Special Polygons

Czesław Byliński Warsaw University Białystok Yatsuka Nakamura Shinshu University Nagano

MML Identifier: SPPOL_2.

WWW: http://mizar.org/JFM/Vol7/sppol_2.html

The articles [13], [2], [9], [1], [4], [3], [14], [10], [12], [6], [7], [8], [11], and [5] provide the notation and terminology for this paper.

1. Segments in \mathcal{E}_T^2

For simplicity, we follow the rules: P denotes a subset of \mathcal{E}_{T}^{2} , f, f_{1} , f_{2} , g denote finite sequences of elements of \mathcal{E}_{T}^{2} , p, p_{1} , p_{2} , q, q_{1} , q_{2} denote points of \mathcal{E}_{T}^{2} , r_{1} , r_{2} , r'_{1} , r'_{2} denote real numbers, and i, j, k, n denote natural numbers.

The following propositions are true:

- (1) For all real numbers r_1 , r_2 , r'_1 , r'_2 such that $[r_1, r_2] = [r'_1, r'_2]$ holds $r_1 = r'_1$ and $r_2 = r'_2$.
- (2) If i + j = len f, then $\mathcal{L}(f, i) = \mathcal{L}(\text{Rev}(f), j)$.
- (3) If $i+1 < \text{len}(f \upharpoonright n)$, then $\mathcal{L}(f \upharpoonright n, i) = \mathcal{L}(f, i)$.
- (4) If $n \le \text{len } f$ and $1 \le i$, then $\mathcal{L}(f_{\mid n}, i) = \mathcal{L}(f, n+i)$.
- (5) If $1 \le i$ and $i+1 \le \text{len } f n$, then $\mathcal{L}(f_{\mid n}, i) = \mathcal{L}(f, n+i)$.
- (6) If $i+1 \le \text{len } f$, then $\mathcal{L}(f \cap g, i) = \mathcal{L}(f, i)$.
- (7) If $1 \le i$, then $\mathcal{L}(f \cap g, \text{len } f + i) = \mathcal{L}(g, i)$.
- (8) If f is non empty and g is non empty, then $\mathcal{L}(f \cap g, \text{len } f) = \mathcal{L}(f_{\text{len } f}, g_1)$.
- (9) If $i+1 \le \text{len}(f-:p)$, then $\mathcal{L}(f-:p,i) = \mathcal{L}(f,i)$.
- (10) If $p \in \operatorname{rng} f$, then $\mathcal{L}(f:-p,i+1) = \mathcal{L}(f,i+p \leftrightarrow f)$.
- (11) $\widetilde{\mathcal{L}}(\varepsilon_{\text{(the carrier of }\mathcal{E}^2_{\mathbf{r}})}) = \emptyset.$
- (12) $\widetilde{\mathcal{L}}(\langle p \rangle) = \emptyset$.
- (13) If $p \in \mathcal{L}(f)$, then there exists i such that $1 \le i$ and $i + 1 \le \text{len } f$ and $p \in \mathcal{L}(f, i)$.
- (14) If $p \in \mathcal{L}(f)$, then there exists i such that $1 \le i$ and $i + 1 \le \text{len } f$ and $p \in \mathcal{L}(f_i, f_{i+1})$.
- (15) If $1 \le i$ and $i+1 \le \text{len } f$ and $p \in \mathcal{L}(f_i, f_{i+1})$, then $p \in \widetilde{\mathcal{L}}(f)$.

- (16) If $1 \le i$ and $i + 1 \le \text{len } f$, then $\mathcal{L}(f_i, f_{i+1}) \subseteq \widetilde{\mathcal{L}}(f)$.
- (17) If $p \in \mathcal{L}(f, i)$, then $p \in \widetilde{\mathcal{L}}(f)$.
- (18) If len $f \ge 2$, then rng $f \subseteq \widetilde{\mathcal{L}}(f)$.
- (19) If f is non empty, then $\widetilde{\mathcal{L}}(f \cap \langle p \rangle) = \widetilde{\mathcal{L}}(f) \cup \mathcal{L}(f_{\text{len } f}, p)$.
- (20) If f is non empty, then $\widetilde{\mathcal{L}}(\langle p \rangle \cap f) = \mathcal{L}(p, f_1) \cup \widetilde{\mathcal{L}}(f)$.
- (21) $\widetilde{\mathcal{L}}(\langle p, q \rangle) = \mathcal{L}(p, q).$
- (22) $\widetilde{\mathcal{L}}(f) = \widetilde{\mathcal{L}}(\operatorname{Rev}(f)).$
- (23) If f_1 is non empty and f_2 is non empty, then $\widetilde{\mathcal{L}}(f_1 \cap f_2) = \widetilde{\mathcal{L}}(f_1) \cup \mathcal{L}((f_1)_{\text{len } f_1}, (f_2)_1) \cup \widetilde{\mathcal{L}}(f_2)$.
- $(25)^1 \quad \text{If } q \in \operatorname{rng} f, \text{ then } \widetilde{\mathcal{L}}(f) = \widetilde{\mathcal{L}}(f-:q) \cup \widetilde{\mathcal{L}}(f:-q).$
- (26) If $p \in \mathcal{L}(f, n)$, then $\widetilde{\mathcal{L}}(f) = \widetilde{\mathcal{L}}(\operatorname{Ins}(f, n, p))$.

2. Special Sequences in \mathcal{E}_T^2

One can verify the following observations:

- * there exists a finite sequence of elements of \mathcal{E}_{T}^{2} which is special sequence,
- * every finite sequence of elements of \mathcal{E}_T^2 which is special sequence is also one-to-one, unfolded, s.n.c., special, and non trivial,
- * every finite sequence of elements of \mathcal{E}_T^2 which is one-to-one, unfolded, s.n.c., special, and non trivial is also special sequence, and
- * every finite sequence of elements of \mathcal{E}^2_T which is special sequence is also non empty.

Let us mention that there exists a finite sequence of elements of \mathcal{E}_T^2 which is one-to-one, unfolded, s.n.c., special, and non trivial.

We now state the proposition

(27) If len $f \le 2$, then f is unfolded.

Let f be an unfolded finite sequence of elements of \mathcal{E}^2_T and let us consider n. Observe that $f \upharpoonright n$ is unfolded and $f \upharpoonright n$ is unfolded.

One can prove the following proposition

(28) If $p \in \operatorname{rng} f$ and f is unfolded, then f := p is unfolded.

Let f be an unfolded finite sequence of elements of \mathcal{E}_T^2 and let us consider p. One can check that f -: p is unfolded.

The following propositions are true:

- (29) If f is unfolded, then Rev(f) is unfolded.
- (30) If g is unfolded and $\mathcal{L}(p,g_1) \cap \mathcal{L}(g,1) = \{g_1\}$, then $\langle p \rangle \cap g$ is unfolded.
- (31) If f is unfolded and k+1 = len f and $\mathcal{L}(f,k) \cap \mathcal{L}(f_{\text{len } f},p) = \{f_{\text{len } f}\}$, then $f \cap \langle p \rangle$ is unfolded.
- (32) Suppose f is unfolded and g is unfolded and k+1 = len f and $\mathcal{L}(f,k) \cap \mathcal{L}(f_{\text{len } f},g_1) = \{f_{\text{len } f}\}$ and $\mathcal{L}(f_{\text{len } f},g_1) \cap \mathcal{L}(g,1) = \{g_1\}$. Then $f \cap g$ is unfolded.

¹ The proposition (24) has been removed.

- (33) If f is unfolded and $p \in \mathcal{L}(f, n)$, then $\operatorname{Ins}(f, n, p)$ is unfolded.
- (34) If len $f \le 2$, then f is s.n.c..

Let f be a s.n.c. finite sequence of elements of \mathcal{E}_T^2 and let us consider n. Observe that $f \upharpoonright n$ is s.n.c. and $f_{\mid n}$ is s.n.c..

Let f be a s.n.c. finite sequence of elements of \mathcal{E}_T^2 and let us consider p. One can verify that f -: p is s.n.c..

One can prove the following propositions:

- (35) If $p \in \text{rng } f$ and f is s.n.c., then f := p is s.n.c..
- (36) If f is s.n.c., then Rev(f) is s.n.c..
- (37) Suppose that
 - (i) f is s.n.c.,
- (ii) g is s.n.c.,
- (iii) $\widetilde{\mathcal{L}}(f)$ misses $\widetilde{\mathcal{L}}(g)$,
- (iv) for every i such that $1 \le i$ and $i + 2 \le \text{len } f$ holds $\mathcal{L}(f, i)$ misses $\mathcal{L}(f_{\text{len } f}, g_1)$, and
- (v) for every i such that $2 \le i$ and $i+1 \le \text{len } g$ holds $\mathcal{L}(g,i)$ misses $\mathcal{L}(f_{\text{len } f},g_1)$. Then $f \cap g$ is s.n.c..
- (38) If f is unfolded and s.n.c. and $p \in \mathcal{L}(f,n)$ and $p \notin \operatorname{rng} f$, then $\operatorname{Ins}(f,n,p)$ is s.n.c..

Let us observe that $\epsilon_{\text{(the carrier of \mathcal{E}_T^2)}}$ is special.

Next we state two propositions:

- (39) $\langle p \rangle$ is special.
- (40) If $p_1 = q_1$ or $p_2 = q_2$, then $\langle p, q \rangle$ is special.

Let f be a special finite sequence of elements of \mathcal{E}^2_T and let us consider n. Observe that $f \upharpoonright n$ is special and $f \upharpoonright n$ is special.

Next we state the proposition

(41) If $p \in \operatorname{rng} f$ and f is special, then f := p is special.

Let f be a special finite sequence of elements of \mathcal{E}_T^2 and let us consider p. One can check that f -: p is special.

Next we state four propositions:

- (42) If f is special, then Rev(f) is special.
- (44)² If f is special and $p \in \mathcal{L}(f, n)$, then $\operatorname{Ins}(f, n, p)$ is special.
- (45) If $q \in \operatorname{rng} f$ and $1 \neq q \Leftrightarrow f$ and $q \Leftrightarrow f \neq \operatorname{len} f$ and f is unfolded and s.n.c., then $\widetilde{L}(f : q) \cap \widetilde{L}(f : -q) = \{q\}.$
- (46) If $p \neq q$ and if $p_1 = q_1$ or $p_2 = q_2$, then $\langle p, q \rangle$ is special sequence.

A S-sequence in \mathbb{R}^2 is special sequence finite sequence of elements of \mathcal{E}^2_T . We now state several propositions:

- (47) For every S-sequence f in \mathbb{R}^2 holds Rev(f) is special sequence.
- (48) For every S-sequence f in \mathbb{R}^2 such that $i \in \text{dom } f$ holds $f_i \in \widetilde{\mathcal{L}}(f)$.
- (49) If $p \neq q$ and if $p_1 = q_1$ or $p_2 = q_2$, then $\mathcal{L}(p,q)$ is special polygonal arc.

² The proposition (43) has been removed.

- (50) For every S-sequence f in \mathbb{R}^2 such that $p \in \operatorname{rng} f$ and $p \leftrightarrow f \neq 1$ holds f -: p is special sequence.
- (51) For every S-sequence f in \mathbb{R}^2 such that $p \in \operatorname{rng} f$ and $p \leftrightarrow f \neq \operatorname{len} f$ holds f := p is special sequence.
- (52) For every S-sequence f in \mathbb{R}^2 such that $p \in \mathcal{L}(f,i)$ and $p \notin \operatorname{rng} f$ holds $\operatorname{Ins}(f,i,p)$ is special sequence.

3. Special Polygons in \mathcal{E}_T^2

Let us observe that there exists a subset of \mathcal{E}_T^2 which is special polygonal arc.

Next we state the proposition

(53) If P is a special polygonal arc joining p_1 and p_2 , then P is a special polygonal arc joining p_2 and p_1 .

Let us consider p_1 , p_2 and let P be a subset of \mathcal{E}_T^2 . We say that p_1 and p_2 split P if and only if the conditions (Def. 1) are satisfied.

- (Def. 1)(i) $p_1 \neq p_2$, and
 - (ii) there exist S-sequences f_1 , f_2 in \mathbb{R}^2 such that $p_1=(f_1)_1$ and $p_1=(f_2)_1$ and $p_2=(f_1)_{\mathrm{len}\,f_1}$ and $p_2=(f_2)_{\mathrm{len}\,f_2}$ and $\widetilde{\mathcal{L}}(f_1)\cap\widetilde{\mathcal{L}}(f_2)=\{p_1,p_2\}$ and $P=\widetilde{\mathcal{L}}(f_1)\cup\widetilde{\mathcal{L}}(f_2)$.

We now state four propositions:

- (54) If p_1 and p_2 split P, then p_2 and p_1 split P.
- (55) If p_1 and p_2 split P and $q \in P$ and $q \neq p_1$, then p_1 and q split P.
- (56) If p_1 and p_2 split P and $q \in P$ and $q \neq p_2$, then q and p_2 split P.
- (57) If p_1 and p_2 split P and $q_1 \in P$ and $q_2 \in P$ and $q_1 \neq q_2$, then q_1 and q_2 split P.

Let P be a subset of \mathcal{E}_T^2 . Let us observe that P is special polygon if and only if:

(Def. 2) There exist p_1 , p_2 such that p_1 and p_2 split P.

We introduce P is special polygonal as a synonym of P is special polygon.

Let us consider r_1 , r_2 , r'_1 , r'_2 . The functor $[r_1, r_2, r'_1, r'_2]$ yielding a subset of \mathcal{E}_T^2 is defined by the condition (Def. 3).

(Def. 3)
$$[r_1, r_2, r'_1, r'_2] = \{p : p_1 = r_1 \land p_2 \le r'_2 \land p_2 \ge r'_1 \lor p_1 \le r_2 \land p_1 \ge r_1 \land p_2 = r'_2 \lor p_1 \le r_2 \land p_1 \ge r_1 \land p_2 = r'_1 \lor p_1 = r_2 \land p_2 \le r'_2 \land p_2 \ge r'_1 \}.$$

Next we state three propositions:

- (58) If $r_1 < r_2$ and $r_1' < r_2'$, then $[r_1, r_2, r_1', r_2'] = \mathcal{L}([r_1, r_1'], [r_1, r_2']) \cup \mathcal{L}([r_1, r_2'], [r_2, r_2']) \cup \mathcal{L}([r_2, r_1'], [r_1, r_1'])$.
- (59) If $r_1 < r_2$ and $r'_1 < r'_2$, then $[r_1, r_2, r'_1, r'_2]$ is special polygonal.
- (60) $\square_{\mathcal{F}^2} = [0, 1, 0, 1].$

One can check that there exists a subset of \mathcal{E}_T^2 which is special polygonal. The following proposition is true

(61) $\square_{\mathcal{E}^2}$ is special polygonal.

One can check the following observations:

* there exists a subset of \mathcal{E}_T^2 which is special polygonal,

- * every subset of \mathcal{E}^2_T which is special polygonal is also non empty, and
- * every subset of \mathcal{E}_{T}^{2} which is special polygonal is also non trivial.

A special polygon in \mathbb{R}^2 is a special polygonal subset of \mathcal{E}^2_T .

One can prove the following propositions:

- (62) If P is special polygonal arc, then P is compact.
- (63) Every special polygon in \mathbb{R}^2 is compact.
- (64) If *P* is special polygonal, then for all p_1 , p_2 such that $p_1 \neq p_2$ and $p_1 \in P$ and $p_2 \in P$ holds p_1 and p_2 split *P*.
- (65) Suppose P is special polygonal. Let given p_1 , p_2 . Suppose $p_1 \neq p_2$ and $p_1 \in P$ and $p_2 \in P$. Then there exist subsets P_1 , P_2 of \mathcal{E}^2_T such that
 - (i) P_1 is a special polygonal arc joining p_1 and p_2 ,
- (ii) P_2 is a special polygonal arc joining p_1 and p_2 ,
- (iii) $P_1 \cap P_2 = \{p_1, p_2\}$, and
- (iv) $P = P_1 \cup P_2$.

REFERENCES

- [1] Grzegorz Bancerek. The fundamental properties of natural numbers. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/nat_1.html.
- [2] Grzegorz Bancerek. The ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ordinall. html.
- [3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/finseg_1.html.
- [4] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funct_1.html.
- [5] Czesław Byliński. Some properties of restrictions of finite sequences. Journal of Formalized Mathematics, 7, 1995. http://mizar.org/JFM/Vo17/finseq_5.html.
- [6] Agata Darmochwał. Compact spaces. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/compts_1.html.
- [7] Agata Darmochwał. The Euclidean space. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/euclid.html.
- [8] Agata Darmochwał and Yatsuka Nakamura. The topological space \(\mathcal{E}_{\textsfract}^2\). Arcs, line segments and special polygonal arcs. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/topreall.html.
- [9] Krzysztof Hryniewiecki. Basic properties of real numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Voll/real_1.html.
- [10] Jarosław Kotowicz. Functions and finite sequences of real numbers. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/ JFM/Vol5/rfinseq.html.
- [11] Yatsuka Nakamura and Jarosław Kotowicz. Connectedness conditions using polygonal arcs. *Journal of Formalized Mathematics*, 4, 1992. http://mizar.org/JFM/Vol4/topreal4.html.
- [12] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/pre_topo.html.
- [13] Andrzej Trybulec. Tarski Grothendieck set theory. *Journal of Formalized Mathematics*, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [14] Wojciech A. Trybulec. Pigeon hole principle. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/finseq_ 4.html.

Received January 30, 1995

Published January 2, 2004