On the Composition of Non-parahalting Macro Instructions

Piotr Rudnicki University of Alberta Edmonton

Summary. An attempt to use the Times macro, [2], was the origin of writing this article. First, the semantics of the macro composition as developed in [26], [3], [4] is extended to the case of macro instructions which are not always halting. Next, several functors extending the memory handling for SCM_{FSA} , [19], are defined; they are convenient when writing more complicated programs. After this preparatory work, we define a macro instruction computing the Fibonacci sequence (see the SCM program computing the same sequence in [9]) and prove its correctness. The semantics of the Times macro is given in [2] only for the case when the iterated instruction is parahalting; this is remedied in [18].

MML Identifier: SFMASTR1.

WWW: http://mizar.org/JFM/Vol10/sfmastr1.html

The articles [22], [21], [13], [28], [23], [15], [5], [6], [29], [11], [12], [14], [10], [16], [8], [17], [24], [7], [20], [27], [25], [26], [3], [19], [4], [1], and [2] provide the notation and terminology for this paper.

1. GOOD INSTRUCTIONS AND GOOD MACRO INSTRUCTION

Let i be an instruction of SCM_{FSA} . We say that i is good if and only if:

(Def. 1) Macro(i) is good.

Let a be a read-write integer location and let b be an integer location. One can verify the following observations:

- * a := b is good,
- * AddTo(a,b) is good,
- * SubFrom(a, b) is good, and
- * MultBy(a,b) is good.

Let us observe that there exists an instruction of SCM_{FSA} which is good and parahalting. Let a, b be read-write integer locations. Observe that Divide(a,b) is good.

Let l be an instruction-location of SCM_{FSA} . Observe that goto l is good.

Let a be an integer location and let l be an instruction-location of **SCM**_{FSA}. One can verify that if a = 0 goto l is good and if a > 0 goto l is good.

Let a be an integer location, let f be a finite sequence location, and let b be a read-write integer location. Note that $b := f_a$ is good.

Let f be a finite sequence location and let b be a read-write integer location. One can check that b:=len f is good.

Let f be a finite sequence location and let a be an integer location. Note that $f := \langle 0, \dots, 0 \rangle$ is

good. Let b be an integer location. Note that $f_a := b$ is good.

Let us observe that there exists an instruction of **SCM**_{FSA} which is good.

Let i be a good instruction of SCM_{FSA} . Observe that Macro(i) is good.

Let i, j be good instructions of **SCM**_{FSA}. One can verify that i; j is good.

Let i be a good instruction of \mathbf{SCM}_{FSA} and let I be a good macro instruction. One can check that i; I is good and I; i is good.

Let a, b be read-write integer locations. Note that swap(a, b) is good.

Let I be a good macro instruction and let a be a read-write integer location. Note that Times(a, I) is good.

We now state the proposition

(1) For every integer location a and for every macro instruction I such that $a \notin \text{UsedIntLoc}(I)$ holds I does not destroy a.

2. Composition of Non-parahalting Macro Instructions

For simplicity, we adopt the following rules: s, S are states of \mathbf{SCM}_{FSA} , I, J are macro instructions, I_1 is a good macro instruction, i is a good parahalting instruction of \mathbf{SCM}_{FSA} , j is a parahalting instruction of \mathbf{SCM}_{FSA} , a, b are integer locations, and f is a finite sequence location.

One can prove the following propositions:

- (2) $(I+\cdot \text{Start-At}(\text{insloc}(0))) \upharpoonright D = \emptyset$, where $D = \text{Int-Locations} \cup \text{FinSeq-Locations}$.
- (3) If I is halting on Initialize(S) and closed on Initialize(S) and J is closed on IExec(I, S), then I; J is closed on Initialize(S).
- (4) If I is halting on Initialize(S) and J is halting on IExec(I, S) and I is closed on Initialize(S) and J is closed on IExec(I, S), then I; J is halting on Initialize(S).
- (5) Suppose I is closed on s and $I+\cdot \operatorname{Start-At}(\operatorname{insloc}(0))\subseteq s$ and s is halting. Let m be a natural number. Suppose $m \leq \operatorname{LifeSpan}(s)$. Then $(\operatorname{Computation}(s))(m)$ and $(\operatorname{Computation}(s+\cdot(I;J)))(m)$ are equal outside the instruction locations of $\operatorname{\mathbf{SCM}}_{\operatorname{FSA}}$.
- (6) Suppose I_1 is halting on $\operatorname{Initialize}(s)$ and J is halting on $\operatorname{IExec}(I_1,s)$ and I_1 is closed on $\operatorname{Initialize}(s)$ and J is closed on $\operatorname{IExec}(I_1,s)$. Then $\operatorname{LifeSpan}(s+\operatorname{Initialized}(I_1;J)) = \operatorname{LifeSpan}(s+\operatorname{Initialized}(I_1)) + 1 + \operatorname{LifeSpan}(\operatorname{Result}(s+\operatorname{Initialized}(I_1)) + \operatorname{Initialized}(J))$.
- (7) Suppose I_1 is halting on Initialize(s) and J is halting on IExec(I_1, s) and I_1 is closed on Initialize(s) and J is closed on IExec(I_1, s). Then IExec($I_1; J, s$) = IExec(J, IExec(I_1, s))+·Start-At($IC_{IExec(J, IExec(I_1, s))}$ + card I_1).
- (8) Suppose that
- (i) I_1 is parahalting, halting on Initialize(s), and closed on Initialize(s), and
- (ii) J is parahalting, halting on $\text{IExec}(I_1, s)$, and closed on $\text{IExec}(I_1, s)$. Then $(\text{IExec}(I_1; J, s))(a) = (\text{IExec}(J, \text{IExec}(I_1, s)))(a)$.
- (9) Suppose that
- (i) I_1 is parahalting, halting on Initialize(s), and closed on Initialize(s), and
- (ii) J is parahalting, halting on $\text{IExec}(I_1, s)$, and closed on $\text{IExec}(I_1, s)$. Then $(\text{IExec}(I_1; J, s))(f) = (\text{IExec}(J, \text{IExec}(I_1, s)))(f)$.

- (10) Suppose that
 - (i) I_1 is parahalting, halting on Initialize(s), and closed on Initialize(s), and
- (ii) J is parahalting, halting on $\text{IExec}(I_1, s)$, and closed on $\text{IExec}(I_1, s)$. Then $\text{IExec}(I_1; J, s) \upharpoonright D = \text{IExec}(J, \text{IExec}(I_1, s)) \upharpoonright D$, where $D = \text{Int-Locations} \cup \text{FinSeq-Locations}$.
- (11) If I_1 is parahalting, closed on Initialize(s), and halting on Initialize(s), then Initialize(IExec(I_1, s)) $D = IExec(I_1, s)D$, where $D = Int-Locations \cup FinSeq-Locations$.
- (12) If I_1 is parahalting, halting on Initialize(s), and closed on Initialize(s), then $(\text{IExec}(I_1; j, s))(a) = (\text{Exec}(j, \text{IExec}(I_1, s)))(a)$.
- (13) If I_1 is parahalting, halting on Initialize(s), and closed on Initialize(s), then $(\text{IExec}(I_1; j, s))(f) = (\text{Exec}(j, \text{IExec}(I_1, s)))(f)$.
- (14) If I_1 is parahalting, halting on Initialize(s), and closed on Initialize(s), then $\text{IExec}(I_1; j, s) \upharpoonright D = \text{Exec}(j, \text{IExec}(I_1, s)) \upharpoonright D$, where $D = \text{Int-Locations} \cup \text{FinSeq-Locations}$.
- (15) If J is parahalting, halting on Exec(i, Initialize(s)), and closed on Exec(i, Initialize(s)), then (IExec(i; J, s))(a) = (IExec(J, Exec(i, Initialize(s))))(a).
- (16) If J is parahalting, halting on Exec(i, Initialize(s)), and closed on Exec(i, Initialize(s)), then (IExec(i; J, s))(f) = (IExec(J, Exec(i, Initialize(s))))(f).
- (17) If *J* is parahalting, halting on Exec(i, Initialize(s)), and closed on Exec(i, Initialize(s)), then $\text{IExec}(i; J, s) \upharpoonright D = \text{IExec}(J, \text{Exec}(i, \text{Initialize}(s))) \upharpoonright D$, where $D = \text{Int-Locations} \cup \text{FinSeq-Locations}$.

3. MEMORY ALLOCATION

In the sequel *L* is a finite subset of Int-Locations and *m*, *n* are natural numbers.

Let d be an integer location. Then $\{d\}$ is a subset of Int-Locations. Let e be an integer location. Then $\{d,e\}$ is a subset of Int-Locations. Let f be an integer location. Then $\{d,e,f\}$ is a subset of Int-Locations. Let g be an integer location. Then $\{d,e,f,g\}$ is a subset of Int-Locations.

Let L be a finite subset of Int-Locations. The functor RWNotIn-seqL yields a function from \mathbb{N} into $2^{\mathbb{N}}$ and is defined by the conditions (Def. 2).

- (Def. 2)(i) (RWNotIn-seq L)(0) = $\{k; k \text{ ranges over natural numbers: intloc}(k) \notin L \land k \neq 0\}$,
 - (ii) for every natural number i and for every non empty subset s_1 of \mathbb{N} such that $(\text{RWNotIn-seq }L)(i) = s_1 \text{ holds } (\text{RWNotIn-seq }L)(i+1) = s_1 \setminus \{\min s_1\}, \text{ and } \{\min s_1\}, \text{ holds } \{\min s$
 - (iii) for every natural number i holds (RWNotIn-seqL)(i) is infinite.

Let L be a finite subset of Int-Locations and let n be a natural number. Note that (RWNotIn-seqL)(n) is non empty.

Next we state three propositions:

- (18) $0 \notin (RWNotIn\text{-seq}L)(n)$ and for every m such that $m \in (RWNotIn\text{-seq}L)(n)$ holds $intloc(m) \notin L$.
- (19) $\min(\text{RWNotIn-seq}L)(n) < \min(\text{RWNotIn-seq}L)(n+1).$
- (20) If n < m, then $\min(\text{RWNotIn-seq}L)(n) < \min(\text{RWNotIn-seq}L)(m)$.

Let n be a natural number and let L be a finite subset of Int-Locations. The functor nth-RWNotIn(L) yields an integer location and is defined by:

(Def. 3) n^{th} -RWNotIn(L) = intloc(min(RWNotIn-seq L)(n)).

We introduce 1^{st} -RWNotIn(L), 2^{nd} -RWNotIn(L), 3^{rd} -RWNotIn(L) as synonyms of n^{th} -RWNotIn(L). Let n be a natural number and let L be a finite subset of Int-Locations. Note that n^{th} -RWNotIn(L) is read-write.

Next we state two propositions:

- (21) n^{th} -RWNotIn(L) $\notin L$.
- (22) If $n \neq m$, then n^{th} -RWNotIn(L) $\neq m^{\text{th}}$ -RWNotIn(L).

Let n be a natural number and let p be a programmed finite partial state of \mathbf{SCM}_{FSA} . The functor n^{th} -NotUsed(p) yields an integer location and is defined by:

(Def. 4) n^{th} -NotUsed $(p) = n^{\text{th}}$ -RWNotIn(UsedIntLoc(p)).

We introduce 1^{st} -NotUsed(p), 2^{nd} -NotUsed(p), 3^{rd} -NotUsed(p) as synonyms of n^{th} -NotUsed(p). Let n be a natural number and let p be a programmed finite partial state of \mathbf{SCM}_{FSA} . Observe that n^{th} -NotUsed(p) is read-write.

4. A MACRO FOR THE FIBONACCI SEQUENCE

We now state the proposition

(23) $a \in \text{UsedIntLoc}(\text{swap}(a, b)) \text{ and } b \in \text{UsedIntLoc}(\text{swap}(a, b)).$

Let N, r_1 be integer locations. The functor Fib_macro(N, r_1) yielding a macro instruction is defined as follows:

(Def. 5) Fib_macro(N, r_1) = (N_1 :=N); SubFrom(r_1, r_1); (n_1 :=intloc(0)); (a_1 := N_1); Times(a_1 , AddTo(r_1, n_1); swap(r_1, n_1)) where $N_1 = 2^{\text{nd}}$ -RWNotIn(UsedIntLoc(swap(r_1, n_1))), $n_1 = 1^{\text{st}}$ -RWNotIn($\{N, r_1\}$), and $a_1 = 1^{\text{st}}$ -RWNotIn(UsedIntLoc(swap(r_1, n_1))).

The following proposition is true

(24) Let N, r_1 be read-write integer locations. Suppose $N \neq r_1$. Let n be a natural number. If n = s(N), then $(\text{IExec}(\text{Fib_macro}(N, r_1), s))(r_1) = \text{Fib}(n)$ and $(\text{IExec}(\text{Fib_macro}(N, r_1), s))(N) = s(N)$.

REFERENCES

- Noriko Asamoto. Constant assignment macro instructions of SCM_{FSA}. Part II. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/JFM/Vol8/scmfsa7b.html.
- [2] Noriko Asamoto. The loop and times macroinstruction for SCM_{FSA}. Journal of Formalized Mathematics, 9, 1997. http://mizar.org/JFM/Vol9/scmfsa8c.html.
- [3] Noriko Asamoto, Yatsuka Nakamura, Piotr Rudnicki, and Andrzej Trybulec. On the composition of macro instructions. Part II. *Journal of Formalized Mathematics*, 8, 1996. http://mizar.org/JFM/Vol8/scmfsa6b.html.
- [4] Noriko Asamoto, Yatsuka Nakamura, Piotr Rudnicki, and Andrzej Trybulec. On the composition of macro instructions. Part III. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/JFM/Vol8/scmfsa6c.html.
- [5] Grzegorz Bancerek. Cardinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/card_1.html.
- [6] Grzegorz Bancerek. The fundamental properties of natural numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/nat_1.html.
- [7] Grzegorz Bancerek and Piotr Rudnicki. Development of terminology for scm. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/Vol5/scm_1.html.
- [8] Grzegorz Bancerek and Piotr Rudnicki. Two programs for scm. Part I preliminaries. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/Vol5/pre_ff.html.
- [9] Grzegorz Bancerek and Piotr Rudnicki. Two programs for scm. Part II programs. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/Vol5/fib_fusc.html.
- [10] Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/JFM/Vol8/funct_7.html.
- [11] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funct_1.html.
- [12] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_ 2.html.
- [13] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/zfmisc_1.html.

- [14] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. *Journal of Formalized Mathematics*, 2, 1990. http://mizar.org/JFM/Vol2/funct_4.html.
- [15] Agata Darmochwał. Finite sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/finset_1.html.
- [16] Agata Darmochwał and Andrzej Trybulec. Similarity of formulae. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/ JFM/Vol3/cqc_siml.html.
- [17] Yatsuka Nakamura and Andrzej Trybulec. A mathematical model of CPU. Journal of Formalized Mathematics, 4, 1992. http://mizar.org/JFM/Vol4/ami_1.html.
- [18] Piotr Rudnicki. Another times macro instruction. Journal of Formalized Mathematics, 10, 1998. http://mizar.org/JFM/Vol10/sfmastr2.html.
- [19] Piotr Rudnicki and Andrzej Trybulec. Memory handling for SCM_{FSA}. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/JFM/Vol8/sf_mastr.html.
- [20] Yasushi Tanaka. On the decomposition of the states of SCM. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/Vo15/ami 5.html.
- [21] Andrzej Trybulec. Enumerated sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/enumset1.html.
- [22] Andrzej Trybulec. Tarski Grothendieck set theory. *Journal of Formalized Mathematics*, Axiomatics, 1989. http://mizar.org/JFM/
- [23] Andrzej Trybulec. Subsets of real numbers. Journal of Formalized Mathematics, Addenda, 2003. http://mizar.org/JFM/Addenda/numbers.html.
- [24] Andrzej Trybulec and Yatsuka Nakamura. Some remarks on the simple concrete model of computer. *Journal of Formalized Mathematics*, 5, 1993. http://mizar.org/JFM/Vo15/ami_3.html.
- [25] Andrzej Trybulec and Yatsuka Nakamura. Modifying addresses of instructions of SCM_{FSA}. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/JFM/Vol8/scmfsa_4.html.
- [26] Andrzej Trybulec, Yatsuka Nakamura, and Noriko Asamoto. On the compositions of macro instructions. Part I. *Journal of Formalized Mathematics*, 8, 1996. http://mizar.org/JFM/Vol8/scmfsa6a.html.
- [27] Andrzej Trybulec, Yatsuka Nakamura, and Piotr Rudnicki. The SCM_{FSA} computer. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/JFM/Vol8/scmfsa_2.html.
- [28] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.
- [29] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/relat 1.html.

Received June 3, 1998

Published January 2, 2004