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Summary. An attempt to use theTimes macro, [2], was the origin of writing this arti-
cle. First, the semantics of the macro composition as developed in [26], [3], [4] is extended to
the case of macro instructions which are not always halting. Next, several functors extending
the memory handling forSCMFSA, [19], are defined; they are convenient when writing more
complicated programs. After this preparatory work, we define a macro instruction computing
the Fibonacci sequence (see the SCM program computing the same sequence in [9]) and prove
its correctness. The semantics of theTimes macro is given in [2] only for the case when the
iterated instruction is parahalting; this is remedied in [18].

MML Identifier: SFMASTR1.
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The articles [22], [21], [13], [28], [23], [15], [5], [6], [29], [11], [12], [14], [10], [16], [8], [17], [24],
[7], [20], [27], [25], [26], [3], [19], [4], [1], and [2] provide the notation and terminology for this
paper.

1. GOOD INSTRUCTIONS ANDGOOD MACRO INSTRUCTION

Let i be an instruction ofSCMFSA. We say thati is good if and only if:

(Def. 1) Macro(i) is good.

Let a be a read-write integer location and letb be an integer location. One can verify the
following observations:

∗ a:=b is good,

∗ AddTo(a,b) is good,

∗ SubFrom(a,b) is good, and

∗ MultBy(a,b) is good.

Let us observe that there exists an instruction ofSCMFSA which is good and parahalting.
Let a, b be read-write integer locations. Observe that Divide(a,b) is good.
Let l be an instruction-location ofSCMFSA. Observe that gotol is good.
Let a be an integer location and letl be an instruction-location ofSCMFSA. One can verify that

if a = 0 goto l is good andif a > 0 goto l is good.
Let a be an integer location, letf be a finite sequence location, and letb be a read-write integer

location. Note thatb:= fa is good.
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Let f be a finite sequence location and letb be a read-write integer location. One can check that
b:=lenf is good.

Let f be a finite sequence location and leta be an integer location. Note thatf :=〈0, . . . ,0︸ ︷︷ ︸
a

〉 is

good. Letb be an integer location. Note thatfa:=b is good.
Let us observe that there exists an instruction ofSCMFSA which is good.
Let i be a good instruction ofSCMFSA. Observe that Macro(i) is good.
Let i, j be good instructions ofSCMFSA. One can verify thati; j is good.
Let i be a good instruction ofSCMFSA and letI be a good macro instruction. One can check

that i; I is good andI ; i is good.
Let a, b be read-write integer locations. Note that swap(a,b) is good.
Let I be a good macro instruction and leta be a read-write integer location. Note that Times(a, I)

is good.
We now state the proposition

(1) For every integer locationa and for every macro instructionI such thata /∈ UsedIntLoc(I)
holdsI does not destroya.

2. COMPOSITION OFNON-PARAHALTING MACRO INSTRUCTIONS

For simplicity, we adopt the following rules:s, Sare states ofSCMFSA, I , J are macro instructions,
I1 is a good macro instruction,i is a good parahalting instruction ofSCMFSA, j is a parahalting
instruction ofSCMFSA, a, b are integer locations, andf is a finite sequence location.

One can prove the following propositions:

(2) (I+·Start-At(insloc(0)))�D = /0, whereD = Int-Locations∪FinSeq-Locations.

(3) If I is halting on Initialize(S) and closed on Initialize(S) andJ is closed on IExec(I ,S), then
I ; J is closed on Initialize(S).

(4) If I is halting on Initialize(S) andJ is halting on IExec(I ,S) andI is closed on Initialize(S)
andJ is closed on IExec(I ,S), thenI ; J is halting on Initialize(S).

(5) SupposeI is closed ons and I+·Start-At(insloc(0)) ⊆ s and s is halting. Let
m be a natural number. Supposem ≤ LifeSpan(s). Then (Computation(s))(m) and
(Computation(s+·(I ; J)))(m) are equal outside the instruction locations ofSCMFSA.

(6) SupposeI1 is halting on Initialize(s) and J is halting on IExec(I1,s) and I1 is closed
on Initialize(s) and J is closed on IExec(I1,s). Then LifeSpan(s+· Initialized(I1; J)) =
LifeSpan(s+· Initialized(I1))+1+LifeSpan(Result(s+· Initialized(I1))+· Initialized(J)).

(7) Suppose I1 is halting on Initialize(s) and J is halting on IExec(I1,s) and I1
is closed on Initialize(s) and J is closed on IExec(I1,s). Then IExec(I1; J,s) =
IExec(J, IExec(I1,s))+·Start-At(IC IExec(J,IExec(I1,s)) +cardI1).

(8) Suppose that

(i) I1 is parahalting, halting on Initialize(s), and closed on Initialize(s), and

(ii) J is parahalting, halting on IExec(I1,s), and closed on IExec(I1,s).

Then(IExec(I1; J,s))(a) = (IExec(J, IExec(I1,s)))(a).

(9) Suppose that

(i) I1 is parahalting, halting on Initialize(s), and closed on Initialize(s), and

(ii) J is parahalting, halting on IExec(I1,s), and closed on IExec(I1,s).

Then(IExec(I1; J,s))( f ) = (IExec(J, IExec(I1,s)))( f ).
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(10) Suppose that

(i) I1 is parahalting, halting on Initialize(s), and closed on Initialize(s), and

(ii) J is parahalting, halting on IExec(I1,s), and closed on IExec(I1,s).

Then IExec(I1; J,s)�D = IExec(J, IExec(I1,s))�D, whereD = Int-Locations∪FinSeq-Locations.

(11) If I1 is parahalting, closed on Initialize(s), and halting on Initialize(s), then
Initialize(IExec(I1,s))�D = IExec(I1,s)�D, whereD = Int-Locations∪FinSeq-Locations.

(12) If I1 is parahalting, halting on Initialize(s), and closed on Initialize(s), then
(IExec(I1; j,s))(a) = (Exec( j, IExec(I1,s)))(a).

(13) If I1 is parahalting, halting on Initialize(s), and closed on Initialize(s), then
(IExec(I1; j,s))( f ) = (Exec( j, IExec(I1,s)))( f ).

(14) If I1 is parahalting, halting on Initialize(s), and closed on Initialize(s), then
IExec(I1; j,s)�D = Exec( j, IExec(I1,s))�D, whereD = Int-Locations∪FinSeq-Locations.

(15) If J is parahalting, halting on Exec(i, Initialize(s)), and closed on Exec(i, Initialize(s)), then
(IExec(i; J,s))(a) = (IExec(J,Exec(i, Initialize(s))))(a).

(16) If J is parahalting, halting on Exec(i, Initialize(s)), and closed on Exec(i, Initialize(s)), then
(IExec(i; J,s))( f ) = (IExec(J,Exec(i, Initialize(s))))( f ).

(17) If J is parahalting, halting on Exec(i, Initialize(s)), and closed on Exec(i, Initialize(s)), then
IExec(i; J,s)�D = IExec(J,Exec(i, Initialize(s)))�D, whereD = Int-Locations∪FinSeq-Locations.

3. MEMORY ALLOCATION

In the sequelL is a finite subset of Int-Locations andm, n are natural numbers.
Let d be an integer location. Then{d} is a subset of Int-Locations. Letebe an integer location.

Then{d,e} is a subset of Int-Locations. Letf be an integer location. Then{d,e, f} is a subset of
Int-Locations. Letg be an integer location. Then{d,e, f ,g} is a subset of Int-Locations.

Let L be a finite subset of Int-Locations. The functor RWNotIn-seqL yields a function fromN
into 2N and is defined by the conditions (Def. 2).

(Def. 2)(i) (RWNotIn-seqL)(0) = {k;k ranges over natural numbers: intloc(k) /∈ L ∧ k 6= 0},
(ii) for every natural numberi and for every non empty subsets1 of N such that

(RWNotIn-seqL)(i) = s1 holds(RWNotIn-seqL)(i +1) = s1\{mins1}, and

(iii) for every natural numberi holds(RWNotIn-seqL)(i) is infinite.

LetL be a finite subset of Int-Locations and letnbe a natural number. Note that(RWNotIn-seqL)(n)
is non empty.

Next we state three propositions:

(18) 0 /∈ (RWNotIn-seqL)(n) and for everym such thatm ∈ (RWNotIn-seqL)(n) holds
intloc(m) /∈ L.

(19) min(RWNotIn-seqL)(n) < min(RWNotIn-seqL)(n+1).

(20) If n < m, then min(RWNotIn-seqL)(n) < min(RWNotIn-seqL)(m).

Letnbe a natural number and letL be a finite subset of Int-Locations. The functornth-RWNotIn(L)
yields an integer location and is defined by:

(Def. 3) nth-RWNotIn(L) = intloc(min(RWNotIn-seqL)(n)).

We introduce 1st-RWNotIn(L), 2nd-RWNotIn(L), 3rd -RWNotIn(L) as synonyms ofnth-RWNotIn(L).
Let n be a natural number and letL be a finite subset of Int-Locations. Note thatnth-RWNotIn(L)

is read-write.
Next we state two propositions:
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(21) nth-RWNotIn(L) /∈ L.

(22) If n 6= m, thennth-RWNotIn(L) 6= mth-RWNotIn(L).

Let n be a natural number and letp be a programmed finite partial state ofSCMFSA. The functor
nth-NotUsed(p) yields an integer location and is defined by:

(Def. 4) nth-NotUsed(p) = nth-RWNotIn(UsedIntLoc(p)).

We introduce 1st-NotUsed(p), 2nd-NotUsed(p), 3rd-NotUsed(p) as synonyms ofnth-NotUsed(p).
Let n be a natural number and letp be a programmed finite partial state ofSCMFSA. Observe

thatnth-NotUsed(p) is read-write.

4. A MACRO FOR THEFIBONACCI SEQUENCE

We now state the proposition

(23) a∈ UsedIntLoc(swap(a,b)) andb∈ UsedIntLoc(swap(a,b)).

Let N, r1 be integer locations. The functor Fibmacro(N, r1) yielding a macro instruction is
defined as follows:

(Def. 5) Fib macro(N, r1)= (N1:=N); SubFrom(r1, r1); (n1:= intloc(0)); (a1:=N1); Times(a1,AddTo(r1,n1); swap(r1,n1)); (N:=N1),
whereN1 = 2nd-RWNotIn(UsedIntLoc(swap(r1,n1))), n1 = 1st-RWNotIn({N, r1}), anda1 =
1st-RWNotIn(UsedIntLoc(swap(r1,n1))).

The following proposition is true

(24) LetN, r1 be read-write integer locations. SupposeN 6= r1. Let n be a natural number. Ifn=
s(N), then(IExec(Fib macro(N, r1),s))(r1) = Fib(n) and(IExec(Fib macro(N, r1),s))(N) =
s(N).
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