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The articles [13], [2], [9], [1], [4], [3], [14], [10], [12], [6], [7], [8], [11], and [5] provide the notation
and terminology for this paper.

1. SEGMENTS IN E2
T

For simplicity, we follow the rules:P denotes a subset ofE2
T, f , f1, f2, g denote finite sequences of

elements ofE2
T, p, p1, p2, q, q1, q2 denote points ofE2

T, r1, r2, r ′1, r ′2 denote real numbers, andi, j,
k, n denote natural numbers.

The following propositions are true:

(1) For all real numbersr1, r2, r ′1, r ′2 such that[r1, r2] = [r ′1, r
′
2] holdsr1 = r ′1 andr2 = r ′2.

(2) If i + j = len f , thenL( f , i) = L(Rev( f ), j).

(3) If i +1≤ len( f �n), thenL( f �n, i) = L( f , i).

(4) If n≤ len f and 1≤ i, thenL( f�n, i) = L( f ,n+ i).

(5) If 1≤ i andi +1≤ len f −n, thenL( f�n, i) = L( f ,n+ i).

(6) If i +1≤ len f , thenL( f a g, i) = L( f , i).

(7) If 1≤ i, thenL( f a g, len f + i) = L(g, i).

(8) If f is non empty andg is non empty, thenL( f a g, len f ) = L( flen f ,g1).

(9) If i +1≤ len( f −: p), thenL( f −: p, i) = L( f , i).

(10) If p∈ rng f , thenL( f :− p, i +1) = L( f , i + p " f ).

(11) L̃(ε(the carrier ofE2
T)) = /0.

(12) L̃(〈p〉) = /0.

(13) If p∈ L̃( f ), then there existsi such that 1≤ i andi +1≤ len f andp∈ L( f , i).

(14) If p∈ L̃( f ), then there existsi such that 1≤ i andi +1≤ len f andp∈ L( fi , fi+1).

(15) If 1≤ i andi +1≤ len f andp∈ L( fi , fi+1), thenp∈ L̃( f ).
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(16) If 1≤ i andi +1≤ len f , thenL( fi , fi+1)⊆ L̃( f ).

(17) If p∈ L( f , i), thenp∈ L̃( f ).

(18) If len f ≥ 2, then rngf ⊆ L̃( f ).

(19) If f is non empty, theñL( f a 〈p〉) = L̃( f )∪L( flen f , p).

(20) If f is non empty, theñL(〈p〉a f ) = L(p, f1)∪ L̃( f ).

(21) L̃(〈p,q〉) = L(p,q).

(22) L̃( f ) = L̃(Rev( f )).

(23) If f1 is non empty andf2 is non empty, theñL( f1 a f2) = L̃( f1)∪L(( f1)len f1,( f2)1)∪
L̃( f2).

(25)1 If q∈ rng f , thenL̃( f ) = L̃( f −: q)∪ L̃( f :−q).

(26) If p∈ L( f ,n), thenL̃( f ) = L̃(Ins( f ,n, p)).

2. SPECIAL SEQUENCES INE2
T

One can verify the following observations:

∗ there exists a finite sequence of elements ofE2
T which is special sequence,

∗ every finite sequence of elements ofE2
T which is special sequence is also one-to-one, un-

folded, s.n.c., special, and non trivial,

∗ every finite sequence of elements ofE2
T which is one-to-one, unfolded, s.n.c., special, and

non trivial is also special sequence, and

∗ every finite sequence of elements ofE2
T which is special sequence is also non empty.

Let us mention that there exists a finite sequence of elements ofE2
T which is one-to-one, un-

folded, s.n.c., special, and non trivial.
We now state the proposition

(27) If len f ≤ 2, then f is unfolded.

Let f be an unfolded finite sequence of elements ofE2
T and let us considern. Observe thatf �n

is unfolded andf�n is unfolded.
One can prove the following proposition

(28) If p∈ rng f and f is unfolded, thenf :− p is unfolded.

Let f be an unfolded finite sequence of elements ofE2
T and let us considerp. One can check

that f −: p is unfolded.
The following propositions are true:

(29) If f is unfolded, then Rev( f ) is unfolded.

(30) If g is unfolded andL(p,g1)∩L(g,1) = {g1}, then〈p〉a g is unfolded.

(31) If f is unfolded andk + 1 = len f and L( f ,k)∩L( flen f , p) = { flen f }, then f a 〈p〉 is
unfolded.

(32) Supposef is unfolded andg is unfolded andk+ 1 = len f andL( f ,k)∩L( flen f ,g1) =
{ flen f } andL( flen f ,g1)∩L(g,1) = {g1}. Then f a g is unfolded.

1 The proposition (24) has been removed.
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(33) If f is unfolded andp∈ L( f ,n), then Ins( f ,n, p) is unfolded.

(34) If len f ≤ 2, then f is s.n.c..

Let f be a s.n.c. finite sequence of elements ofE2
T and let us considern. Observe thatf �n is

s.n.c. andf�n is s.n.c..
Let f be a s.n.c. finite sequence of elements ofE2

T and let us considerp. One can verify that
f −: p is s.n.c..

One can prove the following propositions:

(35) If p∈ rng f and f is s.n.c., thenf :− p is s.n.c..

(36) If f is s.n.c., then Rev( f ) is s.n.c..

(37) Suppose that

(i) f is s.n.c.,

(ii) g is s.n.c.,

(iii) L̃( f ) misses̃L(g),

(iv) for every i such that 1≤ i andi +2≤ len f holdsL( f , i) missesL( flen f ,g1), and

(v) for everyi such that 2≤ i andi +1≤ leng holdsL(g, i) missesL( flen f ,g1).

Then f a g is s.n.c..

(38) If f is unfolded and s.n.c. andp∈ L( f ,n) andp /∈ rng f , then Ins( f ,n, p) is s.n.c..

Let us observe thatε(the carrier ofE2
T) is special.

Next we state two propositions:

(39) 〈p〉 is special.

(40) If p1 = q1 or p2 = q2, then〈p,q〉 is special.

Let f be a special finite sequence of elements ofE2
T and let us considern. Observe thatf �n is

special andf�n is special.
Next we state the proposition

(41) If p∈ rng f and f is special, thenf :− p is special.

Let f be a special finite sequence of elements ofE2
T and let us considerp. One can check that

f −: p is special.
Next we state four propositions:

(42) If f is special, then Rev( f ) is special.

(44)2 If f is special andp∈ L( f ,n), then Ins( f ,n, p) is special.

(45) If q∈ rng f and 16= q " f andq " f 6= len f and f is unfolded and s.n.c., theñL( f −:
q)∩ L̃( f :−q) = {q}.

(46) If p 6= q and if p1 = q1 or p2 = q2, then〈p,q〉 is special sequence.

A S-sequence inR2 is special sequence finite sequence of elements ofE2
T.

We now state several propositions:

(47) For every S-sequencef in R2 holds Rev( f ) is special sequence.

(48) For every S-sequencef in R2 such thati ∈ dom f holds fi ∈ L̃( f ).

(49) If p 6= q and if p1 = q1 or p2 = q2, thenL(p,q) is special polygonal arc.

2 The proposition (43) has been removed.
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(50) For every S-sequencef in R2 such thatp ∈ rng f and p " f 6= 1 holds f −: p is special
sequence.

(51) For every S-sequencef in R2 such thatp∈ rng f andp " f 6= len f holds f :− p is special
sequence.

(52) For every S-sequencef in R2 such thatp∈L( f , i) andp /∈ rng f holds Ins( f , i, p) is special
sequence.

3. SPECIAL POLYGONS IN E2
T

Let us observe that there exists a subset ofE2
T which is special polygonal arc.

Next we state the proposition

(53) If P is a special polygonal arc joiningp1 andp2, thenP is a special polygonal arc joining
p2 andp1.

Let us considerp1, p2 and letP be a subset ofE2
T. We say thatp1 andp2 split P if and only if

the conditions (Def. 1) are satisfied.

(Def. 1)(i) p1 6= p2, and

(ii) there exist S-sequencesf1, f2 in R2 such thatp1 = ( f1)1 andp1 = ( f2)1 andp2 = ( f1)len f1

andp2 = ( f2)len f2 andL̃( f1)∩ L̃( f2) = {p1, p2} andP = L̃( f1)∪ L̃( f2).

We now state four propositions:

(54) If p1 andp2 split P, thenp2 andp1 split P.

(55) If p1 andp2 split P andq∈ P andq 6= p1, thenp1 andq split P.

(56) If p1 andp2 split P andq∈ P andq 6= p2, thenq andp2 split P.

(57) If p1 andp2 split P andq1 ∈ P andq2 ∈ P andq1 6= q2, thenq1 andq2 split P.

Let P be a subset ofE2
T. Let us observe thatP is special polygon if and only if:

(Def. 2) There existp1, p2 such thatp1 andp2 split P.

We introduceP is special polygonal as a synonym ofP is special polygon.
Let us considerr1, r2, r ′1, r ′2. The functor[r1, r2, r ′1, r

′
2] yielding a subset ofE2

T is defined by the
condition (Def. 3).

(Def. 3) [r1, r2, r ′1, r
′
2] = {p : p1 = r1 ∧ p2 ≤ r ′2 ∧ p2 ≥ r ′1 ∨ p1 ≤ r2 ∧ p1 ≥ r1 ∧ p2 = r ′2 ∨ p1 ≤

r2 ∧ p1 ≥ r1 ∧ p2 = r ′1 ∨ p1 = r2 ∧ p2 ≤ r ′2 ∧ p2 ≥ r ′1}.

Next we state three propositions:

(58) If r1 < r2 andr ′1 < r ′2, then[r1, r2, r ′1, r
′
2] = L([r1, r ′1], [r1, r ′2])∪L([r1, r ′2], [r2, r ′2])∪ (L([r2,

r ′2], [r2, r ′1])∪L([r2, r ′1], [r1, r ′1])).

(59) If r1 < r2 andr ′1 < r ′2, then[r1, r2, r ′1, r
′
2] is special polygonal.

(60) �E2 = [0,1,0,1].

One can check that there exists a subset ofE2
T which is special polygonal.

The following proposition is true

(61) �E2 is special polygonal.

One can check the following observations:

∗ there exists a subset ofE2
T which is special polygonal,
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∗ every subset ofE2
T which is special polygonal is also non empty, and

∗ every subset ofE2
T which is special polygonal is also non trivial.

A special polygon inR2 is a special polygonal subset ofE2
T.

One can prove the following propositions:

(62) If P is special polygonal arc, thenP is compact.

(63) Every special polygon inR2 is compact.

(64) If P is special polygonal, then for allp1, p2 such thatp1 6= p2 andp1 ∈ P andp2 ∈ P holds
p1 andp2 split P.

(65) SupposeP is special polygonal. Let givenp1, p2. Supposep1 6= p2 andp1 ∈ P andp2 ∈ P.
Then there exist subsetsP1, P2 of E2

T such that

(i) P1 is a special polygonal arc joiningp1 andp2,

(ii) P2 is a special polygonal arc joiningp1 andp2,

(iii) P1∩P2 = {p1, p2}, and

(iv) P = P1∪P2.
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[4] Czesław Bylínski. Functions and their basic properties.Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/
funct_1.html.
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