
JOURNAL OF FORMALIZED MATHEMATICS

Volume11, Released 1999, Published 2003

Inst. of Computer Science, Univ. of Białystok

The Construction and Shiftability of Program Blocks
for SCMPDS1

Jing-Chao Chen
Shanghai Jiaotong University

Summary. In this article, a program block is defined as a finite sequence of instruc-
tions stored consecutively on initial positions. Based on this definition,any program block
with more than two instructions can be viewed as the combination of two smaller program
blocks. To describe the computation of a program block by the result of its two sub-blocks,
we introduce the notions of paraclosed, parahalting, valid, and shiftable, the meaning of which
may be stated as follows:

- a program is paraclosed if and only if any state containing it is closed,

- a program is parahalting if and only if any state containing it is halting,

- in a program block, a jumping instruction is valid if its jumping offset is valid,

- a program block is shiftable if it does not contain any return and saveIC instructions,
and each instruction in it is valid.

When a program block is shiftable, its computing result does not depend on its storage posi-
tion.

MML Identifier: SCMPDS_4.

WWW: http://mizar.org/JFM/Vol11/scmpds_4.html

The articles [14], [13], [20], [15], [21], [4], [6], [18], [2], [5], [9], [10], [11], [16], [12], [3], [8],
[19], [17], [7], and [1] provide the notation and terminology for this paper.

1. DEFINITION OF A PROGRAM BLOCK AND ITS BASIC PROPERTIES

A Program-block is an initial programmed finite partial state of SCMPDS.
We follow the rules:m, n are natural numbers,i, j, k are instructions of SCMPDS, andI , J, K

are Program-blocks.
Let us consideri. The functor Load(i) yielding a Program-block is defined by:

(Def. 1) Load(i) = inspos07−→. i.

Let us consideri. One can check that Load(i) is non empty.
We now state the proposition

(1) For every Program-blockP and for everyn holdsn < cardP iff insposn∈ domP.

Let I be an initial finite partial state of SCMPDS. Observe that ProgramPart(I) is initial.
The following propositions are true:

1This research is partially supported by the National Natural Science Foundation of China Grant No.
69873033.

1 c© Association of Mizar Users

http://mizar.org/JFM/Vol11/scmpds_4.html

THE CONSTRUCTION AND SHIFTABILITY OF PROGRAM. . . 2

(2) domI misses domShift(J,cardI).

(3) For every programmed finite partial stateI of SCMPDS holds cardShift(I ,m) = cardI .

(4) For all finite partial statesI , J of SCMPDS holds ProgramPart(I+·J)= ProgramPart(I)+·ProgramPart(J).

(5) For all finite partial statesI , J of SCMPDS holds Shift(ProgramPart(I+·J),n) =
Shift(ProgramPart(I),n)+·Shift(ProgramPart(J),n).

We use the following convention:a, b are Int positions,s, s1, s2 are states of SCMPDS, andk1,
k2 are integers.

Let us considerI . The functor Initialized(I) yields a finite partial state of SCMPDS and is
defined as follows:

(Def. 2) Initialized(I) = I+·Start-At(inspos0).

The following propositions are true:

(6) InsCode(i) ∈ {0,1,4,5,6} or (Exec(i,s))(ICSCMPDS) = Next(ICs).

(7) ICSCMPDS∈ domInitialized(I).

(8) IC Initialized(I) = inspos0.

(9) I ⊆ Initialized(I).

(11)1 Let s1, s2 be states of SCMPDS. SupposeIC (s1) = IC (s2) and for every Int positiona holds
s1(a) = s2(a). Thens1 ands2 are equal outside the instruction locations of SCMPDS.

(13)2 Supposes1 ands2 are equal outside the instruction locations of SCMPDS. Leta be an Int
position. Thens1(a) = s2(a).

(14) If s1 and s2 are equal outside the instruction locations of SCMPDS, then
s1(DataLoc(s1(a),k1)) = s2(DataLoc(s2(a),k1)).

(15) Supposes1 ands2 are equal outside the instruction locations of SCMPDS. Then Exec(i,s1)
and Exec(i,s2) are equal outside the instruction locations of SCMPDS.

(16) Initialized(I)�the instruction locations of SCMPDS= I .

(17) For all natural numbersk1, k2 such thatk1 6= k2 holds DataLoc(k1,0) 6= DataLoc(k2,0).

(18) For every Int positiond1 there exists a natural numberi such thatd1 = DataLoc(i,0).

The schemeSCMPDSExdeals with a unary functorF yielding an instruction of SCMPDS, a
unary functorG yielding an integer, and an instruction-locationA of SCMPDS, and states that:

There exists a stateSof SCMPDS such thatICS = A and for every natural numberi
holdsS(insposi) = F (i) andS(DataLoc(i,0)) = G(i)

for all values of the parameters.
Next we state a number of propositions:

(19) For every states of SCMPDS holds doms= {ICSCMPDS}∪Data-LocSCM∪ the instruction
locations of SCMPDS.

(20) Letsbe a state of SCMPDS andx be a set. Supposex∈ doms. Thenx is an Int position or
x = ICSCMPDSor x is an instruction-location of SCMPDS.

(21) Lets1, s2 be states of SCMPDS. Then for every instruction-locationl of SCMPDS holds
s1(l) = s2(l) if and only if s1�the instruction locations of SCMPDS= s2�the instruction loca-
tions of SCMPDS.

1 The proposition (10) has been removed.
2 The proposition (12) has been removed.

THE CONSTRUCTION AND SHIFTABILITY OF PROGRAM. . . 3

(22) For every instruction-locationi of SCMPDS holdsi /∈ Data-LocSCM.

(23) For all statess1, s2 of SCMPDS holds for every Int positiona holds s1(a) = s2(a) iff
s1�Data-LocSCM = s2�Data-LocSCM.

(24) Lets1, s2 be states of SCMPDS. Supposes1 ands2 are equal outside the instruction loca-
tions of SCMPDS. Thens1�Data-LocSCM = s2�Data-LocSCM.

(25) For all statess, s3 of SCMPDS and for every setA holds(s3+·s�A)�A = s�A.

(26) For all Program-blocksI , J holds I and J are equal outside the instruction locations of
SCMPDS.

(27) For every Program-blockI holds domInitialized(I) = domI ∪{ICSCMPDS}.

(28) For every Program-blockI and for every setx such thatx ∈ domInitialized(I) holdsx ∈
domI or x = ICSCMPDS.

(29) For every Program-blockI holds(Initialized(I))(ICSCMPDS) = inspos0.

(30) For every Program-blockI holdsICSCMPDS /∈ domI .

(31) For every Program-blockI and for every Int positiona holdsa /∈ domInitialized(I).

In the sequelx denotes a set.
One can prove the following propositions:

(32) If x∈ domI , thenI(x) = (I+·Start-At(insposn))(x).

(33) For every Program-blockI and for every setx such thatx ∈ domI holds I(x) =
(Initialized(I))(x).

(34) For all Program-blocksI , J and for every states of SCMPDS such that Initialized(J) ⊆ s
holdss+· Initialized(I) = s+·I .

(35) For all Program-blocksI , J and for every states of SCMPDS such that Initialized(J) ⊆ s
holds Initialized(I)⊆ s+·I .

(36) Let I , J be Program-blocks ands be a state of SCMPDS. Thens+· Initialized(I) and
s+· Initialized(J) are equal outside the instruction locations of SCMPDS.

2. COMBINING TWO CONSECUTIVEBLOCKS INTO ONE PROGRAM BLOCK

Let I , J be Program-blocks. The functorI ; J yields a Program-block and is defined as follows:

(Def. 3) I ; J = I+·Shift(J,cardI).

We now state several propositions:

(37) For all Program-blocksI , J and for every instruction-locationl of SCMPDS such that
l ∈ domI holds(I ; J)(l) = I(l).

(38) For all Program-blocksI , J and for every instruction-locationl of SCMPDS such that
l ∈ domJ holds(I ; J)(l +cardI) = J(l).

(39) For all Program-blocksI , J holds domI ⊆ dom(I ; J).

(40) For all Program-blocksI , J holdsI ⊆ I ; J.

(41) For all Program-blocksI , J holdsI+·(I ; J) = I ; J.

(42) For all Program-blocksI , J holds Initialized(I)+·(I ; J) = Initialized(I ; J).

THE CONSTRUCTION AND SHIFTABILITY OF PROGRAM. . . 4

3. COMBINING A BLOCK AND A INSTRUCTION INTOONE PROGRAM BLOCK

Let us consideri, J. The functori; J yielding a Program-block is defined by:

(Def. 4) i; J = Load(i); J.

Let us considerI , j. The functorI ; j yields a Program-block and is defined by:

(Def. 5) I ; j = I ; Load(j).

Let us consideri, j. The functori; j yielding a Program-block is defined by:

(Def. 6) i; j = Load(i); Load(j).

One can prove the following propositions:

(43) i; j = Load(i); j.

(44) i; j = i; Load(j).

(45) card(I ; J) = cardI +cardJ.

(46) (I ; J); K = I ; (J; K).

(47) (I ; J); k = I ; (J; k).

(48) (I ; j); K = I ; (j; K).

(49) (I ; j); k = I ; (j; k).

(50) (i; J); K = i; (J; K).

(51) (i; J); k = i; (J; k).

(52) (i; j); K = i; (j; K).

(53) (i; j); k = i; (j; k).

(54) domI misses domStart-At(insposn).

(55) Start-At(inspos0)⊆ Initialized(I).

(56) If I+·Start-At(insposn)⊆ s, thenI ⊆ s.

(57) If Initialized(I)⊆ s, thenI ⊆ s.

(58) (I+·Start-At(insposn))�the instruction locations of SCMPDS= I .

In the sequell , l1 are instruction-locations of SCMPDS.
Next we state four propositions:

(59) a /∈ domStart-At(l).

(60) l1 /∈ domStart-At(l).

(61) a /∈ dom(I+·Start-At(l)).

(62) s+·I+·Start-At(inspos0) = s+·Start-At(inspos0)+·I .

Let s be a state of SCMPDS, letl2 be an Int position, and letk be an integer. Thens+· (l2,k) is
a state of SCMPDS.

THE CONSTRUCTION AND SHIFTABILITY OF PROGRAM. . . 5

4. THE NOTIONS OFPARACLOSED, PARAHALTING AND THEIR BASIC PROPERTIES

Let I be a Program-block. The functor stopI yielding a Program-block is defined as follows:

(Def. 7) stopI = I ; SCMPDS−Stop.

Let I be a Program-block and lets be a state of SCMPDS. The functor IExec(I ,s) yielding a
state of SCMPDS is defined by:

(Def. 8) IExec(I ,s) = Result(s+· Initialized(stopI))+·s�the instruction locations of SCMPDS.

Let I be a Program-block. We say thatI is paraclosed if and only if:

(Def. 9) For every statesof SCMPDS and for every natural numbern such that Initialized(stopI)⊆
s holdsIC (Computation(s))(n) ∈ domstopI .

We say thatI is parahalting if and only if:

(Def. 10) Initialized(stopI) is halting.

Let us mention that there exists a Program-block which is parahalting.
We now state the proposition

(63) For every parahalting Program-blockI such that Initialized(stopI)⊆ s holdss is halting.

Let I be a parahalting Program-block. Observe that Initialized(stopI) is halting.
Let l3, l4 be instruction-locations of SCMPDS and leta, b be instructions of SCMPDS. Then

[l3 7−→ a, l4 7−→ b] is a finite partial state of SCMPDS.
One can prove the following four propositions:

(65)3 IC s 6= Next(ICs).

(66) s2+·[IC (s2) 7−→ goto 1,Next(IC (s2)) 7−→ goto(−1)] is not halting.

(67) Suppose that

(i) s1 ands2 are equal outside the instruction locations of SCMPDS,

(ii) I ⊆ s1,

(iii) I ⊆ s2, and

(iv) for everym such thatm< n holdsIC (Computation(s2))(m) ∈ domI .

Let givenm. Supposem≤ n. Then (Computation(s1))(m) and (Computation(s2))(m) are
equal outside the instruction locations of SCMPDS.

(68) For every states of SCMPDS and for every instruction-locationl of SCMPDS holdsl ∈
doms.

In the sequell1, l5 are instruction-locations of SCMPDS andi1, i2 are instructions of SCMPDS.
Next we state three propositions:

(69) s+·[l1 7−→ i1, l5 7−→ i2] = s+· (l1, i1)+· (l5, i2).

(70) Next(insposn) = insposn+1.

(71) If ICs /∈ domI , then Next(ICs) /∈ domI .

Let us observe that every Program-block which is parahalting is also paraclosed.
The following propositions are true:

(72) domSCMPDS−Stop= {inspos0}.

(73) inspos0∈ domSCMPDS−Stop and(SCMPDS−Stop)(inspos0) = haltSCMPDS.

(74) cardSCMPDS−Stop= 1.

(75) inspos0∈ domstopI .

(76) Let p be a programmed finite partial state of SCMPDS,k be a natural number, andi3 be an
instruction-location of SCMPDS. Ifi3 ∈ domp, theni3 +k∈ domShift(p,k).

3 The proposition (64) has been removed.

THE CONSTRUCTION AND SHIFTABILITY OF PROGRAM. . . 6

5. SHIFTABILITY OF PROGRAM BLOCKS AND INSTRUCTIONS

Let i be an instruction of SCMPDS and letn be a natural number. We say thati valid at n if and
only if the conditions (Def. 11) are satisfied.

(Def. 11)(i) If InsCode(i) = 0, then there existsk1 such thati = gotok1 andn+k1 ≥ 0,

(ii) if InsCode(i) = 4, then there exista, k1, k2 such thati = (a,k1) <> 0 gotok2 andn+k2≥
0,

(iii) if InsCode(i) = 5, then there exista, k1, k2 such thati = (a,k1) <= 0 gotok2 andn+k2≥
0, and

(iv) if InsCode(i) = 6, then there exista, k1, k2 such thati = (a,k1) >= 0 gotok2 andn+k2≥
0.

We now state the proposition

(77) Let i be an instruction of SCMPDS andm, n be natural numbers. Ifi valid atmandm≤ n,
theni valid atn.

Let I1 be a finite partial state of SCMPDS. We say thatI1 is shiftable if and only if:

(Def. 12) For alln, i such that insposn ∈ domI1 and i = I1(insposn) holds InsCode(i) 6= 1 and
InsCode(i) 6= 3 andi valid atn.

Let us mention that there exists a Program-block which is parahalting and shiftable.
Let i be an instruction of SCMPDS. We say thati is shiftable if and only if:

(Def. 13) InsCode(i) = 2 or InsCode(i) > 6.

Let us note that there exists an instruction of SCMPDS which is shiftable.
Let us considera, k1. Note thata:=k1 is shiftable.
Let us considera, k1, k2. Note thatak1:=k2 is shiftable.
Let us considera, k1, k2. Observe that AddTo(a,k1,k2) is shiftable.
Let us considera, b, k1, k2. One can check the following observations:

∗ AddTo(a,k1,b,k2) is shiftable,

∗ SubFrom(a,k1,b,k2) is shiftable,

∗ MultBy(a,k1,b,k2) is shiftable,

∗ Divide(a,k1,b,k2) is shiftable, and

∗ (a,k1) := (b,k2) is shiftable.

Let I , J be shiftable Program-blocks. Note thatI ; J is shiftable.
Let i be a shiftable instruction of SCMPDS. Note that Load(i) is shiftable.
Let i be a shiftable instruction of SCMPDS and letJ be a shiftable Program-block. Observe that

i; J is shiftable.
Let I be a shiftable Program-block and letj be a shiftable instruction of SCMPDS. One can

verify thatI ; j is shiftable.
Let i, j be shiftable instructions of SCMPDS. Observe thati; j is shiftable.
Let us note that SCMPDS−Stop is parahalting and shiftable.
Let I be a shiftable Program-block. Note that stopI is shiftable.
We now state the proposition

(78) For every shiftable Program-blockI and for every integerk1 such that cardI +k1≥ 0 holds
I ; gotok1 is shiftable.

Let n be a natural number. One can verify that Load(goton) is shiftable.
Next we state the proposition

THE CONSTRUCTION AND SHIFTABILITY OF PROGRAM. . . 7

(79) Let I be a shiftable Program-block,k1, k2 be integers, anda be an Int position. If cardI +
k2 ≥ 0, thenI ; ((a,k1) <> 0 gotok2) is shiftable.

Let k1 be an integer, leta be an Int position, and letn be a natural number. Observe that
Load((a,k1) <> 0 goton) is shiftable.

One can prove the following proposition

(80) Let I be a shiftable Program-block,k1, k2 be integers, anda be an Int position. If cardI +
k2 ≥ 0, thenI ; ((a,k1) <= 0 gotok2) is shiftable.

Let k1 be an integer, leta be an Int position, and letn be a natural number. Observe that
Load((a,k1) <= 0 goton) is shiftable.

The following proposition is true

(81) Let I be a shiftable Program-block,k1, k2 be integers, anda be an Int position. If cardI +
k2 ≥ 0, thenI ; ((a,k1) >= 0 gotok2) is shiftable.

Let k1 be an integer, leta be an Int position, and letn be a natural number. One can check that
Load((a,k1) >= 0 goton) is shiftable.

One can prove the following three propositions:

(82) Let s1, s2 be states of SCMPDS,n, m be natural numbers, andk1 be an integer. If
IC (s1) = insposm and m+ k1 ≥ 0 and IC (s1) + n = IC (s2), then ICplusConst(s1,k1) + n =
ICplusConst(s2,k1).

(83) Let s1, s2 be states of SCMPDS,n, m be natural numbers, andi be an instruction of
SCMPDS. SupposeIC (s1) = insposmandi valid atmand InsCode(i) 6= 1 and InsCode(i) 6= 3
and IC (s1) + n = IC (s2) and s1�Data-LocSCM = s2�Data-LocSCM. Then ICExec(i,s1) + n =
ICExec(i,s2) and Exec(i,s1)�Data-LocSCM = Exec(i,s2)�Data-LocSCM.

(84) LetJ be a parahalting shiftable Program-block. Suppose Initialized(stopJ) ⊆ s1. Let n be
a natural number. Suppose Shift(stopJ,n)⊆ s2 andIC (s2) = insposn ands1�Data-LocSCM =
s2�Data-LocSCM. Let i be a natural number. ThenIC (Computation(s1))(i) + n =
IC (Computation(s2))(i) and CurInstr((Computation(s1))(i)) = CurInstr((Computation(s2))(i))
and(Computation(s1))(i)�Data-LocSCM = (Computation(s2))(i)�Data-LocSCM.

REFERENCES

[1] Grzegorz Bancerek. Cardinal numbers.Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/card_1.html.

[2] Grzegorz Bancerek. The fundamental properties of natural numbers.Journal of Formalized Mathematics, 1, 1989. http://mizar.
org/JFM/Vol1/nat_1.html.

[3] Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions.Journal of Formalized Mathematics, 8, 1996.http:
//mizar.org/JFM/Vol8/funct_7.html.

[4] Czesław Bylínski. Functions and their basic properties.Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/
funct_1.html.

[5] Czesław Bylínski. A classical first order language.Journal of Formalized Mathematics, 2, 1990.http://mizar.org/JFM/Vol2/cqc_
lang.html.

[6] Czesław Bylínski. The modification of a function by a function and the iteration of the composition of a function.Journal of Formalized
Mathematics, 2, 1990.http://mizar.org/JFM/Vol2/funct_4.html.

[7] Jing-Chao Chen. Computation and program shift in the SCMPDS computer.Journal of Formalized Mathematics, 11, 1999. http:
//mizar.org/JFM/Vol11/scmpds_3.html.

[8] Jing-Chao Chen. The SCMPDS computer and the basic semantics of its instructions.Journal of Formalized Mathematics, 11, 1999.
http://mizar.org/JFM/Vol11/scmpds_2.html.

[9] Agata Darmochwał. Finite sets.Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/finset_1.html.

[10] Yatsuka Nakamura and Andrzej Trybulec. A mathematical model of CPU.Journal of Formalized Mathematics, 4, 1992. http:
//mizar.org/JFM/Vol4/ami_1.html.

[11] Yatsuka Nakamura and Andrzej Trybulec. On a mathematical model of programs.Journal of Formalized Mathematics, 4, 1992.
http://mizar.org/JFM/Vol4/ami_2.html.

http://mizar.org/JFM/Vol1/card_1.html
http://mizar.org/JFM/Vol1/nat_1.html
http://mizar.org/JFM/Vol1/nat_1.html
http://mizar.org/JFM/Vol8/funct_7.html
http://mizar.org/JFM/Vol8/funct_7.html
http://mizar.org/JFM/Vol1/funct_1.html
http://mizar.org/JFM/Vol1/funct_1.html
http://mizar.org/JFM/Vol2/cqc_lang.html
http://mizar.org/JFM/Vol2/cqc_lang.html
http://mizar.org/JFM/Vol2/funct_4.html
http://mizar.org/JFM/Vol11/scmpds_3.html
http://mizar.org/JFM/Vol11/scmpds_3.html
http://mizar.org/JFM/Vol11/scmpds_2.html
http://mizar.org/JFM/Vol1/finset_1.html
http://mizar.org/JFM/Vol4/ami_1.html
http://mizar.org/JFM/Vol4/ami_1.html
http://mizar.org/JFM/Vol4/ami_2.html

THE CONSTRUCTION AND SHIFTABILITY OF PROGRAM. . . 8

[12] Yasushi Tanaka. On the decomposition of the states of SCM.Journal of Formalized Mathematics, 5, 1993.http://mizar.org/JFM/
Vol5/ami_5.html.

[13] Andrzej Trybulec. Enumerated sets.Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/enumset1.html.

[14] Andrzej Trybulec. Tarski Grothendieck set theory.Journal of Formalized Mathematics, Axiomatics, 1989.http://mizar.org/JFM/
Axiomatics/tarski.html.

[15] Andrzej Trybulec. Subsets of real numbers.Journal of Formalized Mathematics, Addenda, 2003.http://mizar.org/JFM/Addenda/
numbers.html.

[16] Andrzej Trybulec and Yatsuka Nakamura. Some remarks on the simple concrete model of computer.Journal of Formalized Mathematics,
5, 1993.http://mizar.org/JFM/Vol5/ami_3.html.

[17] Andrzej Trybulec and Yatsuka Nakamura. Modifying addresses of instructions ofSCMFSA. Journal of Formalized Mathematics, 8,
1996.http://mizar.org/JFM/Vol8/scmfsa_4.html.

[18] Michał J. Trybulec. Integers.Journal of Formalized Mathematics, 2, 1990.http://mizar.org/JFM/Vol2/int_1.html.

[19] Wojciech A. Trybulec. Groups.Journal of Formalized Mathematics, 2, 1990.http://mizar.org/JFM/Vol2/group_1.html.

[20] Zinaida Trybulec. Properties of subsets.Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/subset_1.html.

[21] Edmund Woronowicz. Relations and their basic properties.Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/
Vol1/relat_1.html.

Received June 15, 1999

Published January 2, 2004

http://mizar.org/JFM/Vol5/ami_5.html
http://mizar.org/JFM/Vol5/ami_5.html
http://mizar.org/JFM/Vol1/enumset1.html
http://mizar.org/JFM/Axiomatics/tarski.html
http://mizar.org/JFM/Axiomatics/tarski.html
http://mizar.org/JFM/Addenda/numbers.html
http://mizar.org/JFM/Addenda/numbers.html
http://mizar.org/JFM/Vol5/ami_3.html
http://mizar.org/JFM/Vol8/scmfsa_4.html
http://mizar.org/JFM/Vol2/int_1.html
http://mizar.org/JFM/Vol2/group_1.html
http://mizar.org/JFM/Vol1/subset_1.html
http://mizar.org/JFM/Vol1/relat_1.html
http://mizar.org/JFM/Vol1/relat_1.html

	the construction and shiftability of program … By jing-chao chen

