Functional Sequence from a Domain to a Domain

Beata Perkowska Warsaw University Białystok

Summary. Definitions of functional sequences and basic operations on functional sequences from a domain to a domain, point and uniform convergence, limit of functional sequence from a domain to the set of real numbers and facts about properties of the limit of functional sequences are proved.

MML Identifier: SEQFUNC.

WWW: http://mizar.org/JFM/Vol4/seqfunc.html

The articles [10], [12], [1], [11], [4], [13], [2], [14], [3], [7], [8], [6], [5], and [9] provide the notation and terminology for this paper.

For simplicity, we adopt the following convention: D, D_1 , D_2 denote non empty sets, n, k denote natural numbers, p, r denote real numbers, and f denotes a function.

Let us consider D_1 , D_2 . A function is called a sequence of partial functions from D_1 into D_2 if:

(Def. 1) dom it = \mathbb{N} and rng it $\subseteq D_1 \rightarrow D_2$.

In the sequel F, F_1 , F_2 are sequences of partial functions from D_1 into D_2 . Let us consider D_1 , D_2 , F, n. Then F(n) is a partial function from D_1 to D_2 . In the sequel G, H, H_1 , H_2 , J denote sequences of partial functions from D into \mathbb{R} . Next we state two propositions:

- (1) f is a sequence of partial functions from D_1 into D_2 if and only if dom $f = \mathbb{N}$ and for every n holds f(n) is a partial function from D_1 to D_2 .
- (2) For all F_1 , F_2 such that for every n holds $F_1(n) = F_2(n)$ holds $F_1 = F_2$.

The scheme ExFuncSeq deals with a non empty set \mathcal{A} , a non empty set \mathcal{B} , and a unary functor \mathcal{F} yielding a partial function from \mathcal{A} to \mathcal{B} , and states that:

There exists a sequence G of partial functions from \mathcal{A} into \mathcal{B} such that for every n holds $G(n) = \mathcal{F}(n)$

for all values of the parameters.

Let us consider D, H, r. The functor rH yields a sequence of partial functions from D into \mathbb{R} and is defined by:

(Def. 2) For every n holds (rH)(n) = rH(n).

Let us consider D, H. The functor H^{-1} yielding a sequence of partial functions from D into \mathbb{R} is defined as follows:

(Def. 3) For every n holds $H^{-1}(n) = \frac{1}{H(n)}$.

The functor -H yielding a sequence of partial functions from D into \mathbb{R} is defined as follows:

(Def. 4) For every n holds (-H)(n) = -H(n).

The functor |H| yields a sequence of partial functions from D into \mathbb{R} and is defined as follows:

(Def. 5) For every *n* holds |H|(n) = |H(n)|.

Let us consider D, G, H. The functor G+H yielding a sequence of partial functions from D into \mathbb{R} is defined as follows:

(Def. 6) For every n holds (G+H)(n) = G(n) + H(n).

Let us consider D, G, H. The functor G-H yielding a sequence of partial functions from D into \mathbb{R} is defined by:

(Def. 7)
$$G - H = G + -H$$
.

Let us consider D, G, H. The functor GH yields a sequence of partial functions from D into \mathbb{R} and is defined by:

(Def. 8) For every n holds (GH)(n) = G(n)H(n).

Let us consider D, H, G. The functor $\frac{G}{H}$ yields a sequence of partial functions from D into \mathbb{R} and is defined by:

(Def. 9)
$$\frac{G}{H} = GH^{-1}$$
.

The following propositions are true:

- (3) $H_1 = \frac{G}{H}$ iff for every n holds $H_1(n) = \frac{G(n)}{H(n)}$.
- (4) $H_1 = G H$ iff for every n holds $H_1(n) = G(n) H(n)$.
- (5) G+H=H+G and (G+H)+J=G+(H+J).
- (6) GH = HG and (GH)J = G(HJ).
- (7) (G+H)J = GJ+HJ and J(G+H) = JG+JH.
- (8) -H = (-1) H.
- (9) (G-H)J = GJ HJ and JG JH = J(G-H).
- (10) r(G+H) = rG + rH and r(G-H) = rG rH.
- $(11) \quad (r \cdot p) H = r (p H).$
- (12) 1H = H.
- (13) --H = H.
- (14) $G^{-1}H^{-1} = (GH)^{-1}$.
- (15) If $r \neq 0$, then $(rH)^{-1} = r^{-1}H^{-1}$.
- (16) $|H|^{-1} = |H^{-1}|$.
- (17) |GH| = |G||H|.
- $(18) \quad \left| \frac{G}{H} \right| = \frac{|G|}{|H|}.$
- (19) |rH| = |r||H|.

In the sequel x denotes an element of D, X, Y denote sets, and f denotes a partial function from D to \mathbb{R} .

Let us consider D_1, D_2, F, X . We say that X is common for elements of F if and only if:

(Def. 10) $X \neq \emptyset$ and for every n holds $X \subseteq \text{dom } F(n)$.

Let us consider D, H, x. The functor H#x yields a sequence of real numbers and is defined by:

(Def. 11) For every n holds (H#x)(n) = H(n)(x).

Let us consider D, H, X. We say that H is point-convergent on X if and only if the conditions (Def. 12) are satisfied.

- (Def. 12)(i) X is common for elements of H, and
 - (ii) there exists f such that X = dom f and for every x such that $x \in X$ and for every p such that p > 0 there exists k such that for every p such that $p \ge k$ holds |H(n)(x) f(x)| < p.

We now state two propositions:

- (20) H is point-convergent on X if and only if the following conditions are satisfied:
 - (i) X is common for elements of H, and
- (ii) there exists f such that X = dom f and for every x such that $x \in X$ holds H # x is convergent and $\lim(H \# x) = f(x)$.
- (21) *H* is point-convergent on *X* if and only if the following conditions are satisfied:
 - (i) X is common for elements of H, and
- (ii) for every x such that $x \in X$ holds H # x is convergent.

Let us consider D, H, X. We say that H is uniform-convergent on X if and only if the conditions (Def. 13) are satisfied.

- (Def. 13)(i) X is common for elements of H, and
 - (ii) there exists f such that X = dom f and for every p such that p > 0 there exists k such that for all n, x such that $n \ge k$ and $x \in X$ holds |H(n)(x) f(x)| < p.

Let us consider D, H, X. Let us assume that H is point-convergent on X. The functor $\lim_X H$ yields a partial function from D to \mathbb{R} and is defined as follows:

(Def. 14) $\operatorname{dom} \lim_X H = X$ and for every x such that $x \in \operatorname{dom} \lim_X H$ holds $(\lim_X H)(x) = \lim_X (H \# x)$.

We now state a number of propositions:

- (22) Suppose H is point-convergent on X. Then $f = \lim_X H$ if and only if the following conditions are satisfied:
 - (i) $\operatorname{dom} f = X$, and
- (ii) for every x such that $x \in X$ and for every p such that p > 0 there exists k such that for every n such that $n \ge k$ holds |H(n)(x) f(x)| < p.
- (23) If H is uniform-convergent on X, then H is point-convergent on X.
- (24) If $Y \subseteq X$ and $Y \neq \emptyset$ and X is common for elements of H, then Y is common for elements of H.
- (25) If $Y \subseteq X$ and $Y \neq \emptyset$ and H is point-convergent on X, then H is point-convergent on Y and $\lim_X H \upharpoonright Y = \lim_Y H$.
- (26) If $Y \subseteq X$ and $Y \neq \emptyset$ and H is uniform-convergent on X, then H is uniform-convergent on Y.
- (27) If X is common for elements of H, then for every x such that $x \in X$ holds $\{x\}$ is common for elements of H.
- (28) If *H* is point-convergent on *X*, then for every *x* such that $x \in X$ holds $\{x\}$ is common for elements of *H*.

- (29) Suppose $\{x\}$ is common for elements of H_1 and $\{x\}$ is common for elements of H_2 . Then $H_1\#x + H_2\#x = (H_1 + H_2)\#x$ and $H_1\#x H_2\#x = (H_1 H_2)\#x$ and $(H_1\#x) (H_2\#x) = (H_1 H_2)\#x$.
- (30) If $\{x\}$ is common for elements of H, then |H|#x = |H#x| and (-H)#x = -H#x.
- (31) If $\{x\}$ is common for elements of H, then (rH)#x = r(H#x).
- (32) Suppose X is common for elements of H_1 and common for elements of H_2 . Let given x. If $x \in X$, then $H_1 \# x + H_2 \# x = (H_1 + H_2) \# x$ and $H_1 \# x H_2 \# x = (H_1 H_2) \# x$ and $(H_1 \# x) (H_2 \# x) = (H_1 H_2) \# x$.
- (33) If *X* is common for elements of *H*, then for every *x* such that $x \in X$ holds |H| # x = |H # x| and (-H) # x = -H # x.
- (34) If *X* is common for elements of *H*, then for every *x* such that $x \in X$ holds (rH)#x = r(H#x).
- (35) Suppose H_1 is point-convergent on X and H_2 is point-convergent on X. Let given x. If $x \in X$, then $H_1 \# x + H_2 \# x = (H_1 + H_2) \# x$ and $H_1 \# x H_2 \# x = (H_1 H_2) \# x$ and $(H_1 \# x) (H_2 \# x) = (H_1 H_2) \# x$.
- (36) If *H* is point-convergent on *X*, then for every *x* such that $x \in X$ holds |H|#x = |H#x| and (-H)#x = -H#x.
- (37) If *H* is point-convergent on *X*, then for every *x* such that $x \in X$ holds (rH)#x = r(H#x).
- (38) Suppose X is common for elements of H_1 and common for elements of H_2 . Then X is common for elements of $H_1 + H_2$, common for elements of $H_1 H_2$, and common for elements of $H_1 + H_2$.
- (39) If X is common for elements of H, then X is common for elements of |H| and common for elements of -H.
- (40) If X is common for elements of H, then X is common for elements of rH.
- (41) Suppose H_1 is point-convergent on X and H_2 is point-convergent on X. Then
 - (i) $H_1 + H_2$ is point-convergent on X,
- (ii) $\lim_{X} (H_1 + H_2) = \lim_{X} H_1 + \lim_{X} H_2$,
- (iii) $H_1 H_2$ is point-convergent on X,
- (iv) $\lim_{X} (H_1 H_2) = \lim_{X} H_1 \lim_{X} H_2$,
- (v) $H_1 H_2$ is point-convergent on X, and
- (vi) $\lim_{X} (H_1 H_2) = \lim_{X} H_1 \lim_{X} H_2$.
- (42) Suppose H is point-convergent on X. Then |H| is point-convergent on X and $\lim_{X} |H| = |\lim_{X} H|$ and -H is point-convergent on X and $\lim_{X} (-H) = -\lim_{X} H$.
- (43) If H is point-convergent on X, then r H is point-convergent on X and $\lim_{X} (rH) = r \lim_{X} H$.
- (44) H is uniform-convergent on X if and only if the following conditions are satisfied:
 - (i) X is common for elements of H,
 - (ii) H is point-convergent on X, and
- (iii) for every r such that 0 < r there exists k such that for all n, x such that $n \ge k$ and $x \in X$ holds $|H(n)(x) (\lim_{x \to \infty} H)(x)| < r$.

In the sequel H is a sequence of partial functions from \mathbb{R} into \mathbb{R} . One can prove the following proposition

(45) If H is uniform-convergent on X and for every n holds H(n) is continuous on X, then $\lim_X H$ is continuous on X.

REFERENCES

- [1] Grzegorz Bancerek. The ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/ordinall.html.
- [2] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funct_1.html.
- [3] Czesław Byliński. Partial functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/partfun1.html.
- [4] Krzysztof Hryniewiecki. Basic properties of real numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/real_1.html.
- [5] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/seq_2.html.
- [6] Jarosław Kotowicz. Real sequences and basic operations on them. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/ JFM/Vol1/seq_1.html.
- [7] Jarosław Kotowicz. Partial functions from a domain to the set of real numbers. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/rfunct_1.html.
- [8] Jan Popiotek. Some properties of functions modul and signum. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/ JFM/Vol1/absvalue.html.
- [9] Konrad Raczkowski and Paweł Sadowski. Real function continuity. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/ JFM/Vol2/fcont_1.html.
- [10] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [11] Andrzej Trybulec. Subsets of real numbers. Journal of Formalized Mathematics, Addenda, 2003. http://mizar.org/JFM/Addenda/numbers.html
- [12] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.
- [13] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relat_1.html.
- [14] Edmund Woronowicz. Relations defined on sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relset_1.html.

Received May 22, 1992

Published January 2, 2004