JOURNAL OF FORMALIZED MATHEMATICS
Volume9,  Released 1997,  Published 2003
Inst. of Computer Science, Univ. of Bialystok

On the Rectangular Finite Sequences of the Points of

the Plane
Andrzej Trybulec Yatsuka Nakamura
University of Biatystok Shinshu University

Nagano

Summary. The article deals with a rather technical concept — rectangular sequences
of the points of the plane. We mean by that a finite sequence consisting of five elements, that
is circular, i.e. the first element and the fifth one of it are equal, and such that the polygon
determined by it is a non degenerated rectangle, with sides parallel to axes. The main result is
that for the rectangle determined by such a sequence the left and the right component of the
complement of it are different and disjoint.

MML Identifier: SPRECT_1.
WWW: http://mizar.org/JFM/Vol9/sprect_1.html

The articles([2B],[17],129],130],12],[126],[1113],[11],[1271,[15],[16],[1B], [128],[125],[[16],.[15],. [14],
[, [22], [21], [10], [20], [11], [12], [18&], [19], [24], [17], [8], and[[9] provide the notation and
terminology for this paper.

1. GENERAL PRELIMINARIES

The following proposition is true
(1) For every trivial seA and for every seB such thaB C A holdsB is trivial.

One can check that every function which is non constant is also non trivial.
Let us mention that every function which is trivial is also constant.
Next we state the proposition

(2) For every functiorf such that rnd is trivial holds f is constant.

Let f be a constant function. Note that rhgg trivial.
Let us note that there exists a finite sequence which is non empty and constant.
We now state three propositions:

(3) For allfinite sequencefs g such thatf ~ g is constant hold$ is constant and is constant.
(4) For all setx, y such thatx,y) is constant holdg =y.

(5) For all set, y, zsuch thatx,y,z) is constant holds =y andy = zandz = x.
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2. PRELIMINARIES (GENERAL TOPOLOGY)
Next we state four propositions:

(6) LetG; be a non empty topological spadebe a subset dB;, andB be a non empty subset
of G;. If Ais a component 0B, thenA # 0.

(7) For every topological structuf@; and for all subset8, B of G; such tha# is a component
of B holdsA C B.

(8) LetT be a non empty topological spack,be a non empty subset af, andBy, By, S
be subsets of . SupposeB; is a component oA andB; is a component oA andSis a
component oA andB; UB; = A. ThenS=B; or S=B;.

(9) LetT be a non empty topological spadkbe a non empty subset @f, andB;, By, Cy,
C, be subsets of . SupposeB; is a component oA andB; is a component oA andC;
is a component oA andC; is a component oA andB; UB, = AandCy UC, = A. Then
{B1,B2} = {C41,Cy}.

3. PRELIMINARIES (THE TOPOLOGY OF THE PLANB

We adopt the following rulesSdenotes a subset Qﬁ% C, C1, C; denote non empty compact subsets
of £2, andp, g denote points of-2.
One can prove the following proposition

(10) For all pointsp, g, r of E2 hoIdsZ((p,q, r)=L(p,q)UL(q,r).

Let n be a natural number and Iétbe a non trivial finite sequence of elementsA. Observe
that £(f) is non empty.

Let f be a finite sequence of elementsZkg. Note thatZ (f) is compact.

We now state two propositions:

(11) For all subsets, B of £2 such thatA C B andB is horizontal holds\ is horizontal.
(12) For all subsets, B of E% such thatA C B andB is vertical holdsA is vertical.

Let us observe thdil;2 is special polygonal, non horizontal, and non vertical.
One can verify that there exists a subsefﬁfwhich is non vertical, non horizontal, non empty,
and compact.

4. SPECIAL POINTS OF A COMPACT NON EMPTY SUBSET OF THE PLANE

One can prove the following propositions:

(13) Nmin(C) e Cand Nnax(C) €C.

(14) Snin(C) eCand $hax(C) €C.

(15) Wimnin(C) € Cand Whax(C) € C.

(16) Emin(C) € C and Eqax(C) €C.

(17) Cis vertical iff W-boundC) = E-boundC).

(18) Cis horizontal iff S-boun¢C) = N-boundC).

(19) If NW-cornekC) = NE-corne(C), thenC is vertical.

(20) If SW-corne(C) = SE-cornefC), thenC is vertical.

(21) If NW-cornefC) = SW-corne(C), thenC is horizontal.
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(22) If NE-corne(C) = SE-cornefC), thenC is horizontal.

In the sequel, ry, 12, S1, S are real numbers.
Next we state a number of propositions:

(23) W-boundC) < E-boundC).
(24) S-boundC) < N-boundC).

(25) L(SE-cornefC),NE-cornefC)) = {p: p1 = E-boundC) A p2 < N-boundC) A pp >
S-boundC)}.

(26) L(SW-corne(C),SE-cornefC)) = {p: p1 < E-boundC) A p1 > W-boundC) A pz =
S-boundC)}.

(27) L(NW-corneKC),NE-cornefC)) = {p: p1 < E-boundC) A p; > W-boundC) A p =
N-boundC)}.

(28) L(SW-corne(C),NW-cornefC)) = {p: p1 = W-boundC) A p2 < N-boundC) A py >
S-boundC)}.

(29) L(SW-corne(C),NW-cornefC))n L(NW-corne(C),NE-corne(C)) = {NW-cornefC)}.
(30) L(NW-cornekC),NE-cornefC)) N L(NE-corne(C),SE-cornefC)) = {NE-corne(C)}.
(31) L(SE-cornefC),NE-cornefC)) N L(SW-corne(C), SE-cornefC)) = {SE-cornefC)}.

(32) L(NW-corneKC),SW-corne(C)) N L(SW-cornefC), SE-cornefC)) = {SW-corne(C)}.

5. SUBSETS OF THE PLANE THAT ARE NEITHER VERTICAL NOR HORIZONTAL

Inthe sequeD; denotes a non vertical non empty compact subsﬁﬁoDz denotes a non horizontal
non empty compact subsetﬁf, andD denotes a non vertical non horizontal non empty compact
subset ofE2.

Next we state four propositions:

(33) W-boundD;) < E-boundDy).
(34) S-boundD,) < N-boundD3).
(35) L(SW-corne(D1),NW-cornefD;)) missesL(SE-cornefD;), NE-corne(D1)).
(36) L(SW-corne(D,),SE-cornefD2)) misses.(NW-cornekD,), NE-corne(Dy)).

6. A SPECIAL SEQUENCE RELATED TO A COMPACT NON EMPTY SUBSET OF THE PLANE

Let C be a subset orE% The functor SpStSdqyields a finite sequence of eIementsZéﬁ and is
defined as follows:

(Def. 1) SpStSeG = (NW-cornefC),NE-cornefC), SE-cornefC)) ~ (SW-corne(C), NW-corne(C)).
The following propositions are true:

(37) (SpStSe®)1 = NW-cornelS).

(38) (SpStSe®), = NE-corne(s).

(40)

(
(

(39) (SpStSe®)s; = SE-cornefs).
(SpStSe®)s = SW-corne(s).
(

(41) (SpStSe)s = NW-corne(s).
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(42) lenSpStSe§=>5.

(43) L(SpStSe®) = L(NW-corne(S), NE-cornetS))U L(NE-cornetS), SE-cornefS)) U (L (SE-cornefS), SW-corne
L(SW-corne(S), NW-corne(S))).

Let D be a non vertical non empty compact subseEgf One can check that SpSt3ads non
constant.

LetD be a non horizontal non empty compact subs@%fNote that SpStSdg is non constant.

Let D be a non vertical non horizontal non empty compact subsE}?oObserve that SpStSéqy
is special, unfolded, circular, s.c.c., and standard.

One can prove the following propositions:

(44) L(SpStSed) = [W-boundD), E-boundD),S-boundD), N-boundD)].

(45) For every non empty topological structdreand for every subset of T and for every real
mapf of T holds rng f | X) = f°X.

(46) LetT be a non empty topological spacebe a non empty compact subseflofand f be
a continuous real map @f. Thenf°X is lower bounded.

(47) LetT be a non empty topological spacepbe a non empty compact subseflofand f be
a continuous real map df. Thenf°X is upper bounded.

One can verify that there exists a subseRofvhich is non empty, upper bounded, and lower
bounded.
We now state a number of propositions:

(48) W-boundS) = inf(proj1° S).

(49) S-bounds) =inf(proj2°s).

(50) N-boundS) = sup(proj2’s).

(51) E-boundS) = supproj1°s).

(52) For all non empty lower bounded subs&f8 of R holds infAUB) = min(inf A, inf B).
(53) For all non empty upper bounded subgetB of R holds supAUB) = max(supA, supB).
(54) If S=C1UC,, then W-boundS) = min(W-boundC;), W-boundC,)).

(55) If S=C1UC,, then S-boun(B) = min(S-boundC;), S-boundC,)).

(56) If S=C1UC,, then N-boundS) = max(N-boundCy),N-boundCy,)).

(57) If S=C1UC,, then E-boundS) = max(E-boundC; ), E-boundCy)).

Let us considep, g. Note that£(p, q) is compact.

Let us observe thdly is bounded.

Let us considery, rp. Note thafrq,r»] is bounded.

Let us observe that every subsefofvhich is bounded is also lower bounded and upper bounded
and every subset @& which is lower bounded and upper bounded is also bounded.

One can prove the following propositions:

(59E] If ry <rg, thent € [r1,ry] iff there existss; such that < s ands; <1 andt=s;-r1+
(l — Sl) -Io.

(60) If pr < qy, then projT L(p,q) = [p1,qu].
(61) If p2 < qo, then proj2 L(p,q) = [p2,G2]-

1 The proposition (58) has been removed.
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If p1 < ga, then W-boundZ(p,q)) = p1.
If p2 < g, then S-boun@Z(p,q))

If p2 < gz, then N-boundL(p, ) = gz
If p1 < g1, then E-boundZ(p,q)) = 1.
W-boundZ(SpStSe€)) = W-boundC).

p2.

)
S-boundZ(SpStSe€)) = S-boundC).
N-bound £ (SpStSe€)) = N-boundC).
E-boundZ(SpStSe€)) = E-boundC).
NW-cornefZ(SpStSe€)) = NW-cornekC).
NE-cornefZ(SpStSeq)) = NE-cornetC).
SW-cornefZ(SpStSe€)) = SW-corne(C).
SE-corneiL(SpStSeq)) = SE-cornefC).

Winost( L(SpStSe€)) = L(SW-corne(C), NW-corne(C)).
Nimos{ £(SpStSeq)) = L(NW-cornefC),NE-corne(C)).

Snost( L(SpStSe)) = L(SW-corne(C), SE-cornefC)).
).

Emos L(SpStSeq)) = L(SE-cornefC), NE-corne(C)

proj2 L(SW-cornefC),NW-cornefC)) = [S-boundC),N-boundC)].
proj> £L(NW-corne(C),NE-corne(C)) = [W-boundC), E-boundC)].

(
proj2 L(NE-corne(C), SE-cornefC)) = [S-boundC), N-boundC)].
(

projT L(SE-cornefC), SW-corne(C)) = [W-boundC), E-boundC)].

Winin(L(SpStSe)) = SW-corne(C).
Winax(L(SpStSeq)) = NW-cornexC).
Nimin(L(SpStSe€)) = NW-corne(C).
Nmax(L(SpStSe€)) = NE-cornetC).
Emin(L(SpStSe€)) = SE-corne(C).
Emax(L(SPStSeq))
Snin(L(SpStSe€)) = SW-corne(C).

= NE-corne(C).

Snax(L(SpStSe@)) = SE-corne(C).
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7. RECTANGULAR FINITE SUEQUENCES OF THE POINTS OF THE PLANE

Let f be a finite sequence of eIementsEﬁ. We say thaf is rectangular if and only if:
(Def. 2) There exist® such thatf = SpStSed.

Let us consideb. Observe that SpStSexjs rectangular.

One can check that there exists a finite sequence of elemeﬁﬁsw’hich is rectangular.
In the seques denotes a rectangular finite sequence of eIemerEsrzof

The following proposition is true

(90) lens=5.

Let us observe that every finite sequence of eIementETZOfvhich is rectangular is also non

constant.
Let us note that every non empty finite sequence of elemerﬁ‘§ efhich is rectangular is also

standard, special, unfolded, circular, and s.c.c..
One can prove the following four propositions:

(91) s = Nmin(Z(s)) ands; = Winax(L(S)).

)
(92) S = Nmax(Z(s)) ands, = Emax(L(3)).
(93) S3= Smax(L(s)) andss = Emin(L(9)).

(94) s4=Smin(L(s)) andss = Winin(L(9)).
8. JORDAN PROPERTY
The following proposition is true
(95) Ifri <rpands; < s, theniry,ry,s1,5) is Jordan.

Let f be a rectangular finite sequence of elementgéfObserve that (f) is Jordan.
Let Sbe a subset of2. Let us observe tha&is Jordan if and only if the conditions (Def. 3) are

satisfied.
(Def. 3)(i) S #0,and
(i) there exist subsetdy, Az of E% such thats® = A UA; andA; missesA; andAg \ A =
Az \ Ay andA; is a component of° andA; is a component of°.
Next we state the proposition

(96) For every rectangular finite sequentef elements of@% holds LeftCompf) misses
RightComg f).

Let f be a non constant standard special circular sequence. One can check that Léft0emp
non empty and RightConi) is non empty.
One can prove the following proposition

(97) For every rectangular finite sequenéeof elements off% holds LeftCompf) #
RightComg f).
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