extended real number a holds $a \in \inf_{\overline{\mathbb{R}}} F$ iff there exists a non empty subset A of $\overline{\mathbb{R}}$ such that $A \in F$ and $a = \inf A$.

Let F be a non empty set of non empty subsets of $\overline{\mathbb{R}}$. Note that $\inf_{\overline{\mathbb{R}}} F$ is non empty. Next we state three propositions:

- (117)²⁵ Let F be a non empty set of non empty subsets of $\overline{\mathbb{R}}$ and S be a non empty subset of $\overline{\mathbb{R}}$. If $S = \bigcup F$, then $\inf S$ is a minorant of $\inf_{\overline{\mathbb{R}}} F$.
- (118) Let F be a non empty set of non empty subsets of $\overline{\mathbb{R}}$ and S be a non empty subset of $\overline{\mathbb{R}}$. If $S = \bigcup F$, then $\inf \inf_{\overline{\mathbb{R}}} F$ is a minorant of S.
- (119) Let F be a non empty set of non empty subsets of $\overline{\mathbb{R}}$ and S be a non empty subset of $\overline{\mathbb{R}}$. If $S = \bigcup F$, then $\inf S = \inf \inf_{\overline{\mathbb{R}}} F$.

²⁴ The propositions (109)–(111) have been removed.

²⁵ The propositions (115) and (116) have been removed.

REFERENCES

- [1] Grzegorz Bancerek. The ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/ordinal1. html.
- [2] Czesław Byliński. Some basic properties of sets. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/zfmisc_ 1.html.
- [3] Andrzej Trybulec. Tarski Grothendieck set theory. *Journal of Formalized Mathematics*, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [4] Andrzej Trybulec. Subsets of real numbers. *Journal of Formalized Mathematics*, Addenda, 2003. http://mizar.org/JFM/Addenda/numbers.html.
- [5] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.

Received September 27, 1990

Published January 2, 2004