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Summary. The article contains theorems about convergent sequences and the limit of
sequences occurring ihl[5] such as Bolzano-Weierstrass theorem, Cauchy theorem and oth-
ers. Bounded sets of real numbers and lower and upper bound of subset of real numbers are
defined.
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The articles([9],[[12],[[2],T11],[04],1213],[[7],15], 1], 3], 6], [8], and[10] provide the notation and
terminology for this paper.

For simplicity, we adopt the following rules, k, m denote natural numbers,r1, p, 9, 91, 92,
sdenote real numbers;, s, denote sequences of real numbéisdenotes an increasing sequence
of naturals, an, Y denote subsets &.

Next we state several propositions:

(1) Ifo<rpandr; <randO0<g, thend < %.

(4E] If 0 < s, then 0< §.

(GH If0 <gand 0<randg<g; andr <rq,theng-r <g;-ri.
(7) If0<gand0<randg<g;andr <rjp,theng-r <g;-rip.

(8) LetgivenX,Y. Suppose that for atl, p such that € X andp €Y holdsr < p. Then there
existsg such that for alt, p such thar € X andp €'Y holdsr < gandg < p.

(9) If0< pand there exists such that € X and for everyr such that € X holdsr + p € X,
then for evenyg there exists such that € X andg < r.

(10) For every there exists such thar < n.

Let X be a real-membered set. We say tkas upper bounded if and only if:
(Def. 1) There exist@ such that for every such that € X holdsr < p.
We say thak is lower bounded if and only if:

(Def. 2) There existp such that for every such that € X holdsp <r.

1 The propositions (2) and (3) have been removed.
2 The proposition (5) has been removed.
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Let us consideK. We say thaX is bounded if and only if:
(Def. 3) X is lower bounded and upper bounded.
One can prove the following proposition

(14 X is bounded iff there existssuch that O< sand for everyr such that € X holdsjr| < s.

Let us consider. Then{r} is a subset oR.
The following propositions are true:
(15) {r} is bounded.

(16) LetX be areal-membered set. Suppdses non empty and upper bounded. Then there
existsg such that for every such thar € X holdsr < g and for everys such that O< sthere

existsr such thar € X andg—s<r.
(17) LetX be areal-membered set. Suppose that
(i) foreveryr such thar € X holdsr < gy,
(i) for everyssuch that O< sthere exists such that € X andg; —s<r,
(i)  for everyr such that € X holdsr < g, and
(iv) for everyssuch that O< sthere exists such that € X andgy —s<r.
Theng: = go.

(18) LetX be a real-membered set. Suppdses non empty and lower bounded. Then there
existsg such that for every such that € X holdsg < r and for everys such that O< sthere

existsr such that € X andr < g+s.

(19) LetX be areal-membered set. Suppose that
(i) foreveryr suchthar € X holdsg; <r,
(i) for everyssuch that O< sthere exists such thatr € X andr < g1+,

(i)  for everyr such thar € X holdsg, <r, and
(iv) for everyssuch that O< sthere exists such that € X andr < g +s.

Theng; = go.

Let X be a real-membered set. Let us assume Xhet non empty and upper bounded. The
functor supX yields a real number and is defined as follows:

(Def. 4) For every such that € X holdsr < supX and for everys such that O< s there exists
such that € X and suX —s<r.

Let X be a real-membered set. Let us assume Xhat non empty and lower bounded. The
functor infX yielding a real number is defined by:

(Def. 5) For everyr such thatr € X holds infX <r and for everys such that O< s there exists
such thatr € X andr < infX+s.

Let us consideK. Then suiX is a real number. Then id is a real number.
One can prove the following propositions:

2] inf{r} =r and sugr} =r.

(23) inf{r} =sup{r}.
(24) If X is bounded and non empty, thenaK supX.

3 The propositions (11)—(13) have been removed.
4 The propositions (20) and (21) have been removed.
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(25) If X is bounded and non empty, then there exjgi such thar € X andp € X andp # r
iff inf X < supX.

(26) If 1 is convergent, thefs, | is convergent.

(27) If 51 is convergent, then litg; | = |lim sg].

(28) If |s1] is convergent and lims;| = 0, thens; is convergent and lis, = 0.
(29) If s, is a subsequence sf ands; is convergent, thes is convergent.
(30) If s, is a subsequence sf ands; is convergent, then lirgp = lim s;.

(31) If 51 is convergent and there exidtsuch that for every such thatk < n holdss;(n) =
s1(n), thens; is convergent.

(32) If 51 is convergent and there exidtsuch that for every such thatkk < n holdss;(n) =
s1(n), then lims; =lim sp.

(33) If s is convergent, thes Tkis convergent and liifs; Tk) = lims;.

(35E] If s1is convergent and there exigtsuch that; = s Tk, thens; is convergent.
(36) If s is convergent and there exi#tsuch thats; = s, Tk, then lims, =lims;.
(37) If s is convergent and lir # 0, then there existk such that; T kis non-zero.

(38) If 51 is convergent and lis, £ 0, then there exists, which is a subsequence sf and
non-zero.

(39) If g is constant, thes; is convergent.

(40) If 51 is constant and € rngs; or s; is constant and there existsuch thats; (n) =r, then
lims; =r.

(41) If s is constant, then for everyholds lims; = s;(n).

(42) If 5 is convergent and lirsy # 0, then for everys, such thas; is a subsequence sf and
non-zero holds linfis; %) = (lims;) 2.

(43) If 0<r and for everyn holdss;(n) = n—}H, thens; is convergent.
(44) If 0<r and for everyn holdss;(n) = n—}H, then lims; = 0.
(45) If for everyn holdss; (n) = Fll, thens; is convergent and lirsy = 0.

(46) If 0<r and for everyn holdss;(n) = n—ﬁr, thens; is convergent and lirsy = 0.

__1

(47) If0<r and for everyn holdss;(n) = thens; is convergent.

n-n+r’
(48) If 0<r and for everyn holdss;(n) = Wﬂr, then lims; = 0.
(49) If for everyn holdss;(n) = Wlﬂ, thens; is convergent and lirgp = 0.

(50) If 0<r and for everyn holdss;(n) = ﬁ;r, thens; is convergent and lirsy = 0.
(51) If 1 is non-decreasing and upper bounded, theis convergent.

(52) If 5 is non-increasing and lower bounded, ttsgiis convergent.

(53) If 51 is monotone and bounded, thenis convergent.

(54) If 51 is upper bounded and non-decreasing, then for evéigldss; (n) < lims;.

5 The proposition (34) has been removed.
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(55) |If 51 is lower bounded and non-increasing, then for evelplds lims; < s1(n).

(56) For everys; there existdN; such thas; - N; is monotone.

(57) If 51 is bounded, then there exigswhich is a subsequence sifand convergent.

(58) s is convergent iff for everg such that O< sthere exists such that for everyn such that

(59) If s is constant and; is convergent, then lif + ) =S
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n < mholds|s;(m) —s;(n)| < s.

(0)+lims; and lim(s; — s) =

51(0) —lims; and lim(s; — s1) = lim s, — 51(0) and lim(s; SQ)1 51(0) -lim s,.
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