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The articles|[13],[[12],[[17],[[18],[3],[4],[[11],[[16],[8],[14] [[15], 11],12],/[5],.6].[9],[[10], and
[7] provide the notation and terminology for this paper.

1. SCM OVERRING

In this papel is an element of.g, Sis a non empty 1-sorted structutes an element 0§, andx is
a set.

Let R be a good ring. The funct@CM(R) yields a strict AMI over{the carrier ofR} and is
defined by the conditions (Def. 1).

(Def. 1) The carrier oSCM(R) = N and the instruction counter 8CM(R) = 0 and the instruction
locations of SCM(R) = Instr-Locscm and the instruction codes &CM(R) = Zg and the
instructions ofSCM(R) = Instrscm(R) and the object kind dsCM(R) = OKscem(R) and the
execution ofSCM(R) = Exegcm(R).

Let Rbe a good ring. One can check tt®EM(R) is non empty and non void.

Let Rbe a good ring, let be a state 06CM(R), and leta be an element of Data-Legm. Then
s(a) is an element oR.

Let Rbe a good ring. An object @CM(R) is called a Data-Location dR if:

(Def. 2) Ite (the carrier ofSCM(R)) \ (Instr-LocscmU {0}).

For simplicity, we follow the rulesR denotes a good ring,denotes an element & a, b, ¢, d,
d, denote Data-Locations &, andi; denotes an instruction-location SCM(R).
We now state the proposition

(1) xis a Data-Location oRiff x € Data-Logcw.

Let Rbe a good ring, les be a state 08CM(R), and leta be a Data-Location dR. Thens(a)
is an element oR.
The following propositions are true:

(2) (0, 0) € Instrscm(S).

(3) (0, 0) is an instruction oSCM(R).

(4) Ifxe{1,2,3,4}, then{x, (d1,d2)) € Instrscm(S).
(5) (5, (dy,t)) € Instrscm(S).

1 © Association of Mizar Users
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(6) (6, (i1)) € Instrscm(9).
(7) (7, (i1,d1)) € Instrscm(S).

Let Rbe a good ring and let, b be Data-Locations dR. The functora:=b yielding an instruc-
tion of SCM(R) is defined by:

(Def. 3) a=b={(1, (a,b)).

The functor AddT¢a, b) yields an instruction o8CM(R) and is defined as follows:
(Def. 4) AddTda,b) = (2, (a,b)).

The functor SubFroifa, b) yields an instruction o8CM(R) and is defined as follows:
(Def. 5) SubFroma,b) = (3, (a,b)).

The functor MultBya, b) yielding an instruction o8CM(R) is defined by:
(Def. 6) MultBy(a,b) = (4, (a,b)).

Let R be a good ring, led be a Data-Location dR, and letr be an element oR. The functor
a:=r yielding an instruction o6CM(R) is defined by:

(Def. 7) a=r = (5, (a,r)).

Let R be a good ring and ldtbe an instruction-location @CM(R). The functor gotd yields
an instruction oSCM(R) and is defined as follows:

(Def. 8) gotal = (6, (I)).

Let R be a good ring, let be an instruction-location 8CM(R), and leta be a Data-Location
of R The functorf a= 0 gotol yields an instruction o6CM(R) and is defined as follows:

(Def. 9) if a=0gotol = (7, (I,a)).
One can prove the following proposition

(8) Letl be a set. Then is an instruction ofSCM(R) if and only if one of the following
conditions is satisfied:

| = (0, 0) or there exish, b such thal = a:=b or there exisg, b such thal = AddTo(a, b)
or there exish, b such thal = SubFronfa,b) or there exish, b such that = MultBy(a,b)
or there exist$; such that = gotoi; or there exisg, i; such that =if a=0gotoi; or there
exista, r such that = a:=r.

In the seques denotes a state SCM(R).
Let us consideR. One can check th&CM(R) is IC-Ins-separated.
The following two propositions are true:

(9) ICscmr =0.
(10) For everySCM-stateSoverR such thaS=sholdsIC;=ICs.

Let R be a good ring and lag be an instruction-location dCM(R). The functor Nex(i1)
yielding an instruction-location 8CM(R) is defined as follows:

(Def. 10) There exists an elemant of Instr-Locscm such thatmy = i1 and Nextiz) = Next(my).
We now state two propositions:

(11) For every instruction-location of SCM(R) and for every elementy of Instr-LoGscm
such thatm; = i1 holds Nextmy) = Next(iy).

(12) Letl be an instruction o6CM(R) andi be an element of Insiem(R). If i =1, then for
everySCM-stateSoverR such thaS= sholds Exe€l,s) = Exec-Rescwm(i, S).
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2. UseRSGUIDE

We now state several propositions:

(13) (Exeda=b,s))(ICscmr)) = Next(ICs) and (Exeda:=b,s))(a) = s(b) and for everyc
such that # a holds(Exeda:=b, s))(c) = s(c).

(14) (ExedAddTo(a,b),s))(ICscmr)) = Next(ICs) and (ExedAddTo(a,b),s))(a) = s(a) +
s(b) and for everyc such that # a holds(Exed AddTo(a,b),s))(c) = s(c).

(15) (ExeqSubFronfa,b),s))(ICscmr)) = Next(ICs) and (ExeqSubFronta,b),s))(a) =
s(a) — s(b) and for everyc such that # a holds(Exeq SubFronga, b),s))(c) = s(c).

(16) (ExeqMultBy(a,b),s))(ICscm(r)) = Next(ICs) and (ExeqMultBy(a,b),s))(a) = s(a) -
s(b) and for evenyc such that # a holds(Exed MultBy (a, b),s))(c) = s(c).

(17) (Exeqgotoiy,s))(ICscmr)) = i1 and(Exedgotoiy,s))(c) = s(C).

(18) If s(a) = Og, then (Exedif a = 0gotoi,s))(ICscmr)) = i1 and if s(a) # Og, then
(Exedif a=0gotoiy,s))(ICscmr)) = Next(ICs) and(Exeqif a= 0gotoiy,s))(c) = s(c).

(19) (Exeqa=r,s))(ICscm(r)) = Next(ICs) and (Exeqa:=r,s))(a) = r and for everyc such
thatc # a holds(Exeda:=r,s))(c) = s(c).

3. HALT INSTRUCTION
The following two propositions are true:

(20)  Forevery instructiohof SCM(R) such that there existssuch thatExedl, s)) (IC scu(r)) =
Next(ICs) holdsl is non halting.

(21) For every instructioh of SCM(R) such thal = (0, 0) holdsl is halting.
Let us consideR, a, b. One can check the following observations:
x a=Dbis non halting,
x AddTo(a,b) is non halting,
*  SubFronga,b) is non halting, and
*  MultBy(a,b) is non halting.

Let us consideR, i;. One can check that gotpis non halting.

Let us consideR, a, i;. Observe thaif a= 0 gotoi; is non halting.

Let us consideR, a, r. Note thata:=r is non halting.

Let us consideR. Observe thaBCM(R) is halting, definite, data-oriented, steady-programmed,
and realistic.

The following two propositions are true:

(ZQE] For every instruction of SCM(R) such that is halting holdd = haltscyr)-
(30) haItSCM(R) = (07 @)

1 The propositions (22)—(28) have been removed.
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