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Summary. A finite partial state is said to be autonomic if the computation results
in any two states containing it are same on its domain. On the basis of this definition, this
article presents some computation results about autonomic finite partial states of the SCMPDS
computer. Because the instructions of the SCMPDS computer are more complicated than
those of the SCMFSA computer, the results given by this article are weaker than those reported
previously by the article on the SCMFSA computer. The second task of this article is to define
the notion of program shift. The importance of this notion is that the computation of some
program blocks can be simplified by shifting a program block to the initial position.

MML Identifier: SCMPDS_3.

WWW: http://mizar.org/JFM/Vol11/scmpds_3.html

The articles [15], [20], [6], [3], [2], [4], [21], [5], [8], [18], [1], [7], [10], [11], [12], [16], [14], [9],
[19], [13], and [17] provide the notation and terminology for this paper.

1. PRELIMINARIES

In this paperk, m, n denote natural numbers.
The following propositions are true:

(1) Letn be a natural number. Supposen≤ 13. Thenn = 0 orn = 1 orn = 2 orn = 3 orn = 4
or n = 5 orn = 6 orn = 7 orn = 8 orn = 9 orn = 10 orn = 11 orn = 12 orn = 13.

(2) For every integerk1 and for all statess1, s2 of SCMPDS such thatIC (s1) = IC (s2) holds
ICplusConst(s1,k1) = ICplusConst(s2,k1).

(3) Let k1 be an integer,a be an Int position, ands1, s2 be states of SCMPDS. If
s1�Data-LocSCM = s2�Data-LocSCM, thens1(DataLoc(s1(a),k1)) = s2(DataLoc(s2(a),k1)).

(4) For every Int positiona and for all statess1, s2 of SCMPDS such thats1�Data-LocSCM =
s2�Data-LocSCM holdss1(a) = s2(a).

(5) The carrier of SCMPDS= {ICSCMPDS} ∪ Data-LocSCM∪ the instruction locations of
SCMPDS.

(6) ICSCMPDS /∈ Data-LocSCM.

(7) For all statess1, s2 of SCMPDS such thats1�(Data-LocSCM ∪ {ICSCMPDS}) =
s2�(Data-LocSCM ∪ {ICSCMPDS}) and for every instruction l of SCMPDS holds
Exec(l ,s1)�(Data-LocSCM∪{ICSCMPDS}) = Exec(l ,s2)�(Data-LocSCM∪{ICSCMPDS}).

1This work was done while the author visited Shinshu University March–April 1999.
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(8) For every instructioni of SCMPDS and for every states of SCMPDS holds
Exec(i,s)�Instr-LocSCM = s�Instr-LocSCM.

2. FINITE PARTIAL STATES OFSCMPDS

The following propositions are true:

(9) For every finite partial statep of SCMPDS holds DataPart(p) = p�Data-LocSCM.

(10) For every finite partial statep of SCMPDS holdsp is data-only iff domp⊆ Data-LocSCM.

(11) For every finite partial statep of SCMPDS holds domDataPart(p)⊆ Data-LocSCM.

(12) For every finite partial statep of SCMPDS holds domProgramPart(p) ⊆ the instruction
locations of SCMPDS.

(13) Leti be an instruction of SCMPDS,sbe a state of SCMPDS, andp be a programmed finite
partial state of SCMPDS. Then Exec(i,s+·p) = Exec(i,s)+·p.

(14) For every states of SCMPDS and for every instruction-locationi1 of SCMPDS and for
every Int positiona holdss(a) = (s+·Start-At(i1))(a).

(15) For all statess, t of SCMPDS holdss+·t�Data-LocSCM is a state of SCMPDS.

3. AUTONOMIC FINITE PARTIAL STATES OFSCMPDSAND ITS COMPUTATION

Let l1 be an Int position and leta be an integer. Thenl1 7−→. a is a finite partial state of SCMPDS.
We now state the proposition

(16) For every autonomic finite partial statep of SCMPDS such that DataPart(p) 6= /0 holds
ICSCMPDS∈ domp.

Let us note that there exists a finite partial state of SCMPDS which is autonomic and non pro-
grammed.

One can prove the following propositions:

(17) For every autonomic non programmed finite partial statep of SCMPDS holdsICSCMPDS∈
domp.

(18) Lets1, s2 be states of SCMPDS andk1, k2, m be integers. IfIC (s1) = IC (s2) andk1 6= k2

andm= IC (s1) and(m−2)+2 ·k1 ≥ 0 and(m−2)+2 ·k2 ≥ 0, then ICplusConst(s1,k1) 6=
ICplusConst(s2,k2).

(19) For all statess1, s2 of SCMPDS and for all natural numbersk1, k2 such thatIC (s1) = IC (s2)
andk1 6= k2 holds ICplusConst(s1,k1) 6= ICplusConst(s2,k2).

(20) For every states of SCMPDS holds Next(ICs) = ICplusConst(s,1).

(21) For every autonomic finite partial statep of SCMPDS such thatICSCMPDS∈ domp holds
IC p ∈ domp.

(22) Let p be an autonomic non programmed finite partial state of SCMPDS ands be a
state of SCMPDS. Ifp ⊆ s, then for every natural numberi holds IC (Computation(s))(i) ∈
domProgramPart(p).

(23) Let p be an autonomic non programmed finite partial state of SCMPDS ands1,
s2 be states of SCMPDS. Supposep ⊆ s1 and p ⊆ s2. Let i be a natural num-
ber. ThenIC (Computation(s1))(i) = IC (Computation(s2))(i) and CurInstr((Computation(s1))(i)) =
CurInstr((Computation(s2))(i)).
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(24) Let p be an autonomic non programmed finite partial state of SCMPDS ands1, s2

be states of SCMPDS. Supposep ⊆ s1 and p ⊆ s2. Let i be a natural number,k1,
k2 be integers, anda, b be Int positions. Suppose CurInstr((Computation(s1))(i)) =
(a,k1) := (b,k2) and a ∈ domp and DataLoc((Computation(s1))(i)(a),k1) ∈ domp. Then
(Computation(s1))(i)(DataLoc((Computation(s1))(i)(b),k2))= (Computation(s2))(i)(DataLoc((Computation(s2))(i)(b),k2)).

(25) Let p be an autonomic non programmed finite partial state of SCMPDS ands1, s2

be states of SCMPDS. Supposep ⊆ s1 and p ⊆ s2. Let i be a natural number,k1,
k2 be integers, anda, b be Int positions. Suppose CurInstr((Computation(s1))(i)) =
AddTo(a,k1,b,k2) anda∈ domp and DataLoc((Computation(s1))(i)(a),k1) ∈ domp. Then
(Computation(s1))(i)(DataLoc((Computation(s1))(i)(b),k2))= (Computation(s2))(i)(DataLoc((Computation(s2))(i)(b),k2)).

(26) Let p be an autonomic non programmed finite partial state of SCMPDS ands1, s2

be states of SCMPDS. Supposep ⊆ s1 and p ⊆ s2. Let i be a natural number,k1,
k2 be integers, anda, b be Int positions. Suppose CurInstr((Computation(s1))(i)) =
SubFrom(a,k1,b,k2) and a ∈ domp and DataLoc((Computation(s1))(i)(a),k1) ∈ domp.
Then(Computation(s1))(i)(DataLoc((Computation(s1))(i)(b),k2))= (Computation(s2))(i)(DataLoc((Computation(s2))(i)(b),k2)).

(27) Let p be an autonomic non programmed finite partial state of SCMPDS ands1, s2

be states of SCMPDS. Supposep ⊆ s1 and p ⊆ s2. Let i be a natural number,k1,
k2 be integers, anda, b be Int positions. Suppose CurInstr((Computation(s1))(i)) =
MultBy(a,k1,b,k2) anda∈ domp and DataLoc((Computation(s1))(i)(a),k1) ∈ domp. Then
(Computation(s1))(i)(DataLoc((Computation(s1))(i)(a),k1))·(Computation(s1))(i)(DataLoc((Computation(s1))(i)(b),k2))=
(Computation(s2))(i)(DataLoc((Computation(s2))(i)(a),k1))·(Computation(s2))(i)(DataLoc((Computation(s2))(i)(b),k2)).

(28) Let p be an autonomic non programmed finite partial state of SCMPDS ands1, s2

be states of SCMPDS. Supposep ⊆ s1 and p ⊆ s2. Let i, m be natural numbers,a
be an Int position, andk1, k2 be integers. Suppose CurInstr((Computation(s1))(i)) =
(a,k1) <> 0 gotok2 and m = IC (Computation(s1))(i) and (m− 2) + 2 · k2 ≥ 0 and k2 6=
1. Then (Computation(s1))(i)(DataLoc((Computation(s1))(i)(a),k1)) = 0 if and only if
(Computation(s2))(i)(DataLoc((Computation(s2))(i)(a),k1)) = 0.

(29) Let p be an autonomic non programmed finite partial state of SCMPDS ands1, s2

be states of SCMPDS. Supposep ⊆ s1 and p ⊆ s2. Let i, m be natural numbers,a
be an Int position, andk1, k2 be integers. Suppose CurInstr((Computation(s1))(i)) =
(a,k1) <= 0 gotok2 and m = IC (Computation(s1))(i) and (m− 2) + 2 · k2 ≥ 0 and k2 6=
1. Then (Computation(s1))(i)(DataLoc((Computation(s1))(i)(a),k1)) > 0 if and only if
(Computation(s2))(i)(DataLoc((Computation(s2))(i)(a),k1)) > 0.

(30) Let p be an autonomic non programmed finite partial state of SCMPDS ands1, s2

be states of SCMPDS. Supposep ⊆ s1 and p ⊆ s2. Let i, m be natural numbers,a
be an Int position, andk1, k2 be integers. Suppose CurInstr((Computation(s1))(i)) =
(a,k1) >= 0 gotok2 and m = IC (Computation(s1))(i) and (m− 2) + 2 · k2 ≥ 0 and k2 6=
1. Then (Computation(s1))(i)(DataLoc((Computation(s1))(i)(a),k1)) < 0 if and only if
(Computation(s2))(i)(DataLoc((Computation(s2))(i)(a),k1)) < 0.

4. PROGRAM SHIFT IN THE SCMPDS COMPUTER

Let us considerk. The functor insposk yields an instruction-location of SCMPDS and is defined by:

(Def. 2)1 insposk = ik.

One can prove the following propositions:

(31) For all natural numbersk1, k2 such thatk1 6= k2 holds insposk1 6= insposk2.

(32) For every instruction-locationi2 of SCMPDS there exists a natural numberi such that
i2 = insposi.

1 The definition (Def. 1) has been removed.



COMPUTATION AND PROGRAM SHIFT IN THE. . . 4

Let l2 be an instruction-location of SCMPDS and letk be a natural number. The functorl2 +k
yielding an instruction-location of SCMPDS is defined by:

(Def. 3) There exists a natural numbermsuch thatl2 = insposm andl2 +k = insposm+k.

The functorl2−′ k yields an instruction-location of SCMPDS and is defined as follows:

(Def. 4) There exists a natural numbermsuch thatl2 = insposm andl2−′ k = insposm−′ k.

The following propositions are true:

(33) For every instruction-locationl of SCMPDS and for allm, n holds(l +m)+n= l +(m+n).

(34) For every instruction-locationl2 of SCMPDS and for every natural numberk holds(l2 +
k)−′ k = l2.

(35) For all instruction-locationsl3, l4 of SCMPDS and for every natural numberk holds
Start-At(l3 +k) = Start-At(l4 +k) iff Start-At(l3) = Start-At(l4).

(36) For all instruction-locationsl3, l4 of SCMPDS and for every natural numberk such that
Start-At(l3) = Start-At(l4) holds Start-At(l3−′ k) = Start-At(l4−′ k).

Let I1 be a finite partial state of SCMPDS. We say thatI1 is initial if and only if:

(Def. 5) For allm, n such that insposn∈ domI1 andm< n holds insposm∈ domI1.

The finite partial state SCMPDS−Stop of SCMPDS is defined as follows:

(Def. 6) SCMPDS−Stop= inspos07−→. haltSCMPDS.

Let us mention that SCMPDS−Stop is non empty, initial, and programmed.
One can check that there exists a finite partial state of SCMPDS which is initial, programmed,

and non empty.
Let p be a programmed finite partial state of SCMPDS and letk be a natural number. The

functor Shift(p,k) yields a programmed finite partial state of SCMPDS and is defined by:

(Def. 7) domShift(p,k) = {insposm+k : insposm∈ domp} and for everym such that insposm∈
domp holds(Shift(p,k))(insposm+k) = p(insposm).

The following propositions are true:

(37) Letl be an instruction-location of SCMPDS,k be a natural number, andp be a programmed
finite partial state of SCMPDS. Ifl ∈ domp, then(Shift(p,k))(l +k) = p(l).

(38) Let p be a programmed finite partial state of SCMPDS andk be a natural number. Then
domShift(p,k) = {i2 +k; i2 ranges over instruction-locations of SCMPDS:i2 ∈ domp}.

(39) For every programmed finite partial stateI of SCMPDS holds Shift(Shift(I ,m),n) =
Shift(I ,m+n).

(40) Lets be a programmed finite partial state of SCMPDS,f be a function from the instruc-
tions of SCMPDS into the instructions of SCMPDS, and givenn. Then Shift( f · s,n) =
f ·Shift(s,n).

(41) For all programmed finite partial statesI , J of SCMPDS holds Shift(I+·J,n) =
Shift(I ,n)+·Shift(J,n).
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