The Basic Properties of SCM over Ring

Artur Korniłowicz University of Białystok

MML Identifier: SCMRING2.

WWW: http://mizar.org/JFM/Vol10/scmring2.html

The articles [13], [12], [17], [18], [3], [4], [11], [16], [8], [14], [15], [1], [2], [5], [6], [9], [10], and [7] provide the notation and terminology for this paper.

1. **SCM** OVER RING

In this paper I is an element of \mathbb{Z}_8 , S is a non empty 1-sorted structure, t is an element of S, and x is a set.

Let R be a good ring. The functor SCM(R) yields a strict AMI over {the carrier of R} and is defined by the conditions (Def. 1).

(Def. 1) The carrier of $\mathbf{SCM}(R) = \mathbb{N}$ and the instruction counter of $\mathbf{SCM}(R) = 0$ and the instruction locations of $\mathbf{SCM}(R) = \mathrm{Instr-Loc}_{\mathrm{SCM}}$ and the instruction codes of $\mathbf{SCM}(R) = \mathbb{Z}_8$ and the instructions of $\mathbf{SCM}(R) = \mathrm{Instr}_{\mathrm{SCM}}(R)$ and the object kind of $\mathbf{SCM}(R) = \mathrm{OK}_{\mathrm{SCM}}(R)$ and the execution of $\mathbf{SCM}(R) = \mathrm{Exec}_{\mathrm{SCM}}(R)$.

Let R be a good ring. One can check that $\mathbf{SCM}(R)$ is non empty and non void.

Let R be a good ring, let s be a state of SCM(R), and let a be an element of Data-Loc_{SCM}. Then s(a) is an element of R.

Let R be a good ring. An object of SCM(R) is called a Data-Location of R if:

(Def. 2) It \in (the carrier of SCM(R)) \ (Instr-Loc_{SCM} \cup {0}).

For simplicity, we follow the rules: R denotes a good ring, r denotes an element of R, a, b, c, d_1 , d_2 denote Data-Locations of R, and i_1 denotes an instruction-location of $\mathbf{SCM}(R)$.

We now state the proposition

(1) x is a Data-Location of R iff $x \in \text{Data-Loc}_{SCM}$.

Let R be a good ring, let s be a state of SCM(R), and let a be a Data-Location of R. Then s(a) is an element of R.

The following propositions are true:

- (2) $\langle 0, 0 \rangle \in \operatorname{Instr}_{SCM}(S)$.
- (3) $\langle 0, \emptyset \rangle$ is an instruction of **SCM**(*R*).
- (4) If $x \in \{1,2,3,4\}$, then $\langle x, \langle d_1, d_2 \rangle \rangle \in Instr_{SCM}(S)$.
- (5) $\langle 5, \langle d_1, t \rangle \rangle \in \operatorname{Instr}_{SCM}(S)$.

- (6) $\langle 6, \langle i_1 \rangle \rangle \in \operatorname{Instr}_{SCM}(S)$.
- (7) $\langle 7, \langle i_1, d_1 \rangle \rangle \in \operatorname{Instr}_{\operatorname{SCM}}(S)$.

Let R be a good ring and let a, b be Data-Locations of R. The functor a := b yielding an instruction of $\mathbf{SCM}(R)$ is defined by:

(Def. 3)
$$a := b = \langle 1, \langle a, b \rangle \rangle$$
.

The functor AddTo(a,b) yields an instruction of SCM(R) and is defined as follows:

(Def. 4) AddTo
$$(a,b) = \langle 2, \langle a,b \rangle \rangle$$
.

The functor SubFrom(a,b) yields an instruction of SCM(R) and is defined as follows:

(Def. 5) SubFrom
$$(a,b) = \langle 3, \langle a,b \rangle \rangle$$
.

The functor MultBy(a,b) yielding an instruction of SCM(R) is defined by:

(Def. 6) MultBy
$$(a,b) = \langle 4, \langle a,b \rangle \rangle$$
.

Let R be a good ring, let a be a Data-Location of R, and let r be an element of R. The functor a := r yielding an instruction of $\mathbf{SCM}(R)$ is defined by:

(Def. 7)
$$a := r = \langle 5, \langle a, r \rangle \rangle$$
.

Let R be a good ring and let l be an instruction-location of SCM(R). The functor goto l yields an instruction of SCM(R) and is defined as follows:

(Def. 8) goto
$$l = \langle 6, \langle l \rangle \rangle$$
.

Let R be a good ring, let l be an instruction-location of $\mathbf{SCM}(R)$, and let a be a Data-Location of R. The functor **if** a = 0 **goto** l yields an instruction of $\mathbf{SCM}(R)$ and is defined as follows:

(Def. 9) **if**
$$a = 0$$
 goto $l = \langle 7, \langle l, a \rangle \rangle$.

One can prove the following proposition

(8) Let I be a set. Then I is an instruction of $\mathbf{SCM}(R)$ if and only if one of the following conditions is satisfied:

 $I = \langle 0, \emptyset \rangle$ or there exist a, b such that I = a := b or there exist a, b such that $I = \operatorname{AddTo}(a, b)$ or there exist a, b such that $I = \operatorname{SubFrom}(a, b)$ or there exist a, b such that $I = \operatorname{MultBy}(a, b)$ or there exist i_1 such that $i_2 = i_1$ or there exist $i_2 = i_2$ or there exist $i_3 = i_4$ such that $i_4 = i_4$ or there exist $i_4 = i_4$ such that $i_4 = i_4$ or there exist $i_4 = i_4$ such that $i_4 = i_4$ or there exist $i_4 = i_4$ such that $i_4 = i_4$ or there exist $i_4 = i_4$ such that $i_4 = i_4$ or there exist $i_4 = i_4$ such that $i_4 = i_4$ or there exist $i_4 = i_4$ such that $i_4 = i_4$ or there exist $i_4 = i_4$ such that $i_4 = i_4$ or there exist $i_4 = i_4$ such that $i_4 = i_4$ or there exist $i_4 = i_4$ such that $i_4 = i_4$ or there exist $i_4 = i_4$ such that $i_4 = i_4$ or there exist $i_4 = i_4$ such that $i_4 = i_4$ or there exist $i_4 = i_4$ such that $i_4 = i_4$ or there exist $i_4 = i_4$ such that $i_4 = i_4$ or there exist $i_4 = i_4$ or there exist $i_4 = i_4$ such that $i_4 = i_4$ or there exist $i_4 = i_4$ or there exist $i_4 = i_4$ or the exist

In the sequel s denotes a state of SCM(R).

Let us consider R. One can check that SCM(R) is IC-Ins-separated.

The following two propositions are true:

- (9) $IC_{SCM(R)} = 0.$
- (10) For every **SCM**-state *S* over *R* such that S = s holds $IC_s = IC_s$.

Let R be a good ring and let i_1 be an instruction-location of SCM(R). The functor $Next(i_1)$ yielding an instruction-location of SCM(R) is defined as follows:

(Def. 10) There exists an element m_1 of Instr-Loc_{SCM} such that $m_1 = i_1$ and Next $(i_1) = \text{Next}(m_1)$.

We now state two propositions:

- (11) For every instruction-location i_1 of SCM(R) and for every element m_1 of Instr-Loc_{SCM} such that $m_1 = i_1$ holds $Next(m_1) = Next(i_1)$.
- (12) Let I be an instruction of $\mathbf{SCM}(R)$ and i be an element of $\mathbf{Instr}_{SCM}(R)$. If i = I, then for every \mathbf{SCM} -state S over R such that S = s holds $\mathbf{Exec}(I, s) = \mathbf{Exec}$ - $\mathbf{Res}_{SCM}(i, S)$.

2. USERS GUIDE

We now state several propositions:

- (13) $(\operatorname{Exec}(a:=b,s))(\operatorname{IC}_{\operatorname{SCM}(R)}) = \operatorname{Next}(\operatorname{IC}_s)$ and $(\operatorname{Exec}(a:=b,s))(a) = s(b)$ and for every c such that $c \neq a$ holds $(\operatorname{Exec}(a:=b,s))(c) = s(c)$.
- (14) $(\operatorname{Exec}(\operatorname{AddTo}(a,b),s))(\operatorname{\mathbf{IC}}_{\operatorname{\mathbf{SCM}}(R)}) = \operatorname{Next}(\operatorname{\mathbf{IC}}_s)$ and $(\operatorname{Exec}(\operatorname{AddTo}(a,b),s))(a) = s(a) + s(b)$ and for every c such that $c \neq a$ holds $(\operatorname{Exec}(\operatorname{AddTo}(a,b),s))(c) = s(c)$.
- (15) $(\operatorname{Exec}(\operatorname{SubFrom}(a,b),s))(\operatorname{IC}_{\operatorname{SCM}(R)}) = \operatorname{Next}(\operatorname{IC}_s)$ and $(\operatorname{Exec}(\operatorname{SubFrom}(a,b),s))(a) = s(a) s(b)$ and for every c such that $c \neq a$ holds $(\operatorname{Exec}(\operatorname{SubFrom}(a,b),s))(c) = s(c)$.
- (16) $(\text{Exec}(\text{MultBy}(a,b),s))(\text{IC}_{\text{SCM}(R)}) = \text{Next}(\text{IC}_s)$ and $(\text{Exec}(\text{MultBy}(a,b),s))(a) = s(a) \cdot s(b)$ and for every c such that $c \neq a$ holds (Exec(MultBy(a,b),s))(c) = s(c).
- (17) $(\operatorname{Exec}(\operatorname{goto} i_1, s))(\operatorname{\mathbf{IC}}_{\operatorname{\mathbf{SCM}}(R)}) = i_1 \text{ and } (\operatorname{Exec}(\operatorname{goto} i_1, s))(c) = s(c).$
- (18) If $s(a) = 0_R$, then $(\operatorname{Exec}(\mathbf{if}\ a = 0\ \mathbf{goto}\ i_1, s))(\mathbf{IC}_{\mathbf{SCM}(R)}) = i_1$ and if $s(a) \neq 0_R$, then $(\operatorname{Exec}(\mathbf{if}\ a = 0\ \mathbf{goto}\ i_1, s))(\mathbf{IC}_{\mathbf{SCM}(R)}) = \operatorname{Next}(\mathbf{IC}_s)$ and $(\operatorname{Exec}(\mathbf{if}\ a = 0\ \mathbf{goto}\ i_1, s))(c) = s(c)$.
- (19) $(\operatorname{Exec}(a:=r,s))(\operatorname{\mathbf{IC}}_{\operatorname{\mathbf{SCM}}(R)}) = \operatorname{Next}(\operatorname{\mathbf{IC}}_s)$ and $(\operatorname{Exec}(a:=r,s))(a) = r$ and for every c such that $c \neq a$ holds $(\operatorname{Exec}(a:=r,s))(c) = s(c)$.

3. HALT INSTRUCTION

The following two propositions are true:

- (20) For every instruction I of $\mathbf{SCM}(R)$ such that there exists s such that $(\operatorname{Exec}(I, s))(\mathbf{IC}_{\mathbf{SCM}(R)}) = \operatorname{Next}(\mathbf{IC}_s)$ holds I is non halting.
- (21) For every instruction *I* of **SCM**(*R*) such that $I = \langle 0, 0 \rangle$ holds *I* is halting.

Let us consider *R*, *a*, *b*. One can check the following observations:

- * a := b is non halting,
- * AddTo(a,b) is non halting,
- * SubFrom(a,b) is non halting, and
- * MultBy(a,b) is non halting.

Let us consider R, i_1 . One can check that goto i_1 is non halting.

Let us consider R, a, i_1 . Observe that **if** a = 0 **goto** i_1 is non halting.

Let us consider R, a, r. Note that a := r is non halting.

Let us consider R. Observe that SCM(R) is halting, definite, data-oriented, steady-programmed, and realistic.

The following two propositions are true:

- (29)¹ For every instruction *I* of SCM(R) such that *I* is halting holds $I = halt_{SCM(R)}$.
- (30) $\mathbf{halt_{SCM(R)}} = \langle 0, \emptyset \rangle.$

¹ The propositions (22)–(28) have been removed.

REFERENCES

- [1] Grzegorz Bancerek. König's theorem. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/card_3.html.
- [2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/finseq_1.html.
- [3] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funct_1.html.
- [4] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_ 2 html
- [5] Czesław Byliński. A classical first order language. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/cqc_lang.html.
- [6] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. *Journal of Formalized Mathematics*, 2, 1990. http://mizar.org/JFM/Vol2/funct_4.html.
- [7] Artur Korniłowicz. The construction of SCM over ring. Journal of Formalized Mathematics, 10, 1998. http://mizar.org/JFM/ Vol10/scmringl.html.
- [8] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/vectsp_1.html.
- [9] Yatsuka Nakamura and Andrzej Trybulec. A mathematical model of CPU. Journal of Formalized Mathematics, 4, 1992. http://mizar.org/JFM/Vol4/ami_1.html.
- [10] Yatsuka Nakamura and Andrzej Trybulec. On a mathematical model of programs. Journal of Formalized Mathematics, 4, 1992. http://mizar.org/JFM/Vol4/ami_2.html.
- [11] Dariusz Surowik. Cyclic groups and some of their properties part I. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/gr_cy_1.html.
- [12] Andrzej Trybulec. Enumerated sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/enumsetl.html.
- [13] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [14] Andrzej Trybulec. Tuples, projections and Cartesian products. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/meart_1.html.
- [15] Andrzej Trybulec. Subsets of real numbers. Journal of Formalized Mathematics, Addenda, 2003. http://mizar.org/JFM/Addenda/numbers.html.
- [16] Wojciech A. Trybulec. Vectors in real linear space. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/rlvect 1.html.
- [17] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.
- [18] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/relat 1.html.

Received November 29, 1998

Published January 2, 2004