The Formalization of Simple Graphs # Yozo Toda Information Processing Center Chiba University **Summary.** A graph is simple when - it is non-directed, - there is at most one edge between two vertices, - there is no loop of length one. A formalization of simple graphs is given from scratch. There is already an article [10], dealing with the similar subject. It is not used as a starting-point, because [10] formalizes directed non-empty graphs. Given a set of vertices, edge is defined as an (unordered) pair of different two vertices and graph as a pair of a set of vertices and a set of edges. The following concepts are introduced: - simple graph structure, - · the set of all simple graphs, - equality relation on graphs. - the notion of degrees of vertices; the number of edges connected to, or the number of adjacent vertices, - the notion of subgraphs, - path, cycle, - · complete and bipartite complete graphs, Theorems proved in this articles include: - the set of simple graphs satisfies a certain minimality condition, - equivalence between two notions of degrees. MML Identifier: SGRAPH1. $WWW: \verb|http://mizar.org/JFM/Vol6/sgraph1.html||$ The articles [12], [7], [15], [13], [2], [1], [4], [5], [6], [3], [9], [8], [14], and [11] provide the notation and terminology for this paper. # 1. PRELIMINARIES Let m, n be natural numbers. The functor $[m,n]_{\mathbb{N}}$ yields a subset of \mathbb{N} and is defined by: (Def. 1) $[m,n]_{\mathbb{N}} = \{i; i \text{ ranges over natural numbers: } m \leq i \land i \leq n\}.$ Let m, n be natural numbers. Observe that $[m, n]_{\mathbb{N}}$ is finite. Next we state several propositions: - (2)¹ Let m, n be natural numbers and e be a set. Then $e \in [m,n]_{\mathbb{N}}$ if and only if there exists a natural number i such that e = i and $m \le i$ and $i \le n$. - (3) For all natural numbers m, n, k holds $k \in [m, n]_{\mathbb{N}}$ iff $m \le k$ and $k \le n$. 1 ¹ The proposition (1) has been removed. - (4) For every natural number *n* holds $[1, n]_{\mathbb{N}} = \operatorname{Seg} n$. - (5) For all natural numbers m, n such that $1 \le m$ holds $[m, n]_{\mathbb{N}} \subseteq \operatorname{Seg} n$. - (6) For all natural numbers k, m, n such that k < m holds Seg k misses $[m, n]_{\mathbb{N}}$. - (7) For all natural numbers m, n such that n < m holds $[m, n]_{\mathbb{N}} = \emptyset$. Let *A* be a set. The functor TwoElementSets(*A*) yields a set and is defined as follows: (Def. 4)² TwoElementSets(A) = $\{z; z \text{ ranges over finite elements of } 2^A : \operatorname{card} z = 2\}$. One can prove the following propositions: - (9)³ For every set A and for every set e holds $e \in \text{TwoElementSets}(A)$ iff there exists a finite subset z of A such that e = z and card z = 2. - (10) Let A be a set and e be a set. Then $e \in \text{TwoElementSets}(A)$ if and only if the following conditions are satisfied: - (i) e is a finite subset of A, and - (ii) there exist sets x, y such that $x \in A$ and $y \in A$ and $x \neq y$ and $e = \{x, y\}$. - (11) For every set *A* holds TwoElementSets(*A*) $\subseteq 2^A$. - (12) For every set A and for all sets e_1 , e_2 such that $\{e_1, e_2\} \in \text{TwoElementSets}(A)$ holds $e_1 \in A$ and $e_2 \in A$ and $e_1 \neq e_2$. - (13) TwoElementSets(\emptyset) = \emptyset . - (14) For all sets t, u such that $t \subseteq u$ holds TwoElementSets $(t) \subseteq$ TwoElementSets(u). - (15) For every finite set A holds TwoElementSets(A) is finite. - (16) For every non trivial set A holds TwoElementSets(A) is non empty. - (17) For every set *a* holds TwoElementSets($\{a\}$) = \emptyset . Let X be an empty set. Observe that every subset of X is empty. In the sequel X denotes a set. # 2. SIMPLE GRAPHS We consider simple graph structures as extensions of 1-sorted structure as systems \langle a carrier, SEdges \rangle , where the carrier is a set and the SEdges constitute a subset of TwoElementSets(the carrier). Let X be a set. The functor SimpleGraphs(X) yields a set and is defined as follows: (Def. 6)⁴ SimpleGraphs(X) = { $\langle v, e \rangle$: v ranges over finite subsets of X, e ranges over finite subsets of TwoElementSets(v)}. We now state the proposition $(19)^5 \quad \langle \emptyset, \emptyset_{\text{TwoElementSets}(\emptyset)} \rangle \in \text{SimpleGraphs}(X).$ Let X be a set. Observe that SimpleGraphs(X) is non empty. Let *X* be a set. A strict simple graph structure is said to be a simple graph of *X* if: (Def. 7) It is an element of SimpleGraphs(X). The following proposition is true (21)⁶ Let g be a set. Then $g \in \text{SimpleGraphs}(X)$ if and only if there exists a finite subset v of X and there exists a finite subset e of TwoElementSets(v) such that $g = \langle v, e \rangle$. ² The definitions (Def. 2) and (Def. 3) have been removed. ³ The proposition (8) has been removed. ⁴ The definition (Def. 5) has been removed. ⁵ The proposition (18) has been removed. ⁶ The proposition (20) has been removed. #### 3. EQUALITY RELATION ON SIMPLE GRAPHS We now state four propositions: - (23)⁷ For every simple graph g of X holds the carrier of $g \subseteq X$ and the SEdges of $g \subseteq X$ TwoElementSets(the carrier of g). - (25)⁸ Let g be a simple graph of X and e be a set. Suppose $e \in$ the SEdges of g. Then there exist sets v_1, v_2 such that $v_1 \in$ the carrier of g and $v_2 \in$ the carrier of g and $v_1 \neq v_2$ and $e = \{v_1, v_2\}$. - (26) Let g be a simple graph of X and v_1 , v_2 be sets. Suppose $\{v_1, v_2\} \in$ the SEdges of g. Then $v_1 \in$ the carrier of g and $v_2 \in$ the carrier of g and $v_1 \neq v_2$. - (27) Let g be a simple graph of X. Then - (i) the carrier of g is a finite subset of X, and - (ii) the SEdges of g are a finite subset of TwoElementSets(the carrier of g). Let us consider X and let G, G' be simple graphs of X. We say that G is isomorphic to G' if and only if the condition (Def. 8) is satisfied. - (Def. 8) There exists a function F_1 from the carrier of G into the carrier of G' such that - (i) F_1 is bijective, and - (ii) for all elements v_1 , v_2 of G holds $\{v_1, v_2\} \in \text{the SEdges of } G$ iff $\{F_1(v_1), F_1(v_2)\} \in \text{the SEdges of } G$. #### 4. Properties of Simple Graphs The scheme IndSimpleGraphs0 deals with a set $\mathcal A$ and a unary predicate $\mathcal P$, and states that: For every set G such that $G \in SimpleGraphs(\mathcal A)$ holds $\mathcal P[G]$ provided the following conditions are met: - $\mathcal{P}[\langle \emptyset, \emptyset_{\text{TwoElementSets}(\emptyset)} \rangle],$ - Let g be a simple graph of $\mathcal A$ and v be a set. Suppose $g \in \text{SimpleGraphs}(\mathcal A)$ and $\mathcal P[g]$ and $v \in \mathcal A$ and $v \notin \text{the carrier of } g$. Then $\mathcal P[\langle (\text{the carrier of } g) \cup \{v\}, \emptyset_{\text{TwoElementSets}((\text{the carrier of } g) \cup \{v\})} \rangle]$, and - Let g be a simple graph of \mathcal{A} and e be a set. Suppose $\mathcal{P}[g]$ and $e \in \mathsf{TwoElementSets}$ (the carrier of g) and $e \notin \mathsf{the SEdges}$ of g. Then there exists a subset s_1 of TwoElementSets(the carrier of g) such that $s_1 = \mathsf{(the SEdges of } g) \cup \{e\}$ and $\mathcal{P}[\langle \mathsf{the carrier of } g, s_1 \rangle]$. We now state three propositions: - (28) Let g be a simple graph of X. Then $g = \langle \emptyset, \emptyset_{\text{TwoElementSets}(\emptyset)} \rangle$ or there exists a set v and there exists a subset e of TwoElementSets(v) such that v is non empty and $g = \langle v, e \rangle$. - (30)⁹ Let V be a subset of X, E be a subset of TwoElementSets(V), n be a set, and E_1 be a finite subset of TwoElementSets($V \cup \{n\}$). If $\langle V, E \rangle \in \text{SimpleGraphs}(X)$ and $n \in X$ and $n \notin V$, then $\langle V \cup \{n\}, E_1 \rangle \in \text{SimpleGraphs}(X)$. - (31) Let V be a subset of X, E be a subset of TwoElementSets(V), and v_1 , v_2 be sets. Suppose $v_1 \in V$ and $v_2 \in V$ and $v_1 \neq v_2$ and $\langle V, E \rangle \in \text{SimpleGraphs}(X)$. Then there exists a finite subset v_3 of TwoElementSets(V) such that $v_3 = E \cup \{\{v_1, v_2\}\}$ and $\langle V, v_3 \rangle \in \text{SimpleGraphs}(X)$. Let X be a set and let G_1 be a set. We say that G_1 is a set of simple graphs of X if and only if the conditions (Def. 9) are satisfied. ⁷ The proposition (22) has been removed. ⁸ The proposition (24) has been removed. ⁹ The proposition (29) has been removed. - (Def. 9)(i) $\langle \emptyset, \emptyset_{\text{TwoElementSets}(\emptyset)} \rangle \in G_1$, - (ii) for every subset V of X and for every subset E of TwoElementSets(V) and for every set n and for every finite subset E_1 of TwoElementSets $(V \cup \{n\})$ such that $\langle V, E \rangle \in G_1$ and $n \in X$ and $n \notin V$ holds $\langle V \cup \{n\}, E_1 \rangle \in G_1$, and - (iii) for every subset V of X and for every subset E of TwoElementSets(V) and for all sets v_1 , v_2 such that $\langle V, E \rangle \in G_1$ and $v_1 \in V$ and $v_2 \in V$ and $v_1 \neq v_2$ and $\{v_1, v_2\} \notin E$ there exists a finite subset v_3 of TwoElementSets(V) such that $v_3 = E \cup \{\{v_1, v_2\}\}$ and $\langle V, v_3 \rangle \in G_1$. One can prove the following propositions: - $(35)^{10}$ SimpleGraphs(X) is a set of simple graphs of X. - (36) For every set O_1 such that O_1 is a set of simple graphs of X holds SimpleGraphs $(X) \subseteq O_1$. - (37) SimpleGraphs(X) is a set of simple graphs of X and for every set O_1 such that O_1 is a set of simple graphs of X holds SimpleGraphs(X) $\subseteq O_1$. ## 5. Subgraphs Let X be a set and let G be a simple graph of X. A simple graph of X is said to be a subgraph of G if (Def. 10) The carrier of it \subseteq the carrier of G and the SEdges of it \subseteq the SEdges of G. ### 6. Degree of Vertices Let X be a set, let G be a simple graph of X, and let v be a set. The functor degree (G, v) yields a natural number and is defined by: (Def. 11) There exists a finite set X such that for every set z holds $z \in X$ iff $z \in X$ the SEdges of G and $v \in Z$ and degree $(G, v) = \operatorname{card} X$. The following propositions are true: - (39)¹¹ Let X be a non empty set, G be a simple graph of X, and v be a set. Then there exists a finite set w_1 such that $w_1 = \{w; w \text{ ranges over elements of } X : w \in \text{the carrier of } G \land \{v, w\} \in \text{the SEdges of } G\}$ and degree $(G, v) = \text{card } w_1$. - (40) Let *X* be a non empty set, *g* be a simple graph of *X*, and ν be a set. Suppose $\nu \in$ the carrier of *g*. Then there exists a finite set V_1 such that $V_1 =$ the carrier of *g* and degree(g, ν) < card V_1 . - (41) Let g be a simple graph of X and v, e be sets. If $v \in$ the carrier of g and $e \in$ the SEdges of g and degree(g, v) = 0, then $v \notin e$. - (42) Let g be a simple graph of X, v be a set, and v_4 be a finite set. Suppose v_4 = the carrier of g and $v \in v_4$ and $1 + \text{degree}(g, v) = \text{card}\,v_4$. Let w be an element of v_4 . If $v \neq w$, then there exists a set e such that $e \in \text{the SEdges of } g$ and $e = \{v, w\}$. #### 7. PATH AND CYCLE Let X be a set, let g be a simple graph of X, let v_1 , v_2 be elements of g, and let p be a finite sequence of elements of the carrier of g. We say that p is a path of v_1 and v_2 if and only if the conditions (Def. 12) are satisfied. ¹⁰ The propositions (32)–(34) have been removed. ¹¹ The proposition (38) has been removed. - (Def. 12)(i) $p(1) = v_1$, - (ii) $p(\operatorname{len} p) = v_2$, - (iii) for every natural number i such that $1 \le i$ and $i < \text{len } p \text{ holds } \{p(i), p(i+1)\} \in \text{the SEdges of } g$, and - (iv) for all natural numbers i, j such that $1 \le i$ and i < len p and i < j and j < len p holds $p(i) \ne p(j)$ and $\{p(i), p(i+1)\} \ne \{p(j), p(j+1)\}$. Let X be a set, let g be a simple graph of X, and let v_1 , v_2 be elements of the carrier of g. The functor Paths (v_1, v_2) yields a subset of (the carrier of g)* and is defined as follows: (Def. 13) Paths $(v_1, v_2) = \{s_2; s_2 \text{ ranges over elements of (the carrier of } g)^* : s_2 \text{ is a path of } v_1 \text{ and } v_2\}.$ The following two propositions are true: - (44)¹² Let g be a simple graph of X, v_1 , v_2 be elements of the carrier of g, and e be a set. Then $e \in \text{Paths}(v_1, v_2)$ if and only if there exists an element s_2 of (the carrier of g)* such that $e = s_2$ and s_2 is a path of v_1 and v_2 . - (45) Let g be a simple graph of X, v_1 , v_2 be elements of the carrier of g, and e be an element of (the carrier of g)*. If e is a path of v_1 and v_2 , then $e \in \text{Paths}(v_1, v_2)$. Let X be a set, let g be a simple graph of X, and let p be a set. We say that p is a cycle of g if and only if: (Def. 14) There exists an element v of the carrier of g such that $p \in \text{Paths}(v, v)$. # 8. Some Famous Graphs Let n, m be natural numbers. The functor $K_{m,n}$ yielding a simple graph of \mathbb{N} is defined by the condition (Def. 16). (Def. 16)¹³ There exists a subset e_3 of TwoElementSets(Seg(m+n)) such that $e_3 = \{\{i,j\}; i \text{ ranges over elements of } \mathbb{N}$: $i \in \text{Seg}(m+n)$ and $K_{m,n} = \langle \text{Seg}(m+n), e_3 \rangle$. Let n be a natural number. The functor K_n yielding a simple graph of \mathbb{N} is defined by the condition (Def. 17). (Def. 17) There exists a finite subset e_3 of TwoElementSets(Seg n) such that $e_3 = \{\{i, j\}; i \text{ ranges} \text{ over elements of } \mathbb{N}, j \text{ ranges over elements of } \mathbb{N}: i \in \text{Seg } n \land j \in \text{Seg } n \land i \neq j\}$ and $K_n = \langle \text{Seg } n, e_3 \rangle$. The simple graph TriangleGraph of \mathbb{N} is defined by: (Def. 18) TriangleGraph = K_3 . The following propositions are true: - (46) There exists a subset e_3 of TwoElementSets(Seg 3) such that $e_3 = \{\{1,2\},\{2,3\},\{3,1\}\}\}$ and TriangleGraph = $\langle \text{Seg } 3, e_3 \rangle$. - (47) The carrier of TriangleGraph = Seg 3 and the SEdges of TriangleGraph = $\{\{1,2\},\{2,3\},\{3,1\}\}$. - (48) $\{1,2\} \in$ the SEdges of TriangleGraph and $\{2,3\} \in$ the SEdges of TriangleGraph and $\{3,1\} \in$ the SEdges of TriangleGraph. - (49) $\langle 1 \rangle \cap \langle 2 \rangle \cap \langle 3 \rangle \cap \langle 1 \rangle$ is a cycle of TriangleGraph. ¹² The proposition (43) has been removed. ¹³ The definition (Def. 15) has been removed. #### REFERENCES - [1] Grzegorz Bancerek. Cardinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/card_1.html. - [2] Grzegorz Bancerek. The fundamental properties of natural numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/nat_1.html. - [3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/finseg_1.html. - [4] Józef Białas. Group and field definitions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/realset1. html. - [5] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_1.html. - [6] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_ - [7] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/zfmisc_1.html. - [8] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/finseq_2.html. - [9] Agata Darmochwał. Finite sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/finset_1.html. - [10] Krzysztof Hryniewiecki. Graphs. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/graph_1.html. - [11] Andrzej Trybulec. Semilattice operations on finite subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/setwiseo.html. - [12] Andrzej Trybulec. Tarski Grothendieck set theory. *Journal of Formalized Mathematics*, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html. - [13] Andrzej Trybulec. Subsets of real numbers. Journal of Formalized Mathematics, Addenda, 2003. http://mizar.org/JFM/Addenda/numbers.html. - [14] Andrzej Trybulec and Agata Darmochwał. Boolean domains. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/finsub_1.html. - [15] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html. Received September 8, 1994 Published January 2, 2004