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Summary. The article contains theorems about convergent sequences and the limit of
sequences occurring in [5] such as Bolzano-Weierstrass theorem, Cauchy theorem and oth-
ers. Bounded sets of real numbers and lower and upper bound of subset of real numbers are
defined.

MML Identifier: SEQ_4.

WWW: http://mizar.org/JFM/Vol1/seq_4.html

The articles [9], [12], [2], [11], [4], [13], [7], [5], [1], [3], [6], [8], and [10] provide the notation and
terminology for this paper.

For simplicity, we adopt the following rules:n, k, m denote natural numbers,r, r1, p, g, g1, g2,
s denote real numbers,s1, s2 denote sequences of real numbers,N1 denotes an increasing sequence
of naturals, andX, Y denote subsets ofR.

Next we state several propositions:

(1) If 0 < r1 andr1 ≤ r and 0≤ g, then g
r ≤

g
r1

.

(4)1 If 0 < s, then 0< s
3.

(6)2 If 0 < g and 0≤ r andg≤ g1 andr < r1, theng· r < g1 · r1.

(7) If 0 ≤ g and 0≤ r andg≤ g1 andr ≤ r1, theng· r ≤ g1 · r1.

(8) Let givenX, Y. Suppose that for allr, p such thatr ∈ X andp∈Y holdsr < p. Then there
existsg such that for allr, p such thatr ∈ X andp∈Y holdsr ≤ g andg≤ p.

(9) If 0 < p and there existsr such thatr ∈ X and for everyr such thatr ∈ X holdsr + p∈ X,
then for everyg there existsr such thatr ∈ X andg < r.

(10) For everyr there existsn such thatr < n.

Let X be a real-membered set. We say thatX is upper bounded if and only if:

(Def. 1) There existsp such that for everyr such thatr ∈ X holdsr ≤ p.

We say thatX is lower bounded if and only if:

(Def. 2) There existsp such that for everyr such thatr ∈ X holdsp≤ r.

1 The propositions (2) and (3) have been removed.
2 The proposition (5) has been removed.
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Let us considerX. We say thatX is bounded if and only if:

(Def. 3) X is lower bounded and upper bounded.

One can prove the following proposition

(14)3 X is bounded iff there existsssuch that 0< sand for everyr such thatr ∈ X holds|r|< s.

Let us considerr. Then{r} is a subset ofR.
The following propositions are true:

(15) {r} is bounded.

(16) Let X be a real-membered set. SupposeX is non empty and upper bounded. Then there
existsg such that for everyr such thatr ∈ X holdsr ≤ g and for everys such that 0< s there
existsr such thatr ∈ X andg−s< r.

(17) LetX be a real-membered set. Suppose that

(i) for everyr such thatr ∈ X holdsr ≤ g1,

(ii) for everys such that 0< s there existsr such thatr ∈ X andg1−s< r,

(iii) for every r such thatr ∈ X holdsr ≤ g2, and

(iv) for everys such that 0< s there existsr such thatr ∈ X andg2−s< r.

Theng1 = g2.

(18) Let X be a real-membered set. SupposeX is non empty and lower bounded. Then there
existsg such that for everyr such thatr ∈ X holdsg≤ r and for everys such that 0< s there
existsr such thatr ∈ X andr < g+s.

(19) LetX be a real-membered set. Suppose that

(i) for everyr such thatr ∈ X holdsg1 ≤ r,

(ii) for everys such that 0< s there existsr such thatr ∈ X andr < g1 +s,

(iii) for every r such thatr ∈ X holdsg2 ≤ r, and

(iv) for everys such that 0< s there existsr such thatr ∈ X andr < g2 +s.

Theng1 = g2.

Let X be a real-membered set. Let us assume thatX is non empty and upper bounded. The
functor supX yields a real number and is defined as follows:

(Def. 4) For everyr such thatr ∈ X holdsr ≤ supX and for everys such that 0< s there existsr
such thatr ∈ X and supX−s< r.

Let X be a real-membered set. Let us assume thatX is non empty and lower bounded. The
functor infX yielding a real number is defined by:

(Def. 5) For everyr such thatr ∈ X holds infX ≤ r and for everys such that 0< s there existsr
such thatr ∈ X andr < inf X +s.

Let us considerX. Then supX is a real number. Then infX is a real number.
One can prove the following propositions:

(22)4 inf{r}= r and sup{r}= r.

(23) inf{r}= sup{r}.

(24) If X is bounded and non empty, then infX ≤ supX.

3 The propositions (11)–(13) have been removed.
4 The propositions (20) and (21) have been removed.
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(25) If X is bounded and non empty, then there existr, p such thatr ∈ X andp∈ X andp 6= r
iff inf X < supX.

(26) If s1 is convergent, then|s1| is convergent.

(27) If s1 is convergent, then lim|s1|= |lim s1|.

(28) If |s1| is convergent and lim|s1|= 0, thens1 is convergent and lims1 = 0.

(29) If s2 is a subsequence ofs1 ands1 is convergent, thens2 is convergent.

(30) If s2 is a subsequence ofs1 ands1 is convergent, then lims2 = lim s1.

(31) If s1 is convergent and there existsk such that for everyn such thatk ≤ n holdss2(n) =
s1(n), thens2 is convergent.

(32) If s1 is convergent and there existsk such that for everyn such thatk ≤ n holdss2(n) =
s1(n), then lims1 = lim s2.

(33) If s1 is convergent, thens1↑k is convergent and lim(s1↑k) = lim s1.

(35)5 If s1 is convergent and there existsk such thats1 = s2↑k, thens2 is convergent.

(36) If s1 is convergent and there existsk such thats1 = s2↑k, then lims2 = lim s1.

(37) If s1 is convergent and lims1 6= 0, then there existsk such thats1↑k is non-zero.

(38) If s1 is convergent and lims1 6= 0, then there existss2 which is a subsequence ofs1 and
non-zero.

(39) If s1 is constant, thens1 is convergent.

(40) If s1 is constant andr ∈ rngs1 or s1 is constant and there existsn such thats1(n) = r, then
lim s1 = r.

(41) If s1 is constant, then for everyn holds lims1 = s1(n).

(42) If s1 is convergent and lims1 6= 0, then for everys2 such thats2 is a subsequence ofs1 and
non-zero holds lim(s2

−1) = (lim s1)−1.

(43) If 0 < r and for everyn holdss1(n) = 1
n+r , thens1 is convergent.

(44) If 0 < r and for everyn holdss1(n) = 1
n+r , then lims1 = 0.

(45) If for everyn holdss1(n) = 1
n+1, thens1 is convergent and lims1 = 0.

(46) If 0 < r and for everyn holdss1(n) = g
n+r , thens1 is convergent and lims1 = 0.

(47) If 0 < r and for everyn holdss1(n) = 1
n·n+r , thens1 is convergent.

(48) If 0 < r and for everyn holdss1(n) = 1
n·n+r , then lims1 = 0.

(49) If for everyn holdss1(n) = 1
n·n+1, thens1 is convergent and lims1 = 0.

(50) If 0 < r and for everyn holdss1(n) = g
n·n+r , thens1 is convergent and lims1 = 0.

(51) If s1 is non-decreasing and upper bounded, thens1 is convergent.

(52) If s1 is non-increasing and lower bounded, thens1 is convergent.

(53) If s1 is monotone and bounded, thens1 is convergent.

(54) If s1 is upper bounded and non-decreasing, then for everyn holdss1(n)≤ lim s1.

5 The proposition (34) has been removed.
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(55) If s1 is lower bounded and non-increasing, then for everyn holds lims1 ≤ s1(n).

(56) For everys1 there existsN1 such thats1 ·N1 is monotone.

(57) If s1 is bounded, then there existss2 which is a subsequence ofs1 and convergent.

(58) s1 is convergent iff for everyssuch that 0< s there existsn such that for everymsuch that
n≤ m holds|s1(m)−s1(n)|< s.

(59) If s1 is constant ands2 is convergent, then lim(s1 +s2) = s1(0)+ lim s2 and lim(s1−s2) =
s1(0)− lim s2 and lim(s2−s1) = lim s2−s1(0) and lim(s1 s2) = s1(0) · lim s2.
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