## The Construction of SCM over Ring

## Artur Korniłowicz University of Białystok

MML Identifier: SCMRING1.

WWW: http://mizar.org/JFM/Vol10/scmring1.html

The articles [16], [15], [7], [23], [11], [24], [5], [6], [14], [21], [20], [12], [2], [17], [19], [3], [1], [4], [18], [22], [8], [9], [10], and [13] provide the notation and terminology for this paper.

For simplicity, we use the following convention: i, k are natural numbers, I is an element of  $\mathbb{Z}_8$ ,  $i_1$  is an element of Instr-Loc<sub>SCM</sub>,  $d_1$  is an element of Data-Loc<sub>SCM</sub>, and S is a non empty 1-sorted structure.

Let us observe that every set which is infinite is also non trivial and every 1-sorted structure which is infinite is also non trivial.

Let us mention that every non empty loop structure which is trivial is also Abelian, add-associative, right zeroed, and right complementable and every non empty double loop structure which is trivial is also right unital and right distributive.

Let us mention that every element of Data-Loc<sub>SCM</sub> is natural.

Let us observe that Instr<sub>SCM</sub> is non trivial and Instr-Loc<sub>SCM</sub> is infinite.

Let *S* be a non empty 1-sorted structure. The functor  $Instr_{SCM}(S)$  yielding a subset of  $[:\mathbb{Z}_8,(\bigcup\{the\ carrier\ of\ S\}\cup\mathbb{N})^*:]$  is defined by the condition (Def. 1).

(Def. 1) Instr<sub>SCM</sub>(S) =  $\{\langle 0, \emptyset \rangle\} \cup \{\langle I, \langle a, b \rangle \rangle; I$  ranges over elements of  $\mathbb{Z}_8$ , a ranges over elements of Data-Loc<sub>SCM</sub>, b ranges over elements of Data-Loc<sub>SCM</sub>:  $I \in \{1, 2, 3, 4\}\} \cup \{\langle 6, \langle i \rangle \rangle : i$  ranges over elements of Instr-Loc<sub>SCM</sub> $\} \cup \{\langle 7, \langle i, a \rangle \rangle : i$  ranges over elements of Instr-Loc<sub>SCM</sub>, a ranges over elements of Data-Loc<sub>SCM</sub> $\} \cup \{\langle 5, \langle a, r \rangle \rangle : a$  ranges over elements of Data-Loc<sub>SCM</sub>, r ranges over elements of S $\}$ .

Let S be a non empty 1-sorted structure. One can check that  $Instr_{SCM}(S)$  is non trivial. Let S be a non empty 1-sorted structure. We say that S is good if and only if:

(Def. 2) The carrier of  $S \neq \text{Instr-Loc}_{SCM}$  and the carrier of  $S \neq \text{Instr}_{SCM}(S)$ .

Let us note that every non empty 1-sorted structure which is trivial is also good.

One can check that there exists a 1-sorted structure which is strict, trivial, and non empty.

Let us note that there exists a double loop structure which is strict, trivial, and non empty.

Let us observe that there exists a ring which is strict and trivial.

In the sequel G is a good non empty 1-sorted structure.

Let *S* be a non empty 1-sorted structure. The functor  $OK_{SCM}(S)$  yields a function from  $\mathbb{N}$  into {the carrier of S}  $\cup$  {Instr<sub>SCM</sub>(S), Instr-Loc<sub>SCM</sub>} and is defined as follows:

(Def. 3)  $(OK_{SCM}(S))(0) = Instr-Loc_{SCM}$  and for every natural number k holds  $(OK_{SCM}(S))(2 \cdot k + 1) = the$  carrier of S and  $(OK_{SCM}(S))(2 \cdot k + 2) = Instr_{SCM}(S)$ .

Let *S* be a non empty 1-sorted structure. An **SCM**-state over *S* is an element of  $\prod OK_{SCM}(S)$ . Next we state several propositions:

- (1) Instr-Loc<sub>SCM</sub>  $\neq$  Instr<sub>SCM</sub>(S).
- (2)  $(OK_{SCM}(G))(i) = Instr-Loc_{SCM} \text{ iff } i = 0.$
- (3)  $(OK_{SCM}(G))(i)$  = the carrier of G iff there exists k such that  $i = 2 \cdot k + 1$ .
- (4)  $(OK_{SCM}(G))(i) = Instr_{SCM}(G)$  iff there exists k such that  $i = 2 \cdot k + 2$ .
- (5)  $(OK_{SCM}(G))(d_1) = \text{the carrier of } G.$
- (6)  $(OK_{SCM}(G))(i_1) = Instr_{SCM}(G)$ .
- (7)  $\pi_0 \prod OK_{SCM}(S) = Instr-Loc_{SCM}$ .
- (8)  $\pi_{d_1} \prod OK_{SCM}(G) = \text{the carrier of } G.$
- (9)  $\pi_{i_1} \prod OK_{SCM}(G) = Instr_{SCM}(G)$ .

Let S be a non empty 1-sorted structure and let s be an **SCM**-state over S. The functor  $IC_s$  yielding an element of Instr-Loc<sub>SCM</sub> is defined as follows:

(Def. 4) 
$$IC_s = s(0)$$
.

Let R be a good non empty 1-sorted structure, let s be an **SCM**-state over R, and let u be an element of Instr-Loc<sub>SCM</sub>. The functor  $Chg_{SCM}(s,u)$  yielding an **SCM**-state over R is defined by:

(Def. 5) 
$$\operatorname{Chg}_{\operatorname{SCM}}(s, u) = s + (0 \mapsto u).$$

Next we state three propositions:

- (10) For every **SCM**-state s over G and for every element u of Instr-Loc<sub>SCM</sub> holds  $(\operatorname{Chg}_{\operatorname{SCM}}(s,u))(0) = u$ .
- (11) For every **SCM**-state s over G and for every element u of Instr-Loc<sub>SCM</sub> and for every element  $m_1$  of Data-Loc<sub>SCM</sub> holds  $(\operatorname{Chg}_{\operatorname{SCM}}(s,u))(m_1) = s(m_1)$ .
- (12) For every **SCM**-state s over G and for all elements u, v of Instr-Loc<sub>SCM</sub> holds  $(\operatorname{Chg}_{\operatorname{SCM}}(s,u))(v)=s(v)$ .

Let R be a good non empty 1-sorted structure, let s be an **SCM**-state over R, let t be an element of Data-Loc<sub>SCM</sub>, and let u be an element of R. The functor  $\operatorname{Chg}_{\operatorname{SCM}}(s,t,u)$  yields an **SCM**-state over R and is defined by:

(Def. 6) 
$$Chg_{SCM}(s,t,u) = s + \cdot (t \mapsto u).$$

Next we state four propositions:

- (13) For every **SCM**-state s over G and for every element t of Data-Loc<sub>SCM</sub> and for every element u of G holds  $(\operatorname{Chg}_{\operatorname{SCM}}(s,t,u))(0) = s(0)$ .
- (14) For every **SCM**-state *s* over *G* and for every element *t* of Data-Loc<sub>SCM</sub> and for every element *u* of *G* holds  $(\operatorname{Chg}_{\operatorname{SCM}}(s,t,u))(t)=u$ .
- (15) Let s be an **SCM**-state over G, t be an element of Data-Loc<sub>SCM</sub>, u be an element of G, and  $m_1$  be an element of Data-Loc<sub>SCM</sub>. If  $m_1 \neq t$ , then  $(\text{Chg}_{\text{SCM}}(s,t,u))(m_1) = s(m_1)$ .
- (16) Let *s* be an **SCM**-state over *G*, *t* be an element of Data-Loc<sub>SCM</sub>, *u* be an element of *G*, and v be an element of Instr-Loc<sub>SCM</sub>. Then  $(\operatorname{Chg}_{SCM}(s,t,u))(v) = s(v)$ .

Let R be a good non empty 1-sorted structure, let s be an **SCM**-state over R, and let a be an element of Data-Loc<sub>SCM</sub>. Then s(a) is an element of R.

Let S be a non empty 1-sorted structure and let x be an element of  $\operatorname{Instr}_{SCM}(S)$ . Let us assume that there exist elements  $m_1$ ,  $m_2$  of Data- $\operatorname{Loc}_{SCM}$  and I such that  $x = \langle I, \langle m_1, m_2 \rangle \rangle$ . The functor x address<sub>1</sub> yields an element of Data- $\operatorname{Loc}_{SCM}$  and is defined by:

(Def. 7) There exists a finite sequence f of elements of Data-Loc<sub>SCM</sub> such that  $f = x_2$  and x address<sub>1</sub> =  $f_1$ .

The functor *x* address<sub>2</sub> yields an element of Data-Loc<sub>SCM</sub> and is defined as follows:

(Def. 8) There exists a finite sequence f of elements of Data-Loc<sub>SCM</sub> such that  $f = x_2$  and x address<sub>2</sub> =  $f_2$ .

Next we state the proposition

(17) For every element x of Instr<sub>SCM</sub>(S) and for all elements  $m_1$ ,  $m_2$  of Data-Loc<sub>SCM</sub> such that  $x = \langle I, \langle m_1, m_2 \rangle \rangle$  holds x address<sub>1</sub> =  $m_1$  and x address<sub>2</sub> =  $m_2$ .

Let R be a non empty 1-sorted structure and let x be an element of  $Instr_{SCM}(R)$ . Let us assume that there exist an element  $m_1$  of  $Instr-Loc_{SCM}$  and I such that  $x = \langle I, \langle m_1 \rangle \rangle$ . The functor x address $_j$  yields an element of  $Instr-Loc_{SCM}$  and is defined as follows:

(Def. 9) There exists a finite sequence f of elements of Instr-Loc<sub>SCM</sub> such that  $f = x_2$  and  $x \text{ address}_j = f_1$ .

Next we state the proposition

(18) For every element x of  $Instr_{SCM}(S)$  and for every element  $m_1$  of  $Instr-Loc_{SCM}$  such that  $x = \langle I, \langle m_1 \rangle \rangle$  holds x address<sub>i</sub> =  $m_1$ .

Let *S* be a non empty 1-sorted structure and let *x* be an element of  $\operatorname{Instr}_{SCM}(S)$ . Let us assume that there exist an element  $m_1$  of  $\operatorname{Instr-Loc}_{SCM}$ , an element  $m_2$  of  $\operatorname{Data-Loc}_{SCM}$ , and *I* such that  $x = \langle I, \langle m_1, m_2 \rangle \rangle$ . The functor *x* address; yields an element of  $\operatorname{Instr-Loc}_{SCM}$  and is defined by:

(Def. 10) There exists an element  $m_1$  of Instr-Loc<sub>SCM</sub> and there exists an element  $m_2$  of Data-Loc<sub>SCM</sub> such that  $\langle m_1, m_2 \rangle = x_2$  and x address $_i = \langle m_1, m_2 \rangle_1$ .

The functor x address<sub>c</sub> yields an element of Data-Loc<sub>SCM</sub> and is defined as follows:

(Def. 11) There exists an element  $m_1$  of Instr-Loc<sub>SCM</sub> and there exists an element  $m_2$  of Data-Loc<sub>SCM</sub> such that  $\langle m_1, m_2 \rangle = x_2$  and x address<sub>c</sub> =  $\langle m_1, m_2 \rangle_2$ .

We now state the proposition

(19) Let x be an element of  $\operatorname{Instr}_{SCM}(S)$ ,  $m_1$  be an element of  $\operatorname{Instr-Loc}_{SCM}$ , and  $m_2$  be an element of  $\operatorname{Data-Loc}_{SCM}$ . If  $x = \langle I, \langle m_1, m_2 \rangle \rangle$ , then  $x \operatorname{address}_j = m_1$  and  $x \operatorname{address}_c = m_2$ .

Let S be a non empty 1-sorted structure, let d be an element of Data-Loc<sub>SCM</sub>, and let s be an element of S. Then  $\langle d, s \rangle$  is a finite sequence of elements of Data-Loc<sub>SCM</sub>  $\cup$  the carrier of S.

Let *S* be a non empty 1-sorted structure and let *x* be an element of  $\operatorname{Instr}_{SCM}(S)$ . Let us assume that there exist an element  $m_1$  of Data-Loc<sub>SCM</sub>, an element *r* of *S*, and *I* such that  $x = \langle I, \langle m_1, r \rangle \rangle$ . The functor *x* const\_address yielding an element of Data-Loc<sub>SCM</sub> is defined as follows:

(Def. 12) There exists a finite sequence f of elements of Data-Loc<sub>SCM</sub>  $\cup$  the carrier of S such that  $f = x_2$  and x const\_address  $= f_1$ .

The functor x const\_value yielding an element of S is defined by:

(Def. 13) There exists a finite sequence f of elements of Data-Loc<sub>SCM</sub>  $\cup$  the carrier of S such that  $f = x_2$  and x const\_value  $= f_2$ .

Next we state the proposition

(20) Let x be an element of  $\operatorname{Instr}_{SCM}(S)$ ,  $m_1$  be an element of Data-Loc<sub>SCM</sub>, and r be an element of S. If  $x = \langle I, \langle m_1, r \rangle \rangle$ , then  $x \operatorname{const\_address} = m_1$  and  $x \operatorname{const\_value} = r$ .

Let *R* be a good ring, let *x* be an element of  $Instr_{SCM}(R)$ , and let *s* be an **SCM**-state over *R*. The functor Exec-Res<sub>SCM</sub>(x, s) yielding an **SCM**-state over *R* is defined as follows:

 $(\text{Def. 14}) \quad \text{Exec-Res}_{\text{SCM}}(x,s) = \begin{cases} \text{Chg}_{\text{SCM}}(\text{Chg}_{\text{SCM}}(s,x \text{ address}_1,s(x \text{ address}_2)), \text{Next}(\mathbf{IC}_s)), \text{ if thereexistelements } m_1, m_2 \text{ of } \text{Chg}_{\text{SCM}}(\text{Chg}_{\text{SCM}}(s,x \text{ address}_1,s(x \text{ address}_1)+s(x \text{ address}_2)), \text{Next}(\mathbf{IC}_s)), \text{ if thereexistelements } \text{Chg}_{\text{SCM}}(\text{Chg}_{\text{SCM}}(s,x \text{ address}_1,s(x \text{ address}_1)-s(x \text{ address}_2)), \text{Next}(\mathbf{IC}_s)), \text{ if thereexistelements } \text{Chg}_{\text{SCM}}(\text{Chg}_{\text{SCM}}(s,x \text{ address}_1,s(x \text{ address}_1)\cdot s(x \text{ address}_2)), \text{Next}(\mathbf{IC}_s)), \text{ if thereexistelements } \text{Chg}_{\text{SCM}}(s,x \text{ address}_1), \text{ if thereexistelements } m_1 \text{ of } \text{Instr-Loc}_{\text{SCM}} \text{ such that } x = \langle 6, \langle m_1 \rangle \text{ Chg}_{\text{SCM}}(s,(x \text{ address}_2)), \text{Next}(\mathbf{IC}_s))), \text{ if thereexists an element } m_1 \text{ of } \text{Instr-Loc}_{\text{SCM}} \text{ such that } x = \langle 6, \langle m_1 \rangle \text{ Chg}_{\text{SCM}}(s,(x \text{ address}_2)), \text{Next}(\mathbf{IC}_s))), \text{ if thereexists an element } m_1 \text{ of } \text{Instr-Loc}_{\text{SCM}} \text{ such that } x = \langle 6, \langle m_1 \rangle \text{ Chg}_{\text{SCM}}(s,(x \text{ address}_2)), \text{Next}(\mathbf{IC}_s))), \text{ if thereexists an element } m_1 \text{ of } \text{Instr-Loc}_{\text{SCM}} \text{ such that } x = \langle 6, \langle m_1 \rangle \text{ Chg}_{\text{SCM}}(s,(x \text{ address}_2)), \text{Next}(\mathbf{IC}_s))), \text{ if thereexists an element } m_1 \text{ of } \text{Instr-Loc}_{\text{SCM}} \text{ such that } x = \langle 6, \langle m_1 \rangle \text{ changes } \text{ address}_s), \text{Next}(\mathbf{IC}_s)), \text{ if thereexists an element } m_1 \text{ of } \text{Instr-Loc}_{\text{SCM}} \text{ such that } x = \langle 6, \langle m_1 \rangle \text{ changes } \text{ address}_s), \text{Next}(\mathbf{IC}_s)), \text{ if thereexists an element } m_1 \text{ of } \text{Instr-Loc}_{\text{SCM}} \text{ such that } x = \langle 6, \langle m_1 \rangle \text{ changes } \text{ address}_s), \text{Next}(\mathbf{IC}_s)), \text{ if thereexists an element } m_1 \text{ of } \text{Instr-Loc}_{\text{SCM}} \text{ such that } x = \langle 6, \langle m_1 \rangle \text{ changes } \text{ address}_s), \text{Next}(\mathbf{IC}_s), \text{ address}_s \text{ address}_s), \text{Next}(\mathbf{IC}_s), \text{ address}_s \text{ address}_s), \text{ address}_s \text{ address}_s \text{ address}_s \text{ address}_s \text{ address}_s \text{ address}_s \text{ address}_s), \text{ address}_s \text{ address}_s \text{ address}_s \text$ 

Let S be a non empty 1-sorted structure, let f be a function from  $\operatorname{Instr}_{\operatorname{SCM}}(S)$  into  $(\prod \operatorname{OK}_{\operatorname{SCM}}(S))^{\prod \operatorname{OK}_{\operatorname{SCM}}(S)}$ , and let x be an element of  $\operatorname{Instr}_{\operatorname{SCM}}(S)$ . One can verify that f(x) is function-like and relation-like. Let R be a good ring. The functor  $\operatorname{Exec}_{\operatorname{SCM}}(R)$  yielding a function from  $\operatorname{Instr}_{\operatorname{SCM}}(R)$  into  $(\prod \operatorname{OK}_{\operatorname{SCM}}(R))^{\prod \operatorname{OK}_{\operatorname{SCM}}(R)}$  is defined as follows:

(Def. 15) For every element x of  $Instr_{SCM}(R)$  and for every **SCM**-state y over R holds  $(Exec_{SCM}(R))(x)(y) = Exec-Res_{SCM}(x,y)$ .

## REFERENCES

- Grzegorz Bancerek. The fundamental properties of natural numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/nat\_1.html.
- [2] Grzegorz Bancerek. Sequences of ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ordinal2.html.
- [3] Grzegorz Bancerek. König's theorem. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/card\_3.html.
- [4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/finseq\_1.html.
- [5] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct\_1.html.
- [6] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct\_
- [7] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/zfmisc\_1.html.
- [8] Czesław Byliński. A classical first order language. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/cqc\_lang.html.
- [9] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. *Journal of Formalized Mathematics*, 2, 1990. http://mizar.org/JFM/Vol2/funct\_4.html.
- [10] Czesław Byliński. Subcategories and products of categories. *Journal of Formalized Mathematics*, 2, 1990. http://mizar.org/JFM/
- [11] Agata Darmochwał. Finite sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/finset\_1.html.
- [12] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/vectsp\_1.html.
- [13] Yatsuka Nakamura and Andrzej Trybulec. On a mathematical model of programs. Journal of Formalized Mathematics, 4, 1992. http://mizar.org/JFM/Vol4/ami\_2.html.
- [14] Dariusz Surowik. Cyclic groups and some of their properties part I. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/gr cv 1.html.
- [15] Andrzej Trybulec. Enumerated sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/enumset1.html.
- [16] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [17] Andrzej Trybulec. Tuples, projections and Cartesian products. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/
- [18] Andrzej Trybulec. Function domains and Frænkel operator. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/fraenkel.html.
- [19] Andrzej Trybulec. Subsets of real numbers. Journal of Formalized Mathematics, Addenda, 2003. http://mizar.org/JFM/Addenda/numbers.html.
- [20] Wojciech A. Trybulec. Vectors in real linear space. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/rlvect\_1.html.

- [21] Wojciech A. Trybulec. Groups. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/group\_1.html.
- [22] Wojciech A. Trybulec. Pigeon hole principle. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/finseq\_ 4.html.
- $[23] \ \ \textbf{Zinaida Trybulec. Properties of subsets.} \ \textbf{\textit{Journal of Formalized Mathematics}}, 1, 1989. \ \texttt{http://mizar.org/JFM/Vol1/subset\_1.html}.$
- [24] Edmund Woronowicz. Relations and their basic properties. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/relat\_1.html.

Received November 29, 1998

Published January 2, 2004