
JOURNAL OF FORMALIZED MATHEMATICS

Volume11, Released 1999, Published 2003

Inst. of Computer Science, Univ. of Białystok

The SCMPDS Computer and the Basic Semantics of
its Instructions1

Jing-Chao Chen
Shanghai Jiaotong University

Summary. The article defines the SCMPDS computer and its instructions. The SCM-
PDS computer consists of such instructions as conventional arithmetic, “goto”, “return” and
“save instruction-counter” (“saveIC” for short). The address used in the “goto” instruction
is an offset value rather than a pointer in the standard sense. Thus, we don’t define halting
instruction directly but define it by “goto 0” instruction. The “saveIC” and “return” equal
almost call and return statements in the usual high programming language. Theoretically, the
SCMPDS computer can implement all algorithms described by the usual high programming
language including recursive routine. In addition, we describe the execution semantics and
halting properties of each instruction.

MML Identifier: SCMPDS_2.

WWW: http://mizar.org/JFM/Vol11/scmpds_2.html

The articles [16], [15], [22], [2], [18], [5], [6], [20], [1], [17], [7], [3], [13], [23], [8], [10], [4], [11],
[12], [9], [19], [21], and [14] provide the notation and terminology for this paper.

1. THE SCMPDS COMPUTER

In this paperx denotes a set andi, k denote natural numbers.
The strict AMI SCMPDS over{Z} is defined by:

(Def. 1) SCMPDS= 〈N,0, Instr-LocSCM,Z14,SCMPDS-Instr,SCMPDS-OK,SCMPDS-Exec〉.

Let us observe that SCMPDS is non empty and non void.
We now state three propositions:

(1) There existsk such thatx = 2·k+2 iff x∈ Instr-LocSCM.

(2) SCMPDS is data-oriented.

(3) SCMPDS is definite.

One can check that SCMPDS is IC-Ins-separated, data-oriented, and definite.
We now state two propositions:

(4)(i) The instruction locations of SCMPDS6= Z,

(ii) the instructions of SCMPDS6= Z, and

(iii) the instruction locations of SCMPDS6= the instructions of SCMPDS.

1This work was done while the author visited Shinshu University March–April 1999.

1 c© Association of Mizar Users

http://mizar.org/JFM/Vol11/scmpds_2.html

THE SCMPDS COMPUTER AND THE BASIC. . . 2

(5) N = {0}∪Data-LocSCM∪ Instr-LocSCM.

In the sequels denotes a state of SCMPDS.
One can prove the following two propositions:

(6) ICSCMPDS= 0.

(7) For every SCMPDS-StateSsuch thatS= s holdsIC s = ICS.

2. THE MEMORY STRUCTURE

An object of SCMPDS is called an Int position if:

(Def. 2) It∈ Data-LocSCM.

The following propositions are true:

(9)1 If x∈ Data-LocSCM, thenx is an Int position.

(10) Data-LocSCM misses the instruction locations of SCMPDS.

(11) The instruction locations of SCMPDS are infinite.

(12) Every Int position is a data-location.

(13) For every Int positionl holds ObjectKind(l) = Z.

(14) For every setx such thatx∈ Instr-LocSCM holdsx is an instruction-location of SCMPDS.

3. THE INSTRUCTIONSTRUCTURE

We use the following convention:d1, d2, d3, d4, d5 are elements of Data-LocSCM andk1, k2, k3, k4,
k5, k6 are integers.

Let I be an instruction of SCMPDS. Observe that InsCode(I) is natural.
In the sequelI is an instruction of SCMPDS.
The following proposition is true

(15) For every instructionI of SCMPDS holds InsCode(I)≤ 13.

Let s be a state of SCMPDS and letd be an Int position. Thens(d) is an integer.
Let m, n be integers. The functor DataLoc(m,n) yielding an Int position is defined by:

(Def. 4)2 DataLoc(m,n) = 2· |m+n|+1.

We now state several propositions:

(16) 〈〈0, 〈k1〉〉〉 ∈ SCMPDS-Instr.

(17) 〈〈1, 〈d1〉〉〉 ∈ SCMPDS-Instr.

(18) If x∈ {2,3}, then〈〈x, 〈d2,k2〉〉〉 ∈ SCMPDS-Instr.

(19) If x∈ {4,5,6,7,8}, then〈〈x, 〈d3,k3,k4〉〉〉 ∈ SCMPDS-Instr.

(20) If x∈ {9,10,11,12,13}, then〈〈x, 〈d4,d5,k5,k6〉〉〉 ∈ SCMPDS-Instr.

In the sequela, b, c are Int positions.
Let us considerk1. The functor gotok1 yields an instruction of SCMPDS and is defined by:

(Def. 5) gotok1 = 〈〈0, 〈k1〉〉〉.
1 The proposition (8) has been removed.
2 The definition (Def. 3) has been removed.

THE SCMPDS COMPUTER AND THE BASIC. . . 3

Let us considera. The functor returna yields an instruction of SCMPDS and is defined by:

(Def. 6) returna = 〈〈1, 〈a〉〉〉.

Let us considera, k1. The functora:=k1 yields an instruction of SCMPDS and is defined as
follows:

(Def. 7) a:=k1 = 〈〈2, 〈a,k1〉〉〉.

The functor saveIC(a,k1) yields an instruction of SCMPDS and is defined as follows:

(Def. 8) saveIC(a,k1) = 〈〈3, 〈a,k1〉〉〉.

Let us considera, k1, k2. The functor(a,k1) <> 0 gotok2 yields an instruction of SCMPDS
and is defined as follows:

(Def. 9) (a,k1) <> 0 gotok2 = 〈〈4, 〈a,k1,k2〉〉〉.

The functor(a,k1) <= 0 gotok2 yields an instruction of SCMPDS and is defined as follows:

(Def. 10) (a,k1) <= 0 gotok2 = 〈〈5, 〈a,k1,k2〉〉〉.

The functor(a,k1) >= 0 gotok2 yielding an instruction of SCMPDS is defined as follows:

(Def. 11) (a,k1) >= 0 gotok2 = 〈〈6, 〈a,k1,k2〉〉〉.

The functorak1:=k2 yields an instruction of SCMPDS and is defined by:

(Def. 12) ak1:=k2 = 〈〈7, 〈a,k1,k2〉〉〉.

The functor AddTo(a,k1,k2) yields an instruction of SCMPDS and is defined by:

(Def. 13) AddTo(a,k1,k2) = 〈〈8, 〈a,k1,k2〉〉〉.

Let us considera, b, k1, k2. The functor AddTo(a,k1,b,k2) yielding an instruction of SCMPDS
is defined as follows:

(Def. 14) AddTo(a,k1,b,k2) = 〈〈9, 〈a,b,k1,k2〉〉〉.

The functor SubFrom(a,k1,b,k2) yielding an instruction of SCMPDS is defined by:

(Def. 15) SubFrom(a,k1,b,k2) = 〈〈10, 〈a,b,k1,k2〉〉〉.

The functor MultBy(a,k1,b,k2) yielding an instruction of SCMPDS is defined by:

(Def. 16) MultBy(a,k1,b,k2) = 〈〈11, 〈a,b,k1,k2〉〉〉.

The functor Divide(a,k1,b,k2) yielding an instruction of SCMPDS is defined by:

(Def. 17) Divide(a,k1,b,k2) = 〈〈12, 〈a,b,k1,k2〉〉〉.

The functor(a,k1) := (b,k2) yields an instruction of SCMPDS and is defined as follows:

(Def. 18) (a,k1) := (b,k2) = 〈〈13, 〈a,b,k1,k2〉〉〉.

Next we state a number of propositions:

(21) InsCode(gotok1) = 0.

(22) InsCode(returna) = 1.

(23) InsCode(a:=k1) = 2.

(24) InsCode(saveIC(a,k1)) = 3.

(25) InsCode((a,k1) <> 0 gotok2) = 4.

(26) InsCode((a,k1) <= 0 gotok2) = 5.

THE SCMPDS COMPUTER AND THE BASIC. . . 4

(27) InsCode((a,k1) >= 0 gotok2) = 6.

(28) InsCode(ak1:=k2) = 7.

(29) InsCode(AddTo(a,k1,k2)) = 8.

(30) InsCode(AddTo(a,k1,b,k2)) = 9.

(31) InsCode(SubFrom(a,k1,b,k2)) = 10.

(32) InsCode(MultBy(a,k1,b,k2)) = 11.

(33) InsCode(Divide(a,k1,b,k2)) = 12.

(34) InsCode((a,k1) := (b,k2)) = 13.

(35) For every instructioni1 of SCMPDS such that InsCode(i1) = 0 there existsk1 such that
i1 = gotok1.

(36) For every instructioni1 of SCMPDS such that InsCode(i1) = 1 there existsa such that
i1 = returna.

(37) For every instructioni1 of SCMPDS such that InsCode(i1) = 2 there exista, k1 such that
i1 = a:=k1.

(38) For every instructioni1 of SCMPDS such that InsCode(i1) = 3 there exista, k1 such that
i1 = saveIC(a,k1).

(39) For every instructioni1 of SCMPDS such that InsCode(i1) = 4 there exista, k1, k2 such
that i1 = (a,k1) <> 0 gotok2.

(40) For every instructioni1 of SCMPDS such that InsCode(i1) = 5 there exista, k1, k2 such
that i1 = (a,k1) <= 0 gotok2.

(41) For every instructioni1 of SCMPDS such that InsCode(i1) = 6 there exista, k1, k2 such
that i1 = (a,k1) >= 0 gotok2.

(42) For every instructioni1 of SCMPDS such that InsCode(i1) = 7 there exista, k1, k2 such
that i1 = ak1:=k2.

(43) For every instructioni1 of SCMPDS such that InsCode(i1) = 8 there exista, k1, k2 such
that i1 = AddTo(a,k1,k2).

(44) For every instructioni1 of SCMPDS such that InsCode(i1) = 9 there exista, b, k1, k2 such
that i1 = AddTo(a,k1,b,k2).

(45) For every instructioni1 of SCMPDS such that InsCode(i1) = 10 there exista, b, k1, k2 such
that i1 = SubFrom(a,k1,b,k2).

(46) For every instructioni1 of SCMPDS such that InsCode(i1) = 11 there exista, b, k1, k2 such
that i1 = MultBy(a,k1,b,k2).

(47) For every instructioni1 of SCMPDS such that InsCode(i1) = 12 there exista, b, k1, k2 such
that i1 = Divide(a,k1,b,k2).

(48) For every instructioni1 of SCMPDS such that InsCode(i1) = 13 there exista, b, k1, k2 such
that i1 = (a,k1) := (b,k2).

(49) For every states of SCMPDS and for every Int positiond holdsd ∈ doms.

(50) For every states of SCMPDS holds Data-LocSCM⊆ doms.

(51) For every states of SCMPDS holds dom(s�Data-LocSCM) = Data-LocSCM.

(52) For every Int positiond6 holdsd6 6= ICSCMPDS.

THE SCMPDS COMPUTER AND THE BASIC. . . 5

(53) For every instruction-locationi2 of SCMPDS and for every Int positiond6 holdsi2 6= d6.

(54) Let s1, s2 be states of SCMPDS. SupposeIC (s1) = IC (s2) and for every Int positiona
holdss1(a) = s2(a) and for every instruction-locationi of SCMPDS holdss1(i) = s2(i). Then
s1 = s2.

Let l1 be an instruction-location of SCMPDS. The functor Next(l1) yields an instruction-
location of SCMPDS and is defined as follows:

(Def. 19) There exists an elementm1 of Instr-LocSCM such thatm1 = l1 and Next(l1) = Next(m1).

Next we state two propositions:

(55) For every instruction-locationl1 of SCMPDS and for every elementm1 of Instr-LocSCM

such thatm1 = l1 holds Next(m1) = Next(l1).

(56) For every elementi of SCMPDS-Instr such thati = I and for every SCMPDS-StateSsuch
thatS= s holds Exec(I ,s) = Exec-ResSCM(i,S).

4. EXECUTION SEMANTICS OF THESCMPDSINSTRUCTIONS

The following propositions are true:

(57) (Exec(a:=k1,s))(ICSCMPDS) = Next(IC s) and (Exec(a:=k1,s))(a) = k1 and for everyb
such thatb 6= a holds(Exec(a:=k1,s))(b) = s(b).

(58) (Exec(ak1:=k2,s))(ICSCMPDS) = Next(ICs) and(Exec(ak1:=k2,s))(DataLoc(s(a),k1)) =
k2 and for everyb such thatb 6= DataLoc(s(a),k1) holds(Exec(ak1:=k2,s))(b) = s(b).

(59) (Exec((a,k1) :=(b,k2),s))(ICSCMPDS)= Next(IC s) and(Exec((a,k1) :=(b,k2),s))(DataLoc(s(a),k1))=
s(DataLoc(s(b),k2)) and for everyc such thatc 6= DataLoc(s(a),k1) holds(Exec((a,k1) :=
(b,k2),s))(c) = s(c).

(60) (Exec(AddTo(a,k1,k2),s))(ICSCMPDS)= Next(IC s) and(Exec(AddTo(a,k1,k2),s))(DataLoc(s(a),k1))=
s(DataLoc(s(a),k1)) + k2 and for every b such that b 6= DataLoc(s(a),k1) holds
(Exec(AddTo(a,k1,k2),s))(b) = s(b).

(61) (Exec(AddTo(a,k1,b,k2),s))(ICSCMPDS)= Next(ICs) and(Exec(AddTo(a,k1,b,k2),s))(DataLoc(s(a),k1))=
s(DataLoc(s(a),k1))+ s(DataLoc(s(b),k2)) and for everyc such thatc 6= DataLoc(s(a),k1)
holds(Exec(AddTo(a,k1,b,k2),s))(c) = s(c).

(62) (Exec(SubFrom(a,k1,b,k2),s))(ICSCMPDS)= Next(IC s) and(Exec(SubFrom(a,k1,b,k2),s))(DataLoc(s(a),k1))=
s(DataLoc(s(a),k1))− s(DataLoc(s(b),k2)) and for everyc such thatc 6= DataLoc(s(a),k1)
holds(Exec(SubFrom(a,k1,b,k2),s))(c) = s(c).

(63) (Exec(MultBy(a,k1,b,k2),s))(ICSCMPDS)= Next(ICs) and(Exec(MultBy(a,k1,b,k2),s))(DataLoc(s(a),k1))=
s(DataLoc(s(a),k1)) · s(DataLoc(s(b),k2)) and for everyc such thatc 6= DataLoc(s(a),k1)
holds(Exec(MultBy(a,k1,b,k2),s))(c) = s(c).

(64)(i) (Exec(Divide(a,k1,b,k2),s))(ICSCMPDS) = Next(ICs),

(ii) if DataLoc(s(a),k1) 6= DataLoc(s(b),k2), then(Exec(Divide(a,k1,b,k2),s))(DataLoc(s(a),k1))=
s(DataLoc(s(a),k1))÷s(DataLoc(s(b),k2)),

(iii) (Exec(Divide(a,k1,b,k2),s))(DataLoc(s(b),k2))= s(DataLoc(s(a),k1))mods(DataLoc(s(b),k2)),
and

(iv) for every c such that c 6= DataLoc(s(a),k1) and c 6= DataLoc(s(b),k2) holds
(Exec(Divide(a,k1,b,k2),s))(c) = s(c).

(65) (Exec(Divide(a,k1,a,k1),s))(ICSCMPDS)= Next(ICs) and(Exec(Divide(a,k1,a,k1),s))(DataLoc(s(a),k1))=
s(DataLoc(s(a),k1))mods(DataLoc(s(a),k1)) and for everycsuch thatc 6= DataLoc(s(a),k1)
holds(Exec(Divide(a,k1,a,k1),s))(c) = s(c).

THE SCMPDS COMPUTER AND THE BASIC. . . 6

Let s be a state of SCMPDS and letc be an integer. The functor ICplusConst(s,c) yielding an
instruction-location of SCMPDS is defined as follows:

(Def. 20) There exists a natural numberm such thatm= ICs and ICplusConst(s,c) = |(m−2)+2 ·
c|+2.

One can prove the following propositions:

(66) (Exec(gotok1,s))(ICSCMPDS)= ICplusConst(s,k1) and for everyaholds(Exec(gotok1,s))(a)=
s(a).

(67) If s(DataLoc(s(a),k1)) 6= 0, then(Exec((a,k1)<> 0 gotok2,s))(ICSCMPDS)= ICplusConst(s,k2)
and if s(DataLoc(s(a),k1)) = 0, then (Exec((a,k1) <> 0 gotok2,s))(ICSCMPDS) =
Next(IC s) and(Exec((a,k1) <> 0 gotok2,s))(b) = s(b).

(68) If s(DataLoc(s(a),k1))≤0, then(Exec((a,k1)<= 0 gotok2,s))(ICSCMPDS)= ICplusConst(s,k2)
and if s(DataLoc(s(a),k1)) > 0, then (Exec((a,k1) <= 0 gotok2,s))(ICSCMPDS) =
Next(IC s) and(Exec((a,k1) <= 0 gotok2,s))(b) = s(b).

(69) If s(DataLoc(s(a),k1))≥0, then(Exec((a,k1)>= 0 gotok2,s))(ICSCMPDS)= ICplusConst(s,k2)
and if s(DataLoc(s(a),k1)) < 0, then (Exec((a,k1) >= 0 gotok2,s))(ICSCMPDS) =
Next(IC s) and(Exec((a,k1) >= 0 gotok2,s))(b) = s(b).

(70) (Exec(returna,s))(ICSCMPDS)= 2·(|s(DataLoc(s(a),RetIC))|÷2)+4 and(Exec(returna,s))(a)=
s(DataLoc(s(a),RetSP)) and for everyb such thata 6= b holds(Exec(returna,s))(b) = s(b).

(71) (Exec(saveIC(a,k1),s))(ICSCMPDS)= Next(IC s) and(Exec(saveIC(a,k1),s))(DataLoc(s(a),k1))=
ICs and for everyb such that DataLoc(s(a),k1) 6= b holds(Exec(saveIC(a,k1),s))(b) = s(b).

(72) For every integerk there exists a functionf from Data-LocSCM into Z such that for every
elementx of Data-LocSCM holds f (x) = k.

(73) For every integerk there exists a statesof SCMPDS such that for every Int positiond holds
s(d) = k.

(74) Letk be an integer andl1 be an instruction-location of SCMPDS. Then there exists a state
s of SCMPDS such thats(0) = l1 and for every Int positiond holdss(d) = k.

(75) goto 0 is halting.

(76) For every instructionI of SCMPDS such that there existsssuch that(Exec(I ,s))(ICSCMPDS)=
Next(ICs) holdsI is non halting.

(77) a:=k1 is non halting.

(78) ak1:=k2 is non halting.

(79) (a,k1) := (b,k2) is non halting.

(80) AddTo(a,k1,k2) is non halting.

(81) AddTo(a,k1,b,k2) is non halting.

(82) SubFrom(a,k1,b,k2) is non halting.

(83) MultBy(a,k1,b,k2) is non halting.

(84) Divide(a,k1,b,k2) is non halting.

(85) If k1 6= 0, then gotok1 is non halting.

(86) (a,k1) <> 0 gotok2 is non halting.

(87) (a,k1) <= 0 gotok2 is non halting.

THE SCMPDS COMPUTER AND THE BASIC. . . 7

(88) (a,k1) >= 0 gotok2 is non halting.

(89) returna is non halting.

(90) saveIC(a,k1) is non halting.

(91) Let I be a set. ThenI is an instruction of SCMPDS if and only if one of the following
conditions is satisfied:

there existsk1 such thatI = gotok1 or there existsa such thatI = returna or there exista,
k1 such thatI = saveIC(a,k1) or there exista, k1 such thatI = a:=k1 or there exista, k1, k2

such thatI = ak1:=k2 or there exista, k1, k2 such thatI = (a,k1) <> 0 gotok2 or there exist
a, k1, k2 such thatI = (a,k1) <= 0 gotok2 or there exista, k1, k2 such thatI = (a,k1) >=
0 gotok2 or there exista, b, k1, k2 such thatI = AddTo(a,k1,k2) or there exista, b, k1, k2

such thatI = AddTo(a,k1,b,k2) or there exista, b, k1, k2 such thatI = SubFrom(a,k1,b,k2)
or there exista, b, k1, k2 such thatI = MultBy(a,k1,b,k2) or there exista, b, k1, k2 such that
I = Divide(a,k1,b,k2) or there exista, b, k1, k2 such thatI = (a,k1) := (b,k2).

Let us note that SCMPDS is halting.
The following propositions are true:

(92) For every instructionI of SCMPDS such thatI is halting holdsI = haltSCMPDS.

(93) haltSCMPDS= goto 0.

(96)3 For every states of SCMPDS and for every instructioni of SCMPDS and for every
instruction-locationl of SCMPDS holds(Exec(i,s))(l) = s(l).

(97) SCMPDS is realistic.

One can verify that SCMPDS is steady-programmed and realistic.
The following propositions are true:

(98) ICSCMPDS 6= di andICSCMPDS 6= i i .

(99) For every instructionI of SCMPDS such thatI = goto 0 holdsI is halting.

ACKNOWLEDGMENTS

We wish to thank Prof. Y. Nakamura for many helpful suggestions.

REFERENCES

[1] Grzegorz Bancerek. The fundamental properties of natural numbers.Journal of Formalized Mathematics, 1, 1989. http://mizar.
org/JFM/Vol1/nat_1.html.

[2] Grzegorz Bancerek. Sequences of ordinal numbers.Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/
ordinal2.html.

[3] Grzegorz Bancerek. K̈onig’s theorem.Journal of Formalized Mathematics, 2, 1990.http://mizar.org/JFM/Vol2/card_3.html.

[4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences.Journal of Formalized Mathematics,
1, 1989.http://mizar.org/JFM/Vol1/finseq_1.html.

[5] Czesław Bylínski. Functions and their basic properties.Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/
funct_1.html.

[6] Czesław Bylínski. Functions from a set to a set.Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/funct_
2.html.

[7] Czesław Bylínski. A classical first order language.Journal of Formalized Mathematics, 2, 1990.http://mizar.org/JFM/Vol2/cqc_
lang.html.

[8] Czesław Bylínski. The modification of a function by a function and the iteration of the composition of a function.Journal of Formalized
Mathematics, 2, 1990.http://mizar.org/JFM/Vol2/funct_4.html.

3 The propositions (94) and (95) have been removed.

http://mizar.org/JFM/Vol1/nat_1.html
http://mizar.org/JFM/Vol1/nat_1.html
http://mizar.org/JFM/Vol1/ordinal2.html
http://mizar.org/JFM/Vol1/ordinal2.html
http://mizar.org/JFM/Vol2/card_3.html
http://mizar.org/JFM/Vol1/finseq_1.html
http://mizar.org/JFM/Vol1/funct_1.html
http://mizar.org/JFM/Vol1/funct_1.html
http://mizar.org/JFM/Vol1/funct_2.html
http://mizar.org/JFM/Vol1/funct_2.html
http://mizar.org/JFM/Vol2/cqc_lang.html
http://mizar.org/JFM/Vol2/cqc_lang.html
http://mizar.org/JFM/Vol2/funct_4.html

THE SCMPDS COMPUTER AND THE BASIC. . . 8

[9] Jing-Chao Chen. A small computer model with push-down stack.Journal of Formalized Mathematics, 11, 1999.http://mizar.org/
JFM/Vol11/scmpds_1.html.

[10] Agata Darmochwał. Finite sets.Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/finset_1.html.

[11] Yatsuka Nakamura and Andrzej Trybulec. A mathematical model of CPU.Journal of Formalized Mathematics, 4, 1992. http:
//mizar.org/JFM/Vol4/ami_1.html.

[12] Yatsuka Nakamura and Andrzej Trybulec. On a mathematical model of programs.Journal of Formalized Mathematics, 4, 1992.
http://mizar.org/JFM/Vol4/ami_2.html.

[13] Dariusz Surowik. Cyclic groups and some of their properties — part I.Journal of Formalized Mathematics, 3, 1991.http://mizar.
org/JFM/Vol3/gr_cy_1.html.

[14] Yasushi Tanaka. On the decomposition of the states of SCM.Journal of Formalized Mathematics, 5, 1993.http://mizar.org/JFM/
Vol5/ami_5.html.

[15] Andrzej Trybulec. Enumerated sets.Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/enumset1.html.

[16] Andrzej Trybulec. Tarski Grothendieck set theory.Journal of Formalized Mathematics, Axiomatics, 1989.http://mizar.org/JFM/
Axiomatics/tarski.html.

[17] Andrzej Trybulec. Tuples, projections and Cartesian products.Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/
Vol1/mcart_1.html.

[18] Andrzej Trybulec. Subsets of real numbers.Journal of Formalized Mathematics, Addenda, 2003.http://mizar.org/JFM/Addenda/
numbers.html.

[19] Andrzej Trybulec and Yatsuka Nakamura. Some remarks on the simple concrete model of computer.Journal of Formalized Mathematics,
5, 1993.http://mizar.org/JFM/Vol5/ami_3.html.

[20] Michał J. Trybulec. Integers.Journal of Formalized Mathematics, 2, 1990.http://mizar.org/JFM/Vol2/int_1.html.

[21] Wojciech A. Trybulec. Groups.Journal of Formalized Mathematics, 2, 1990.http://mizar.org/JFM/Vol2/group_1.html.

[22] Zinaida Trybulec. Properties of subsets.Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/subset_1.html.

[23] Edmund Woronowicz. Relations and their basic properties.Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/
Vol1/relat_1.html.

Received June 15, 1999

Published January 2, 2004

http://mizar.org/JFM/Vol11/scmpds_1.html
http://mizar.org/JFM/Vol11/scmpds_1.html
http://mizar.org/JFM/Vol1/finset_1.html
http://mizar.org/JFM/Vol4/ami_1.html
http://mizar.org/JFM/Vol4/ami_1.html
http://mizar.org/JFM/Vol4/ami_2.html
http://mizar.org/JFM/Vol3/gr_cy_1.html
http://mizar.org/JFM/Vol3/gr_cy_1.html
http://mizar.org/JFM/Vol5/ami_5.html
http://mizar.org/JFM/Vol5/ami_5.html
http://mizar.org/JFM/Vol1/enumset1.html
http://mizar.org/JFM/Axiomatics/tarski.html
http://mizar.org/JFM/Axiomatics/tarski.html
http://mizar.org/JFM/Vol1/mcart_1.html
http://mizar.org/JFM/Vol1/mcart_1.html
http://mizar.org/JFM/Addenda/numbers.html
http://mizar.org/JFM/Addenda/numbers.html
http://mizar.org/JFM/Vol5/ami_3.html
http://mizar.org/JFM/Vol2/int_1.html
http://mizar.org/JFM/Vol2/group_1.html
http://mizar.org/JFM/Vol1/subset_1.html
http://mizar.org/JFM/Vol1/relat_1.html
http://mizar.org/JFM/Vol1/relat_1.html

	the scmpds computer and the basic … By jing-chao chen

