Computation of Two Consecutive Program Blocks for SCMPDS¹

Jing-Chao Chen Shanghai Jiaotong University

Summary. In this article, a program block without halting instructions is called No-StopCode program block. If a program consists of two blocks, where the first block is parahalting (i.e. halt for all states) and No-StopCode, and the second block is parahalting and shiftable, it can be computed by combining the computation results of the two blocks. For a program which consists of a instruction and a block, we obtain a similar conclusion. For a large amount of programs, the computation method given in the article is useful, but it is not suitable to recursive programs.

MML Identifier: SCMPDS_5.

WWW: http://mizar.org/JFM/Vol11/scmpds_5.html

The articles [13], [17], [5], [6], [15], [2], [10], [11], [14], [12], [4], [9], [16], [7], [1], [8], and [3] provide the notation and terminology for this paper.

1. Preliminaries

For simplicity, we adopt the following convention: x denotes a set, m, n denote natural numbers, a, b denote Int positions, i denotes an instruction of SCMPDS, s, s_1 , s_2 denote states of SCMPDS, k_1 , k_2 denote integers, l_1 denotes an instruction-location of SCMPDS, l, l denote Program-blocks, and l denotes a set with non empty elements.

The following propositions are true:

- (1) Let S be a halting IC-Ins-separated definite non empty non void AMI over N and s be a state of S. If s = Following(s), then for every n holds (Computation(s))(n) = s.
- (2) $x \in \text{dom Load}(i) \text{ iff } x = \text{inspos } 0.$
- (3) If $l_1 \in \text{dom stop } I$ and $(\text{stop } I)(l_1) \neq \text{halt}_{\text{SCMPDS}}$, then $l_1 \in \text{dom } I$.
- (4) $\operatorname{dom} \operatorname{Load}(i) = \{\operatorname{inspos} 0\} \text{ and } (\operatorname{Load}(i))(\operatorname{inspos} 0) = i.$
- (5) $inspos 0 \in dom Load(i)$.
- (6) $\operatorname{cardLoad}(i) = 1$.
- (7) $\operatorname{card} \operatorname{stop} I = \operatorname{card} I + 1$.
- (8) $\operatorname{card} \operatorname{stop} \operatorname{Load}(i) = 2.$

1

© Association of Mizar Users

¹This research is partially supported by the National Natural Science Foundation of China Grant No. 69873033.

- (9) inspos $0 \in \text{dom stop Load}(i)$ and inspos $1 \in \text{dom stop Load}(i)$.
- (10) $(\text{stopLoad}(i))(\text{inspos }0) = i \text{ and } (\text{stopLoad}(i))(\text{inspos }1) = \text{halt}_{\text{SCMPDS}}.$
- (11) $x \in \text{dom stop Load}(i)$ iff x = inspos 0 or x = inspos 1.
- (12) $\operatorname{dom} \operatorname{stop} \operatorname{Load}(i) = \{\operatorname{inspos} 0, \operatorname{inspos} 1\}.$
- (13) inspos $0 \in \text{dom Initialized}(\text{stop Load}(i))$ and inspos $1 \in \text{dom Initialized}(\text{stop Load}(i))$ and (Initialized(stop Load(i)))(inspos 0) = i and (Initialized(stop Load(i)))(inspos 1) = i half i = i and i = i = i and i =
- (14) For all Program-blocks I, J holds Initialized(stop I; J) = (I; (J; SCMPDS Stop))+·Start-At(inspos 0).
- (15) For all Program-blocks I, J holds Initialized(I) \subseteq Initialized(stop I; J).
- (16) $\operatorname{dom} \operatorname{stop} I \subseteq \operatorname{dom} \operatorname{stop} I; J.$
- (17) For all Program-blocks I, J holds Initialized(stop I) $+\cdot$ Initialized(stop I; J) = Initialized(stop I; J).
- (18) If Initialized(I) $\subseteq s$, then $\mathbf{IC}_s = \text{inspos } 0$.
- (19) $(s+\cdot \text{Initialized}(I))(a) = s(a).$
- (20) Let I be a parahalting Program-block. Suppose Initialized(stop I) $\subseteq s_1$ and Initialized(stop I) $\subseteq s_2$ and s_1 and s_2 are equal outside the instruction locations of SCMPDS. Let k be a natural number. Then (Computation(s_1))(k) and (Computation(s_2))(k) are equal outside the instruction locations of SCMPDS and CurInstr((Computation(s_1))(k)) = CurInstr((Computation(s_2))(k)).
- (21) Let I be a parahalting Program-block. Suppose Initialized(stop I) $\subseteq s_1$ and Initialized(stop I) $\subseteq s_2$ and s_1 and s_2 are equal outside the instruction locations of SCMPDS. Then LifeSpan(s_1) = LifeSpan(s_2) and Result(s_1) and Result(s_2) are equal outside the instruction locations of SCMPDS.
- (22) For every Program-block *I* holds $\mathbf{IC}_{\mathrm{IExec}(I,s)} = \mathbf{IC}_{\mathrm{Result}(s+\cdot \mathrm{Initialized}(\mathrm{stop}I))}$.
- (23) Let I be a parahalting Program-block and J be a Program-block. Suppose Initialized(stop I) \subseteq s. Let given m. Suppose $m \le \text{LifeSpan}(s)$. Then (Computation(s))(m) and (Computation(s+ \cdot (I; J)))(m) are equal outside the instruction locations of SCMPDS.
- (24) Let I be a parahalting Program-block and J be a Program-block. Suppose Initialized(stop I) $\subseteq s$. Let given m. Suppose $m \le \text{LifeSpan}(s)$. Then (Computation(s))(m) and (Computation(s+·Initialized(stop I; J)))(m) are equal outside the instruction locations of SCMPDS.
 - 2. Non Halting Instructions and Parahalting Instructions

Let *i* be an instruction of SCMPDS. We say that *i* is No-StopCode if and only if:

(Def. 1) $i \neq \mathbf{halt}_{SCMPDS}$.

Let i be an instruction of SCMPDS. We say that i is parahalting if and only if:

(Def. 2) Load(i) is parahalting.

One can check that there exists an instruction of SCMPDS which is No-StopCode, shiftable, and parahalting.

One can prove the following proposition

(25) If $k_1 \neq 0$, then goto k_1 is No-StopCode.

Let us consider a. One can verify that return a is No-StopCode.

Let us consider a, k_1 . Note that $a := k_1$ is No-StopCode and saveIC (a, k_1) is No-StopCode. Let us consider a, k_1 , k_2 . One can check the following observations:

- * $(a,k_1) \ll 0$ -goto k_2 is No-StopCode,
- * $(a, k_1) \le 0$ -goto k_2 is No-StopCode,
- * $(a, k_1) >= 0$ _goto k_2 is No-StopCode, and
- * $a_{k_1} := k_2$ is No-StopCode.

Let us consider a, k_1 , k_2 . Observe that AddTo(a, k_1 , k_2) is No-StopCode. Let us consider a, b, k_1 , k_2 . One can verify the following observations:

- * AddTo (a, k_1, b, k_2) is No-StopCode,
- * SubFrom (a, k_1, b, k_2) is No-StopCode,
- * MultBy (a, k_1, b, k_2) is No-StopCode,
- * Divide (a, k_1, b, k_2) is No-StopCode, and
- * $(a,k_1) := (b,k_2)$ is No-StopCode.

Let us note that **halt**_{SCMPDS} is parahalting.

Let i be a parabalting instruction of SCMPDS. Note that Load(i) is parabalting.

Let us consider a, k_1 . Observe that $a := k_1$ is parahalting.

Let us consider a, k_1, k_2 . Note that $a_{k_1} := k_2$ is parahalting and AddTo (a, k_1, k_2) is parahalting. Let us consider a, b, k_1, k_2 . One can verify the following observations:

- * AddTo (a, k_1, b, k_2) is parahalting,
- * SubFrom (a, k_1, b, k_2) is parahalting,
- * MultBy (a, k_1, b, k_2) is parahalting,
- * Divide (a, k_1, b, k_2) is parahalting, and
- * $(a,k_1) := (b,k_2)$ is parahalting.

One can prove the following proposition

(26) If InsCode(i) = 1, then i is not parabalting.

Let I_1 be a finite partial state of SCMPDS. We say that I_1 is No-StopCode if and only if:

(Def. 3) For every instruction-location x of SCMPDS such that $x \in \text{dom } I_1 \text{ holds } I_1(x) \neq \text{halt}_{\text{SCMPDS}}$.

One can check that there exists a Program-block which is parahalting, shiftable, and No-StopCode. Let *I*, *J* be No-StopCode Program-blocks. Note that *I*; *J* is No-StopCode.

Let i be a No-StopCode instruction of SCMPDS. Observe that Load(i) is No-StopCode.

Let i be a No-StopCode instruction of SCMPDS and let J be a No-StopCode Program-block. One can verify that i; J is No-StopCode.

Let I be a No-StopCode Program-block and let j be a No-StopCode instruction of SCMPDS. Note that I; j is No-StopCode.

Let i, j be No-StopCode instructions of SCMPDS. One can check that i; j is No-StopCode. The following propositions are true:

- (27) For every parahalting No-StopCode Program-block I such that Initialized(stopI) $\subseteq s$ holds $IC_{(Computation(s))(LifeSpan(s+\cdot Initialized(stop<math>I)))}$ = inspos card I.
- (28) For every parahalting Program-block I and for every natural number k such that $k < \text{LifeSpan}(s+\cdot \text{Initialized}(\text{stop }I))$ holds $\mathbf{IC}_{(\text{Computation}(s+\cdot \text{Initialized}(\text{stop }I)))(k)} \in \text{dom }I$.

- (29) Let I be a parahalting Program-block and k be a natural number. Suppose Initialized(I) $\subseteq s$ and $k \in \text{LifeSpan}(s+\cdot \text{Initialized}(\text{stop }I))$. Then (Computation(s))(k) and (Computation(s+·Initialized(s)))(k) are equal outside the instruction locations of SCMPDS.
- (30) For every parahalting No-StopCode Program-block I such that Initialized(I) $\subseteq s$ holds $\mathbf{IC}_{(Computation(s))(LifeSpan(s+\cdot Initialized(stop <math>I)))}$ = inspos card I.
- (31) For every parahalting Program-block I such that Initialized(I) $\subseteq s$ holds $CurInstr((Computation(s))(LifeSpan(s+\cdot Initialized(stop <math>I$))) = inspos card I.
- (32) Let I be a parahalting No-StopCode Program-block and k be a natural number. If Initialized $(I) \subseteq s$ and $k < \text{LifeSpan}(s + \cdot \text{Initialized}(\text{stop } I))$, then $\text{CurInstr}((\text{Computation}(s))(k)) \neq \text{halt}_{\text{SCMPDS}}$.
- (33) Let I be a parahalting Program-block, J be a Program-block, and k be a natural number. Suppose $k \le \text{LifeSpan}(s+\cdot \text{Initialized}(\text{stop }I))$. Then $(\text{Computation}(s+\cdot \text{Initialized}(\text{stop }I)))(k)$ and $(\text{Computation}(s+\cdot ((I;J)+\cdot \text{Start-At}(\text{inspos }0))))(k)$ are equal outside the instruction locations of SCMPDS.
- (34) Let I be a parahalting Program-block, J be a Program-block, and k be a natural number. Suppose $k \le \text{LifeSpan}(s+\cdot \text{Initialized}(\text{stop }I))$. Then $(\text{Computation}(s+\cdot \text{Initialized}(\text{stop }I)))(k)$ and $(\text{Computation}(s+\cdot \text{Initialized}(\text{stop }I;J)))(k)$ are equal outside the instruction locations of SCMPDS.

Let I be a parahalting Program-block and let J be a parahalting shiftable Program-block. One can verify that I; J is parahalting.

Let *i* be a parahalting instruction of SCMPDS and let *J* be a parahalting shiftable Program-block. Note that *i*; *J* is parahalting.

Let I be a parahalting Program-block and let j be a parahalting shiftable instruction of SCMPDS. Note that I; j is parahalting.

Let i be a parahalting instruction of SCMPDS and let j be a parahalting shiftable instruction of SCMPDS. Observe that i; j is parahalting.

One can prove the following proposition

- (35) Let s, s_1 be states of SCMPDS and J be a parahalting shiftable Program-block. If $s = (\text{Computation}(s_1 + \cdot \text{Initialized}(\text{stop } J)))(m)$, then $\text{Exec}(\text{CurInstr}(s), s + \cdot \text{Start-At}(\mathbf{IC}_s + n)) = \text{Following}(s) + \cdot \text{Start-At}(\mathbf{IC}_{\text{Following}(s)} + n)$.
 - 3. Computation of two Consecutive Program Blocks

One can prove the following propositions:

- (36) Let I be a parahalting No-StopCode Program-block, J be a parahalting shiftable Program-block, and k be a natural number. Suppose Initialized(stopI; J) $\subseteq s$. Then (Computation(Result(s+·Initialized(stopI))+·Initialized(stopJ)))(k)+·Start-At($\mathbf{IC}_{\text{Computation}(\text{Result}(s+\cdot \text{Initialized}(\text{stop}I)))$ card I) and (Computation(s+·Initialized(stopI; J)))(LifeSpan(s+·Initialized(stopI)) + k) are equal outside the instruction locations of SCMPDS.
- (37) Let I be a parahalting No-StopCode Program-block and J be a parahalting shiftable Program-block. Then LifeSpan $(s+\cdot \text{Initialized}(\text{stop }I;J)) = \text{LifeSpan}(s+\cdot \text{Initialized}(\text{stop }I)) + \text{LifeSpan}(\text{Result}(s+\cdot \text{Initialized}(\text{stop }I))) + \cdot \text{Initialized}(\text{stop }J)).$
- (38) Let I be a parahalting No-StopCode Program-block and J be a parahalting shiftable Program-block. Then $\operatorname{IExec}(I; J, s) = \operatorname{IExec}(J, \operatorname{IExec}(I, s)) + \cdot \operatorname{Start-At}(\mathbf{IC}_{\operatorname{IExec}(J, \operatorname{IExec}(I, s))} + \operatorname{card} I)$.
- (39) Let I be a parahalting No-StopCode Program-block and J be a parahalting shiftable Program-block. Then (IExec(I;J,s))(a) = (IExec(J,IExec(I,s)))(a).

4. COMPUTATION OF THE PROGRAM CONSISTING OF A INSTRUCTION AND A BLOCK

Let s be a state of SCMPDS. The functor Initialized(s) yielding a state of SCMPDS is defined by:

(Def. 4) Initialized(s) = s+·Start-At(inspos 0).

Next we state several propositions:

- (40) $\mathbf{IC}_{\text{Initialized}(s)} = \text{inspos 0 and } (\text{Initialized}(s))(a) = s(a) \text{ and } (\text{Initialized}(s))(l_1) = s(l_1).$
- (41) s_1 and s_2 are equal outside the instruction locations of SCMPDS iff $s_1 \upharpoonright (\text{Data-Loc}_{\text{SCM}} \cup \{\text{IC}_{\text{SCMPDS}}\}) = s_2 \upharpoonright (\text{Data-Loc}_{\text{SCM}} \cup \{\text{IC}_{\text{SCMPDS}}\}).$
- (43)¹ If $s_1 \upharpoonright Data-Loc_{SCM} = s_2 \upharpoonright Data-Loc_{SCM}$ and InsCode(i) $\neq 3$, then Exec(i, s_1) $\upharpoonright Data-Loc_{SCM} = Exec(i, s_2) \upharpoonright Data-Loc_{SCM}$.
- (44) For every shiftable instruction i of SCMPDS such that $s_1 \upharpoonright Data-Loc_{SCM} = s_2 \upharpoonright Data-Loc_{SCM}$ holds $Exec(i, s_1) \upharpoonright Data-Loc_{SCM} = Exec(i, s_2) \upharpoonright Data-Loc_{SCM}$.
- (45) For every parahalting instruction i of SCMPDS holds $\operatorname{Exec}(i,\operatorname{Initialized}(s)) = \operatorname{IExec}(\operatorname{Load}(i),s)$.
- (46) Let *I* be a parahalting No-StopCode Program-block and *j* be a parahalting shiftable instruction of SCMPDS. Then (IExec(I; j, s))(a) = (Exec(j, IExec(I, s)))(a).
- (47) Let *i* be a No-StopCode parahalting instruction of SCMPDS and *j* be a shiftable parahalting instruction of SCMPDS. Then (IExec(i; j, s))(a) = (Exec(j, Exec(i, Initialized(s))))(a).

REFERENCES

- [1] Grzegorz Bancerek. Cardinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/card_1.html.
- [2] Grzegorz Bancerek. The fundamental properties of natural numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/nat_1.html.
- [3] Grzegorz Bancerek and Piotr Rudnicki. Development of terminology for scm. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/Vol5/scm_1.html.
- [4] Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/JFM/Vol8/funct_7.html.
- [5] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funct_1.html.
- [6] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. *Journal of Formalized Mathematics*, 2, 1990. http://mizar.org/JFM/Vol2/funct_4.html.
- [7] Jing-Chao Chen. Computation and program shift in the SCMPDS computer. Journal of Formalized Mathematics, 11, 1999. http://mizar.org/JFM/Vol11/scmpds_3.html.
- [8] Jing-Chao Chen. The construction and shiftability of program blocks for SCMPDS. Journal of Formalized Mathematics, 11, 1999. http://mizar.org/JFM/Vol11/scmpds_4.html.
- [9] Jing-Chao Chen. The SCMPDS computer and the basic semantics of its instructions. Journal of Formalized Mathematics, 11, 1999. http://mizar.org/JFM/Vol11/scmpds_2.html.
- [10] Yatsuka Nakamura and Andrzej Trybulec. A mathematical model of CPU. Journal of Formalized Mathematics, 4, 1992. http://mizar.org/JFM/Vol4/ami_1.html.
- [11] Yatsuka Nakamura and Andrzej Trybulec. On a mathematical model of programs. Journal of Formalized Mathematics, 4, 1992. http://mizar.org/JFM/Vol4/ami_2.html.
- [12] Yasushi Tanaka. On the decomposition of the states of SCM. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/Vol5/ami_5.html.
- [13] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [14] Andrzej Trybulec and Yatsuka Nakamura. Some remarks on the simple concrete model of computer. *Journal of Formalized Mathematics*, 5, 1993. http://mizar.org/JFM/Vo15/ami_3.html.
- [15] Michał J. Trybulec. Integers. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/int_1.html.

¹ The proposition (42) has been removed.

- [16] Wojciech A. Trybulec. Groups. *Journal of Formalized Mathematics*, 2, 1990. http://mizar.org/JFM/Vol2/group_1.html.
- [17] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relat_1.html.

Received June 15, 1999

Published January 2, 2004