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Summary. A continuation of [10]. The propositions and theorems proved in [10]
are extended to finite sequences. Several additional theorems related to semigroup operations
of functions not included in [10] are proved. The special notation for operations on finite
sequences is introduced.
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The articles [11], [15], [12], [1], [16], [17], [4], [2], [13], [6], [5], [3], [9], [10], [8], [7], and [14]
provide the notation and terminology for this paper.

For simplicity, we adopt the following rules:C, C′, D, E are non empty sets,c, c1, c2, c3 are
elements ofC, B, B1, B2 are elements of FinC, A is an element of FinC′, d, d1, d2, d3, d4, e are
elements ofD, F , G are binary operations onD, u is a unary operation onD, f , f ′ are functions
from C into D, g is a function fromC′ into D, H is a binary operation onE, h is a function fromD
into E, i, j are natural numbers,s is a function,p, q are finite sequences of elements ofD, andT1,
T2 are elements ofDi .

We now state a number of propositions:

(3)1 If F is commutative and associative andc1 6= c2, thenF-∑{c1,c2} f = F( f (c1), f (c2)).

(4) If F is commutative and associative and ifB 6= /0 or F has a unity and ifc /∈ B, then
F-∑B∪{c} f = F(F-∑B f , f (c)).

(5) If F is commutative and associative andc1 6= c2 and c1 6= c3 and c2 6= c3, then
F-∑{c1,c2,c3} f = F(F( f (c1), f (c2)), f (c3)).

(6) If F is commutative and associative and ifB1 6= /0 andB2 6= /0 or F has a unity and ifB1

missesB2, thenF-∑B1∪B2
f = F(F-∑B1

f , F-∑B2
f ).

(7) Suppose that

(i) F is commutative and associative,

(ii) A 6= /0 or F has a unity, and

(iii) there existss such that doms= A and rngs= B ands is one-to-one andg�A = f ·s.
ThenF-∑Ag = F-∑B f .

(8) If H is commutative and associative and ifB 6= /0 or H has a unity and iff is one-to-one,
thenH-∑ f ◦Bh = H-∑Bh· f .

1 The propositions (1) and (2) have been removed.
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(9) If F is commutative and associative and ifB 6= /0 or F has a unity and iff �B = f ′�B, then
F-∑B f = F-∑B f ′.

(10) If F is commutative and associative and has a unity ande = 1F and f ◦B = {e}, then
F-∑B f = e.

(11) SupposeF is commutative and associative and has a unity ande = 1F andG(e, e) = e
and for all d1, d2, d3, d4 holds F(G(d1, d2), G(d3, d4)) = G(F(d1, d3), F(d2, d4)). Then
G(F-∑B f , F-∑B f ′) = F-∑BG◦( f , f ′).

(12) If F is commutative and associative and has a unity, thenF(F-∑B f , F-∑B f ′) =
F-∑BF◦( f , f ′).

(13) SupposeF is commutative and associative and has a unity and an inverse operation and
G = F ◦ (idD, the inverse operation w.r.t.F). ThenG(F-∑B f , F-∑B f ′) = F-∑BG◦( f , f ′).

(14) SupposeF is commutative and associative and has a unity ande= 1F andG is distributive
w.r.t. F andG(d, e) = e. ThenG(d, F-∑B f ) = F-∑BG◦(d, f ).

(15) SupposeF is commutative and associative and has a unity ande= 1F andG is distributive
w.r.t. F andG(e, d) = e. ThenG(F-∑B f , d) = F-∑BG◦( f ,d).

(16) SupposeF is commutative and associative and has a unity and an inverse operation andG
is distributive w.r.t.F . ThenG(d, F-∑B f ) = F-∑BG◦(d, f ).

(17) SupposeF is commutative and associative and has a unity and an inverse operation andG
is distributive w.r.t.F . ThenG(F-∑B f , d) = F-∑BG◦( f ,d).

(18) Suppose that

(i) F is commutative and associative and has a unity,

(ii) H is commutative and associative and has a unity,

(iii) h(1F) = 1H , and

(iv) for all d1, d2 holdsh(F(d1, d2)) = H(h(d1), h(d2)).

Thenh(F-∑B f ) = H-∑Bh· f .

(19) If F is commutative and associative and has a unity andu(1F) = 1F andu is distributive
w.r.t. F , thenu(F-∑B f ) = F-∑Bu· f .

(20) SupposeF is commutative and associative and has a unity and an inverse operation andG
is distributive w.r.t.F . Then(G◦(d, idD))(F-∑B f ) = F-∑BG◦(d, idD) · f .

(21) SupposeF is commutative and associative and has a unity and an inverse operation. Then
(the inverse operation w.r.t.F)(F-∑B f ) = F-∑B (the inverse operation w.r.t.F) · f .

Let us considerD, p, d. The functorΩd(p) yields a function fromN into D and is defined by:

(Def. 1) Ωd(p) = (N 7−→ d)+·p.

Next we state several propositions:

(22) If i ∈ domp, then(Ωd(p))(i) = p(i) and if i /∈ domp, then(Ωd(p))(i) = d.

(23) Ωd(p)�domp = p.

(24) Ωd((pa q))�domp = p.

(25) rngΩd(p) = rngp∪{d}.

(26) h·Ωd(p) = Ωh(d)((h· p)).
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Let us consideri. Then Segi is an element of FinN.
Let f be a finite sequence. Then domf is an element of FinN.
Let us considerD, p, F . Let us assume thatF has a unity or lenp≥ 1 butF is associative and

commutative. ThenF� p can be characterized by the condition:

(Def. 2) F� p = F-∑domp Ω1F (p).

We introduceF ~ p as a synonym ofF� p.
The following propositions are true:

(35)2 If F has a unity, thenF� i 7→ 1F = 1F .

(37)3 If F is associative and ifi ≥ 1 and j ≥ 1 orF has a unity, thenF�(i + j) 7→ d = F(F� i 7→
d, F� j 7→ d).

(38) If F is commutative and associative and ifi ≥ 1 and j ≥ 1 orF has a unity, thenF�(i · j) 7→
d = F� j 7→ (F� i 7→ d).

(39) If F has a unity andH has a unity andh(1F) = 1H and for alld1, d2 holdsh(F(d1, d2)) =
H(h(d1), h(d2)), thenh(F� p) = H�h· p.

(40) If F has a unity andu(1F) = 1F andu is distributive w.r.t.F , thenu(F� p) = F�u· p.

(41) If F is associative and has a unity and an inverse operation andG is distributive w.r.t.F ,
then(G◦(d, idD))(F� p) = F�G◦(d, idD) · p.

(42) SupposeF is commutative and associative and has a unity and an inverse operation. Then
(the inverse operation w.r.t.F)(F� p) = F� (the inverse operation w.r.t.F) · p.

(43) Suppose that

(i) F is commutative and associative and has a unity,

(ii) e= 1F ,

(iii) G(e, e) = e,

(iv) for all d1, d2, d3, d4 holdsF(G(d1, d2), G(d3, d4)) = G(F(d1, d3), F(d2, d4)), and

(v) lenp = lenq.

ThenG(F� p, F�q) = F�G◦(p, q).

(44) SupposeF is commutative and associative and has a unity ande= 1F andG(e, e) = eand
for all d1, d2, d3, d4 holdsF(G(d1, d2), G(d3, d4)) = G(F(d1, d3), F(d2, d4)). ThenG(F �
T1, F�T2) = F�G◦(T1, T2).

(45) If F is commutative and associative and has a unity and lenp = lenq, thenF(F � p, F �
q) = F�F◦(p, q).

(46) If F is commutative and associative and has a unity, thenF(F�T1, F�T2) = F�F◦(T1,
T2).

(47) If F is commutative and associative and has a unity, thenF� i 7→F(d1, d2) = F(F� i 7→ d1,
F� i 7→ d2).

(48) SupposeF is commutative and associative and has a unity and an inverse operation and
G = F ◦ (idD, the inverse operation w.r.t.F). ThenG(F�T1, F�T2) = F�G◦(T1, T2).

(49) SupposeF is commutative and associative and has a unity ande= 1F andG is distributive
w.r.t. F andG(d, e) = e. ThenG(d, F� p) = F�G◦(d, p).

(50) SupposeF is commutative and associative and has a unity ande= 1F andG is distributive
w.r.t. F andG(e, d) = e. ThenG(F� p, d) = F�G◦(p,d).

2 The propositions (27)–(34) have been removed.
3 The proposition (36) has been removed.
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(51) SupposeF is commutative and associative and has a unity and an inverse operation andG
is distributive w.r.t.F . ThenG(d, F� p) = F�G◦(d, p).

(52) SupposeF is commutative and associative and has a unity and an inverse operation andG
is distributive w.r.t.F . ThenG(F� p, d) = F�G◦(p,d).

REFERENCES

[1] Grzegorz Bancerek. The fundamental properties of natural numbers.Journal of Formalized Mathematics, 1, 1989. http://mizar.
org/JFM/Vol1/nat_1.html.

[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences.Journal of Formalized Mathematics,
1, 1989.http://mizar.org/JFM/Vol1/finseq_1.html.
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