Properties of Subsets

Zinaida Trybulec Warsaw University Białystok

Summary. The text includes theorems concerning properties of subsets, and some operations on sets. The functions yielding improper subsets of a set, i.e. the empty set and the set itself are introduced. Functions and predicates introduced for sets are redefined. Some theorems about enumerated sets are proved.

MML Identifier: SUBSET 1.

WWW: http://mizar.org/JFM/Vol1/subset_1.html

The articles [3], [2], and [1] provide the notation and terminology for this paper.

In this paper E, X, x, y are sets.

Let X be a set. Observe that 2^X is non empty.

Let us consider x. Note that $\{x\}$ is non empty. Let us consider y. Note that $\{x,y\}$ is non empty.

Let us consider *X*. Element of *X* is defined as follows:

(Def. 2)¹(i) It $\in X$ if X is non empty,

(ii) it is empty, otherwise.

Let us consider X. A subset of X is an element of 2^X .

Let *X* be a non empty set. Observe that there exists a subset of *X* which is non empty.

Let X_1, X_2 be non empty sets. Observe that $[:X_1, X_2:]$ is non empty.

Let X_1, X_2, X_3 be non empty sets. One can verify that $[:X_1, X_2, X_3:]$ is non empty.

Let X_1, X_2, X_3, X_4 be non empty sets. Observe that $[:X_1, X_2, X_3, X_4:]$ is non empty.

Let D be a non empty set and let X be a non empty subset of D. We see that the element of X is an element of D.

Let us consider E. One can check that there exists a subset of E which is empty.

Let us consider E. The functor \emptyset_E yielding an empty subset of E is defined by:

(Def. 3) $\emptyset_E = \emptyset$.

The functor Ω_E yields a subset of E and is defined by:

(Def. 4) $\Omega_E = E$.

Next we state the proposition

 $(4)^2$ 0 is a subset of X.

In the sequel A, B, C are subsets of E.

Next we state three propositions:

¹ The definition (Def. 1) has been removed.

² The propositions (1)–(3) have been removed.

- (7)³ If for every element x of E such that $x \in A$ holds $x \in B$, then $A \subseteq B$.
- (8) If for every element x of E holds $x \in A$ iff $x \in B$, then A = B.
- $(10)^4$ If $A \neq \emptyset$, then there exists an element x of E such that $x \in A$.

Let us consider E, A. The functor A^c yielding a subset of E is defined by:

(Def. 5)
$$A^c = E \setminus A$$
.

Let us notice that the functor A^c is involutive. Let us consider B. Then $A \cup B$ is a subset of E. Then $A \cap B$ is a subset of E. Then $A \cap B$ is a subset of E.

We now state a number of propositions:

- (15)⁵ If for every element x of E holds $x \in A$ iff $x \in B$ or $x \in C$, then $A = B \cup C$.
- (16) If for every element x of E holds $x \in A$ iff $x \in B$ and $x \in C$, then $A = B \cap C$.
- (17) If for every element x of E holds $x \in A$ iff $x \in B$ and $x \notin C$, then $A = B \setminus C$.
- (18) If for every element x of E holds $x \in A$ iff $x \notin B$ iff $x \notin C$, then A = B C.
- $(21)^6 \quad \emptyset_E = (\Omega_E)^c.$
- (22) $\Omega_E = (\emptyset_E)^c$.
- $(25)^7$ $A \cup A^c = \Omega_E$.
- (26) A misses A^{c} .
- $(28)^8$ $A \cup \Omega_E = \Omega_E$.
- $(29) \quad (A \cup B)^{c} = A^{c} \cap B^{c}.$
- $(30) \quad (A \cap B)^{c} = A^{c} \cup B^{c}.$
- (31) $A \subseteq B \text{ iff } B^c \subseteq A^c$.
- $(32) \quad A \setminus B = A \cap B^{c}.$
- $(33) \quad (A \setminus B)^{c} = A^{c} \cup B.$
- $(34) \quad (A B)^{c} = A \cap B \cup A^{c} \cap B^{c}.$
- (35) If $A \subseteq B^c$, then $B \subseteq A^c$.
- (36) If $A^c \subseteq B$, then $B^c \subseteq A$.
- $(38)^9$ $A \subseteq A^c$ iff $A = \emptyset_E$.
- (39) $A^{c} \subseteq A \text{ iff } A = \Omega_{E}.$
- (40) If $X \subseteq A$ and $X \subseteq A^c$, then $X = \emptyset$.
- $(41) \quad (A \cup B)^{c} \subseteq A^{c}.$
- $(42) \quad A^{c} \subseteq (A \cap B)^{c}.$
- (43) A misses B iff $A \subseteq B^c$.

³ The propositions (5) and (6) have been removed.

⁴ The proposition (9) has been removed.

⁵ The propositions (11)–(14) have been removed.

⁶ The propositions (19) and (20) have been removed.

⁷ The propositions (23) and (24) have been removed.

⁸ The proposition (27) has been removed.

⁹ The proposition (37) has been removed.

- (44) A misses B^c iff $A \subseteq B$.
- $(46)^{10}$ If A misses B and A^c misses B^c, then $A = B^c$.
- (47) If $A \subseteq B$ and C misses B, then $A \subseteq C^{c}$.
- (48) If for every element a of A holds $a \in B$, then $A \subseteq B$.
- (49) If for every element x of E holds $x \in A$, then E = A.
- (50) If $E \neq \emptyset$, then for every B and for every element x of E such that $x \notin B$ holds $x \in B^c$.
- (51) For all A, B such that for every element x of E holds $x \in A$ iff $x \notin B$ holds $A = B^c$.
- (52) For all A, B such that for every element x of E holds $x \notin A$ iff $x \in B$ holds $A = B^c$.
- (53) For all A, B such that for every element x of E holds $x \in A$ iff $x \notin B$ holds $A = B^c$.
- (54) If $x \in A^c$, then $x \notin A$.

In the sequel x_1 , x_2 , x_3 , x_4 , x_5 , x_6 , x_7 , x_8 are elements of X. One can prove the following propositions:

- (55) If $X \neq \emptyset$, then $\{x_1\}$ is a subset of X.
- (56) If $X \neq \emptyset$, then $\{x_1, x_2\}$ is a subset of X.
- (57) If $X \neq \emptyset$, then $\{x_1, x_2, x_3\}$ is a subset of X.
- (58) If $X \neq \emptyset$, then $\{x_1, x_2, x_3, x_4\}$ is a subset of *X*.
- (59) If $X \neq \emptyset$, then $\{x_1, x_2, x_3, x_4, x_5\}$ is a subset of X.
- (60) If $X \neq \emptyset$, then $\{x_1, x_2, x_3, x_4, x_5, x_6\}$ is a subset of X.
- (61) If $X \neq \emptyset$, then $\{x_1, x_2, x_3, x_4, x_5, x_6, x_7\}$ is a subset of X.
- (62) If $X \neq \emptyset$, then $\{x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8\}$ is a subset of X.
- (63) If $x \in X$, then $\{x\}$ is a subset of X.

In this article we present several logical schemes. The scheme *Subset Ex* deals with a set \mathcal{A} and a unary predicate \mathcal{P} , and states that:

There exists a subset X of \mathcal{A} such that for every x holds $x \in X$ iff $x \in \mathcal{A}$ and $\mathcal{P}[x]$ for all values of the parameters.

The scheme *Subset Eq* deals with a set \mathcal{A} and a unary predicate \mathcal{P} , and states that:

Let X_1, X_2 be subsets of \mathcal{A} . Suppose for every element y of \mathcal{A} holds $y \in X_1$ iff $\mathcal{P}[y]$ and for every element y of \mathcal{A} holds $y \in X_2$ iff $\mathcal{P}[y]$. Then $X_1 = X_2$

for all values of the parameters.

Let *X*, *Y* be non empty sets. Let us note that the predicate *X* misses *Y* is irreflexive. We introduce *X* meets *Y* as an antonym of *X* misses *Y*.

Let *S* be a set. Let us assume that *contradiction*.¹¹

(Def. 6) choose(S) is an element of S.

¹⁰ The proposition (45) has been removed.

¹¹ This definition is absolutely permissive, i.e. we assume a *contradiction*, but we are interested only in the type of the functor 'choose'.

REFERENCES

- [1] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/zfmisc_1.html.
- [2] Andrzej Trybulec. Enumerated sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/enumset1.html.
- [3] Andrzej Trybulec. Tarski Grothendieck set theory. *Journal of Formalized Mathematics*, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.

Received March 4, 1989

Published January 2, 2004
