Semigroup Operations on Finite Subsets

Czesław Byliński
Warsaw University
Białystok

Abstract

Summary. A continuation of [10]. The propositions and theorems proved in [10] are extended to finite sequences. Several additional theorems related to semigroup operations of functions not included in [10] are proved. The special notation for operations on finite sequences is introduced.

MML Identifier: SETWOP_2.
WWW: http://mizar.org/JFM/Vol2/setwop_2.html

The articles [11], [15], [12], [1], [16], [17], [4], [2], [13], [6], [5], [3], [9], [10], [8], [7], and [14] provide the notation and terminology for this paper.

For simplicity, we adopt the following rules: C, C^{\prime}, D, E are non empty sets, c, c_{1}, c_{2}, c_{3} are elements of C, B, B_{1}, B_{2} are elements of $\operatorname{Fin} C, A$ is an element of $\operatorname{Fin} C^{\prime}, d, d_{1}, d_{2}, d_{3}, d_{4}, e$ are elements of D, F, G are binary operations on D, u is a unary operation on D, f, f^{\prime} are functions from C into D, g is a function from C^{\prime} into D, H is a binary operation on E, h is a function from D into E, i, j are natural numbers, s is a function, p, q are finite sequences of elements of D, and T_{1}, T_{2} are elements of D^{i}.

We now state a number of propositions:
$(3)^{1}$ If F is commutative and associative and $c_{1} \neq c_{2}$, then $F-\sum_{\left\{c_{1}, c_{2}\right\}} f=F\left(f\left(c_{1}\right), f\left(c_{2}\right)\right)$.
(4) If F is commutative and associative and if $B \neq \emptyset$ or F has a unity and if $c \notin B$, then $F-\sum_{B \cup\{c\}} f=F\left(F-\sum_{B} f, f(c)\right)$.
(5) If F is commutative and associative and $c_{1} \neq c_{2}$ and $c_{1} \neq c_{3}$ and $c_{2} \neq c_{3}$, then $F-\sum_{\left\{c_{1}, c_{2}, c_{3}\right\}} f=F\left(F\left(f\left(c_{1}\right), f\left(c_{2}\right)\right), f\left(c_{3}\right)\right)$.
(6) If F is commutative and associative and if $B_{1} \neq \emptyset$ and $B_{2} \neq \emptyset$ or F has a unity and if B_{1} misses B_{2}, then $F-\sum_{B_{1} \cup B_{2}} f=F\left(F-\sum_{B_{1}} f, F-\sum_{B_{2}} f\right)$.
(7) Suppose that
(i) $\quad F$ is commutative and associative,
(ii) $A \neq \emptyset$ or F has a unity, and
(iii) there exists s such that $\operatorname{dom} s=A$ and $\operatorname{rng} s=B$ and s is one-to-one and $g \upharpoonright A=f \cdot s$.

Then $F-\sum_{A} g=F-\sum_{B} f$.
(8) If H is commutative and associative and if $B \neq \emptyset$ or H has a unity and if f is one-to-one, then $H-\sum_{f{ }^{\circ} B} h=H-\sum_{B} h \cdot f$.

[^0](9) If F is commutative and associative and if $B \neq \emptyset$ or F has a unity and if $f \upharpoonright B=f^{\prime} \upharpoonright B$, then $F-\sum_{B} f=F-\sum_{B} f^{\prime}$.
(10) If F is commutative and associative and has a unity and $e=\mathbf{1}_{F}$ and $f^{\circ} B=\{e\}$, then $F-\sum_{B} f=e$.
(11) Suppose F is commutative and associative and has a unity and $e=\mathbf{1}_{F}$ and $G(e, e)=e$ and for all $d_{1}, d_{2}, d_{3}, d_{4}$ holds $F\left(G\left(d_{1}, d_{2}\right), G\left(d_{3}, d_{4}\right)\right)=G\left(F\left(d_{1}, d_{3}\right), F\left(d_{2}, d_{4}\right)\right)$. Then $G\left(F-\sum_{B} f, F-\sum_{B} f^{\prime}\right)=F-\sum_{B} G^{\circ}\left(f, f^{\prime}\right)$.
(12) If F is commutative and associative and has a unity, then $F\left(F-\sum_{B} f, F-\sum_{B} f^{\prime}\right)=$ $F-\sum_{B} F^{\circ}\left(f, f^{\prime}\right)$.
(13) Suppose F is commutative and associative and has a unity and an inverse operation and $G=F \circ\left(\mathrm{id}_{D}\right.$, the inverse operation w.r.t. $\left.F\right)$. Then $G\left(F-\sum_{B} f, F-\sum_{B} f^{\prime}\right)=F-\sum_{B} G^{\circ}\left(f, f^{\prime}\right)$.
(14) Suppose F is commutative and associative and has a unity and $e=\mathbf{1}_{F}$ and G is distributive w.r.t. F and $G(d, e)=e$. Then $G\left(d, F-\sum_{B} f\right)=F-\sum_{B} G^{\circ}(d, f)$.
(15) Suppose F is commutative and associative and has a unity and $e=\mathbf{1}_{F}$ and G is distributive w.r.t. F and $G(e, d)=e$. Then $G\left(F-\sum_{B} f, d\right)=F-\sum_{B} G^{\circ}(f, d)$.
(16) Suppose F is commutative and associative and has a unity and an inverse operation and G is distributive w.r.t. F. Then $G\left(d, F-\sum_{B} f\right)=F-\sum_{B} G^{\circ}(d, f)$.
(17) Suppose F is commutative and associative and has a unity and an inverse operation and G is distributive w.r.t. F. Then $G\left(F-\sum_{B} f, d\right)=F-\sum_{B} G^{\circ}(f, d)$.
(18) Suppose that
(i) F is commutative and associative and has a unity,
(ii) H is commutative and associative and has a unity,
(iii) $h\left(\mathbf{1}_{F}\right)=\mathbf{1}_{H}$, and
(iv) for all d_{1}, d_{2} holds $h\left(F\left(d_{1}, d_{2}\right)\right)=H\left(h\left(d_{1}\right), h\left(d_{2}\right)\right)$.

Then $h\left(F-\sum_{B} f\right)=H-\sum_{B} h \cdot f$.
(19) If F is commutative and associative and has a unity and $u\left(\mathbf{1}_{F}\right)=\mathbf{1}_{F}$ and u is distributive w.r.t. F, then $u\left(F-\sum_{B} f\right)=F-\sum_{B} u \cdot f$.
(20) Suppose F is commutative and associative and has a unity and an inverse operation and G is distributive w.r.t. F. Then $\left(G^{\circ}\left(d, \mathrm{id}_{D}\right)\right)\left(F-\sum_{B} f\right)=F-\sum_{B} G^{\circ}\left(d, \mathrm{id}_{D}\right) \cdot f$.
(21) Suppose F is commutative and associative and has a unity and an inverse operation. Then (the inverse operation w.r.t. $F)\left(F-\sum_{B} f\right)=F-\sum_{B}$ (the inverse operation w.r.t. $\left.F\right) \cdot f$.

Let us consider D, p, d. The functor $\Omega_{d}(p)$ yields a function from \mathbb{N} into D and is defined by:
(Def. 1) $\quad \Omega_{d}(p)=(\mathbb{N} \longmapsto d)+\cdot p$.
Next we state several propositions:
(22) If $i \in \operatorname{dom} p$, then $\left(\Omega_{d}(p)\right)(i)=p(i)$ and if $i \notin \operatorname{dom} p$, then $\left(\Omega_{d}(p)\right)(i)=d$.
(23) $\Omega_{d}(p) \upharpoonright \operatorname{dom} p=p$.
(24) $\Omega_{d}\left(\left(p^{\wedge} q\right)\right) \upharpoonright \operatorname{dom} p=p$.
(25) $\operatorname{rng} \Omega_{d}(p)=\operatorname{rng} p \cup\{d\}$.
(26) $h \cdot \Omega_{d}(p)=\Omega_{h(d)}((h \cdot p))$.

Let us consider i. Then $\operatorname{Seg} i$ is an element of $\operatorname{Fin} \mathbb{N}$.
Let f be a finite sequence. Then $\operatorname{dom} f$ is an element of $\operatorname{Fin} \mathbb{N}$.
Let us consider D, p, F. Let us assume that F has a unity or len $p \geq 1$ but F is associative and commutative. Then $F \odot p$ can be characterized by the condition:
(Def. 2) $\quad F \odot p=F-\sum_{\operatorname{dom} p} \Omega_{1_{F}}(p)$.
We introduce $F \circledast p$ as a synonym of $F \odot p$.
The following propositions are true:
$(35)^{2}$ If F has a unity, then $F \odot i \mapsto \mathbf{1}_{F}=\mathbf{1}_{F}$.
(37) If F is associative and if $i \geq 1$ and $j \geq 1$ or F has a unity, then $F \odot(i+j) \mapsto d=F(F \odot i \mapsto$ $d, F \odot j \mapsto d)$.
(38) If F is commutative and associative and if $i \geq 1$ and $j \geq 1$ or F has a unity, then $F \odot(i \cdot j) \mapsto$ $d=F \odot j \mapsto(F \odot i \mapsto d)$.
(39) If F has a unity and H has a unity and $h\left(\mathbf{1}_{F}\right)=\mathbf{1}_{H}$ and for all d_{1}, d_{2} holds $h\left(F\left(d_{1}, d_{2}\right)\right)=$ $H\left(h\left(d_{1}\right), h\left(d_{2}\right)\right)$, then $h(F \odot p)=H \odot h \cdot p$.
(40) If F has a unity and $u\left(\mathbf{1}_{F}\right)=\mathbf{1}_{F}$ and u is distributive w.r.t. F, then $u(F \odot p)=F \odot u \cdot p$.
(41) If F is associative and has a unity and an inverse operation and G is distributive w.r.t. F, then $\left(G^{\circ}\left(d, \mathrm{id}_{D}\right)\right)(F \odot p)=F \odot G^{\circ}\left(d, \mathrm{id}_{D}\right) \cdot p$.
(42) Suppose F is commutative and associative and has a unity and an inverse operation. Then (the inverse operation w.r.t. $F)(F \odot p)=F \odot($ the inverse operation w.r.t. $F) \cdot p$.
(43) Suppose that
(i) F is commutative and associative and has a unity,
(ii) $e=\mathbf{1}_{F}$,
(iii) $G(e, e)=e$,
(iv) for all $d_{1}, d_{2}, d_{3}, d_{4}$ holds $F\left(G\left(d_{1}, d_{2}\right), G\left(d_{3}, d_{4}\right)\right)=G\left(F\left(d_{1}, d_{3}\right), F\left(d_{2}, d_{4}\right)\right)$, and
(v) $\operatorname{len} p=\operatorname{len} q$.

Then $G(F \odot p, F \odot q)=F \odot G^{\circ}(p, q)$.
(44) Suppose F is commutative and associative and has a unity and $e=\mathbf{1}_{F}$ and $G(e, e)=e$ and for all $d_{1}, d_{2}, d_{3}, d_{4}$ holds $F\left(G\left(d_{1}, d_{2}\right), G\left(d_{3}, d_{4}\right)\right)=G\left(F\left(d_{1}, d_{3}\right), F\left(d_{2}, d_{4}\right)\right)$. Then $G(F \odot$ $\left.T_{1}, F \odot T_{2}\right)=F \odot G^{\circ}\left(T_{1}, T_{2}\right)$.
(45) If F is commutative and associative and has a unity and len $p=\operatorname{len} q$, then $F(F \odot p, F \odot$ $q)=F \odot F^{\circ}(p, q)$.
(46) If F is commutative and associative and has a unity, then $F\left(F \odot T_{1}, F \odot T_{2}\right)=F \odot F^{\circ}\left(T_{1}\right.$, T_{2}).
(47) If F is commutative and associative and has a unity, then $F \odot i \mapsto F\left(d_{1}, d_{2}\right)=F\left(F \odot i \mapsto d_{1}\right.$, $\left.F \odot i \mapsto d_{2}\right)$.
(48) Suppose F is commutative and associative and has a unity and an inverse operation and $G=F \circ\left(\mathrm{id}_{D}\right.$, the inverse operation w.r.t. $\left.F\right)$. Then $G\left(F \odot T_{1}, F \odot T_{2}\right)=F \odot G^{\circ}\left(T_{1}, T_{2}\right)$.
(49) Suppose F is commutative and associative and has a unity and $e=\mathbf{1}_{F}$ and G is distributive w.r.t. F and $G(d, e)=e$. Then $G(d, F \odot p)=F \odot G^{\circ}(d, p)$.
(50) Suppose F is commutative and associative and has a unity and $e=\mathbf{1}_{F}$ and G is distributive w.r.t. F and $G(e, d)=e$. Then $G(F \odot p, d)=F \odot G^{\circ}(p, d)$.

[^1](51) Suppose F is commutative and associative and has a unity and an inverse operation and G is distributive w.r.t. F. Then $G(d, F \odot p)=F \odot G^{\circ}(d, p)$.
(52) Suppose F is commutative and associative and has a unity and an inverse operation and G is distributive w.r.t. F. Then $G(F \odot p, d)=F \odot G^{\circ}(p, d)$.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar. org/JFM/Vol1/nat_1.html
[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/finseq_1.html
[3] Czesław Byliński. Binary operations. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/binop_1.html
[4] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/ funct_1.html
[5] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_ 2.html
[6] Czesław Byliński. Partial functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/partfun1.html.
[7] Czesław Byliński. Binary operations applied to finite sequences. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/ JFM/Vol2/finseqop.html
[8] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Journal of Formalized Mathematics, 2, 1990. http: //mizar.org/JFM/Vol2/finseq_2.html
[9] Andrzej Trybulec. Binary operations applied to functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Vol1/funcop_1.html.
[10] Andrzej Trybulec. Semilattice operations on finite subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Voll/setwiseo.html.
[11] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/ Axiomatics/tarski.html
[12] Andrzej Trybulec. Subsets of real numbers. Journal of Formalized Mathematics, Addenda, 2003. http://mizar.org/JFM/Addenda/ numbers.html
[13] Andrzej Trybulec and Agata Darmochwał. Boolean domains. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Vol1/finsub_1.html.
[14] Wojciech A. Trybulec. Binary operations on finite sequences. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/ Vol2/finsop_1.html.
[15] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html
[16] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Vol1/relat_1.html
[17] Edmund Woronowicz. Relations defined on sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/ relset_1.html

[^0]: ${ }^{1}$ The propositions (1) and (2) have been removed.

[^1]: ${ }^{2}$ The propositions (27)-(34) have been removed.
 ${ }^{3}$ The proposition (36) has been removed.

