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Summary. The article defines the SCMPDS computer and its instructions. The SCM-
PDS computer consists of such instructions as conventional arithmetic, “goto”, “return” and
“save instruction-counter” (“savelC” for short). The address used in the “goto” instruction
is an offset value rather than a pointer in the standard sense. Thus, we don'’t define halting
instruction directly but define it by “goto 0" instruction. The “savelC” and “return” equal
almost call and return statements in the usual high programming language. Theoretically, the
SCMPDS computer can implement all algorithms described by the usual high programming
language including recursive routine. In addition, we describe the execution semantics and
halting properties of each instruction.

MML Identifier: SCMPDS_ 2.
WWW: http://mizar.org/JEM/Volll/scmpds_2.html

The articles[[16],[[15],[122] 12],[[18],[[5].16],[[20].11],[[17],[17],[[8].[1B].,[[23] [8].[[10] .[4].[11],
[12], [9], [19], [21], and [14] provide the notation and terminology for this paper.

1. THESCMPDS ®OMPUTER

In this papeix denotes a set andk denote natural numbers.
The strict AMI SCMPDS ovefZ} is defined by:

(Def. 1) SCMPDS= (N, 0, Instr-Locscm, Z14, SCMPDS-InstrSCMPDS-OK SCMPDS-Exef.

Let us observe that SCMPDS is non empty and non void.
We now state three propositions:

(1) There exist& such thaix = 2- k+ 2 iff x € Instr-Locscm.
(2) SCMPDS is data-oriented.
(3) SCMPDS is definite.

One can check that SCMPDS is IC-Ins-separated, data-oriented, and definite.
We now state two propositions:

(4)(i) The instruction locations of SCMPDE Z,
(i)  the instructions of SCMPD% Z, and
(iif)  the instruction locations of SCMPD$ the instructions of SCMPDS.

1This work was done while the author visited Shinshu University March—April 1999.
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(5) N={0}uUData-LogcmU Instr-LoGscm.

In the seques denotes a state of SCMPDS.
One can prove the following two propositions:

(6) ICscmpps=0.
(7) For every SCMPDS-Statesuch thaS= sholdsICs=ICs.

2. THE MEMORY STRUCTURE

An object of SCMPDS is called an Int position if:
(Def. 2) Ite Data-Logcwm.
The following propositions are true:
(QH If x € Data-Logcm, thenxis an Int position.
(10) Data-Logcm misses the instruction locations of SCMPDS.
(11) The instruction locations of SCMPDS are infinite.
(12) Every Int position is a data-location.
(13) For every Int positioh holds ObjectKindl) = Z.

(14) For every sex such thak € Instr-Logscpm holdsx is an instruction-location of SCMPDS.

3. THEINSTRUCTIONSTRUCTURE

We use the following conventiort;, do, ds, d4, ds are elements of Data-Lgew andky, ko, Ks, kg,
ks, kg are integers.

Let| be an instruction of SCMPDS. Observe that InsGbpis natural.

In the sequel is an instruction of SCMPDS.

The following proposition is true

(15) For every instructioh of SCMPDS holds InsCodk) < 13.

Let sbe a state of SCMPDS and kgbe an Int position. Theg(d) is an integer.
Let m, n be integers. The functor Datalgn, n) yielding an Int position is defined by:

(Def. 4F| DataLodm,n) = 2-|m+n|+ 1.
We now state several propositions:
(16) (0, (k1)) € SCMPDS-Instr
(17) (1, (d1)) € SCMPDS-Instr
(18) Ifxe {2,3}, then(x, (d,kz)} € SCMPDS-Instr
(19) Ifxe {4,5,6,7,8}, then(x, (d3, ks, ks)) € SCMPDS-Instr
(20) Ifx e {9,10,11,12 13}, then(x, (ds,ds, ks, ks)) € SCMPDS-Instr

In the sequed, b, c are Int positions.
Let us considek;. The functor gotd; yields an instruction of SCMPDS and is defined by:

(Def. 5) gotok; = (0, (kg)).

1 The proposition (8) has been removed.
2 The definition (Def. 3) has been removed.
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Let us considea. The functor retura yields an instruction of SCMPDS and is defined by:
(Def. 6) returra= (1, (a)).

Let us considen, k;. The functora:=k; yields an instruction of SCMPDS and is defined as
follows:

(Def. 7) a=ky = (2, (a,ky)).
The functor savel(, k;) yields an instruction of SCMPDS and is defined as follows:
(Def. 8) savel@a ki) = (3, (a,ki)).

Let us considen, ki, k. The functor(a,k;) <> 0_gotok; yields an instruction of SCMPDS
and is defined as follows:

(Def.9) (a ki) <> 0_gotoky = (4, (a,ki,k2))}.
The functor(a, ki) <= 0_gotok; yields an instruction of SCMPDS and is defined as follows:
(Def. 10) (a, ki) <= 0_gotoky = (5, (a,ki,k2)}.
The functor(a, ki) >= 0_gotok; yielding an instruction of SCMPDS is defined as follows:
(Def. 11) (a,kq) >= 0_gotoky = (6, (a,ki,k2)).
The functoray, :=k> yields an instruction of SCMPDS and is defined by:
(Def. 12) ay:=ko = (7, (a,k1,ko)).
The functor AddTéa, ki, k) yields an instruction of SCMPDS and is defined by:
(Def. 13) AddTda, ki, ko) = (8, (a,ki,k2)).

Let us considea, b, ki, ko. The functor AddTga, ki, b, k) yielding an instruction of SCMPDS
is defined as follows:

(Def. 14) AddTda, ki, b, k) = (9, (a,b, ki, kz)).
The functor SubFroffa, ki, b, ko) yielding an instruction of SCMPDS is defined by:
(Def. 15) SubFrorta, ki, b, ko) = (10, (a,b, ki, k2)).
The functor MultBya, ki, b, kz) yielding an instruction of SCMPDS is defined by:
(Def. 16) MultBy(a, ki,b,k2) = (11, (a,b, ki, k2)).
The functor Dividéa, ki, b, ky) yielding an instruction of SCMPDS is defined by:
(Def. 17) Dividga, ki, b, ko) = (12, (a,b, ki, k2)).
The functor(a, k;) := (b, k) yields an instruction of SCMPDS and is defined as follows:
(Def. 18) (a,ki1) := (b,k2) = (13, (a,b,ki, k).
Next we state a number of propositions:
(21) InsCodégotok;) =0.
(22) InsCodéreturna) = 1.
(23) InsCodéa:=k;) = 2.
(24) InsCodésavelGa,ki)) = 3.
(25) InsCodé(a, k1) <> 0_gotokp) = 4.
(26) InsCodé(a, k1) <= 0_gotoky) = 5.
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(27) InsCodé(a, ki) >= 0_gotoky) = 6.
(28) InsCodéay,:=k>) =7.

(29) InsCodéAddTo(a,ki, ko)) =8.

(30) InsCodéAddTo(a,ki,b,ky)) =9.
(31) InsCodéSubFronga,k;,b,ky)) = 10.
(32) InsCodéMultBy(a, ki, b ky)) =11
(33) InsCodéDivide(a, ki,b,kp)) =12
(34) InsCodé(a,k;) := (b,k2)) =13

(35) For every instructiom, of SCMPDS such that InsCo(le) = 0 there exists; such that
i1 = gotokj.

(36) For every instructiom; of SCMPDS such that InsCofle) = 1 there exista such that
i1 = returna.

(37) For every instructiom, of SCMPDS such that InsCoflg) = 2 there exish, k; such that
i1 =a=ky.

(38) For every instructiom, of SCMPDS such that InsCoflg) = 3 there exisfh, k; such that
i1 = savelGa, k).

(39) For every instructiom of SCMPDS such that InsCofle) = 4 there exisg, ki, ko such
thati; = (a,ki) <> 0_gotoks.

(40) For every instructiom of SCMPDS such that InsCo(le) = 5 there exisg, kj, ky such
thati; = (a,k;) <= 0_gotok,.

(41) For every instructiom of SCMPDS such that InsCofle) = 6 there exisg, ki, ko such
thatis = (a, ki) >= 0_gotoks.

(42) For every instructiom of SCMPDS such that InsCo(le) = 7 there exisg, kj, ky such
thati; = ay,:=ko.

(43) For every instructiom of SCMPDS such that InsCoflg) = 8 there exisg, ki, ko such
thati; = AddTo(a, k, ka).

(44) For every instructiom of SCMPDS such that InsCofle) = 9 there exish, b, ki, ko such
thati; = AddTo(a, ki, b, ky).

(45) For every instruction, of SCMPDS such that InsColg) = 10 there exisg, b, ki, ko such
thati, = SubFronta, ki, b, ko).

(46) For every instruction, of SCMPDS such that InsCofle) = 11 there exisg, b, kj, ky such
thati; = MultBy(a, ki,b, ko).

(47) For every instruction, of SCMPDS such that InsCoflg) = 12 there exisa, b, ki, ko such
thati, = Divide(a, kg, b, k).

(48) For every instruction, of SCMPDS such that InsCofle) = 13 there exisg, b, kj, ky such
thati; = (a, k1) := (b, k).

(49) For every stateof SCMPDS and for every Int positiathholdsd € doms.
(50) For every state of SCMPDS holds Data-Lagy C doms.

(51) For every state of SCMPDS holds doffs|Data-Logcm) = Data-Logcm.
(52) For every Int positiowls holdsdgs # IC scmpps
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(53) For every instruction-location of SCMPDS and for every Int positiady holdsiz # ds.

(54) Letsy, 5, be states of SCMPDS. SuppoKgs) = IC (s, and for every Int positiora
holdss; (a) = s;(a) and for every instruction-locatidgrof SCMPDS holds; (i) = s(i). Then
S1 = $.

Let I; be an instruction-location of SCMPDS. The functor N&xt yields an instruction-
location of SCMPDS and is defined as follows:

(Def. 19) There exists an elemant of Instr-Locscyv such thaimy = 11 and Nextl;) = Next(my ).

Next we state two propositions:

(55) For every instruction-locatioh of SCMPDS and for every element; of Instr-Locgscm
such thatm; = I; holds Nex{my) = Next(l).

(56) For every elemeritof SCMPDS-Instr such that= | and for every SCMPDS-Stafesuch
thatS= sholds Exe€l,s) = Exec-Rescwm(i, S).

4, EXECUTION SEMANTICS OF THESCMPDSINSTRUCTIONS
The following propositions are true:

(57) (Exeda:=ki,s))(ICscmppg = Next(ICs) and (Exeda:=ki,s))(a) = k; and for everyb
such thab # a holds(Exeqa:=kj,s))(b) = s(b).

(58) (Exedqay,:=ko,s))(ICscmpps = Next(ICs) and(Exeday, :=ko,s))(DataLogs(a),ki)) =
ko and for evenyb such thab # DatalLogs(a), ky) holds(Exeday, :=ko,s))(b) = s(b).
)

(59) (Exed(a,ki):=(b,kz),s))(ICscmppg = Next(ICs) and(Exed(a, ki) := (b,ko),s))(DataLogs(a), ki) =
s(DatalLods(b),kz)) and for everyc such thatc # DatalLods(a),k;) holds (Exed(a, k1) :=
(b,k2),8))(c) = s(c).

(60) (ExeqAddTo(a, ki, k2),s))(ICscmppg = Next(ICs) and(Exeq AddTo(a, ki, ky),s))(DataLods(a), ki) =
s(DataLods(a),ki)) + k2 and for every b such thatb # Datalods(a),ki) holds
(Exed AddTo(a, ki, k2),s))(b) = s(b).

(61) (ExeqAddTo(a,ki,b,kz),s))(ICscmppg = Next(ICs) and(Exeq AddTo(a, ki, b, kz),s))(DataLods(a),ky)) =
s(DatalLods(a), ki )) + s(DataLods(b), kz)) and for everyc such thatc £ Datalogs(a), k)
holds(Exeqd AddTo(a, ki, b, k), s))(c) = s(c).

(62) (ExeqSubFronta,ki,b,k>),s))(ICscmpps = Next(ICs) and(Exed SubFronfa, ki, b, k2),s))(DataLods(a),ki)) =
s(DataLods(a),ky)) — s(DatalLods(b), k2)) and for everyc such that # DatalLogs(a), ki)
holds(Exedq SubFronta, ki, b, k2),s))(c) = s(c).

(63) (ExeqdMultBy(a,ki,b,k2),s))(ICscmppg) = Next(ICs) and(Exed MultBy (a, ki, b, k2),s))(DataLogs(a), ki) =
s(DatalLods(a), ki )) - s(DataLogs(b),kz)) and for everyc such thatc # Datalogs(a), ki)
holds(ExedMultBy (a, ki, b, kz2),s))(c) = s(c).

(64)(i) (ExedDivide(a,ki,b,kz),s))(ICscmppg = Next(ICys),
(i) if DataLoc(s(a), k1) # DataLogs(b), kz), then(ExeqDivide(a, ki, b, k2),s)) (DataLods(a),ki)) =
s(DataLodgs(a),ky)) = s(DataLogs(b),k>)),
(i)  (ExedDivide(a, ki, b, kz),s))(DataLogs(b), ko)) = s(DataLodgs(a), k1)) mods(DataLods(b), kz)),
and

(iv)  for every c such thatc # DataLods(a),k;) and c # DatalLods(b),k;) holds
(ExedDivide(a, ki,b,k2),s))(c) = s(c).

(65) (ExedDivide(a ki,a,k1),s))(ICscmpps = Next(ICs) and(ExeqDivide(a, ki, a,ki),s))(DataLods(a),ky)) =
s(Datalods(a), ki )) mods(DataLogs(a), ki )) and for everyc such that £ Datal ods(a), ki )
holds(ExedDivide(a, ki, a,ki),s))(c) = s(c).
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Let sbe a state of SCMPDS and lebe an integer. The functor ICplusCofsst) yielding an
instruction-location of SCMPDS is defined as follows:

(Def. 20) There exists a natural numimesuch tham = ICs and ICplusCongs,c) = |(m—2) + 2-
cl+2

One can prove the following propositions:

(66) (Exedgotoks,s))(ICscmppg = ICplusConsts, ki) and for everya holds(Exedgotoks, s))(a) =
s(a).

(67) Ifs(DataLods(a),ks)) # 0, then(Exed(a, ki) <> 0-gotokz, s))(IC scmpps) = ICplusConsts, ka)
and if s(DataLods(a),k;)) = 0, then (Exed(aki) <> 0.gotokp,s))(ICscmppy =
Next(ICs) and(Exed (a,ki) <> 0_gotoky,s))(b) = s(b).

(68) Ifs(DatalLods(a),k1)) <0, then(Exed(a, ki) <=0_gotokz,s))(ICscmppg) = ICplusConsts, kz)
and if s(DataLods(a),ki)) > 0, then (Exed(a,ki) <= 0_gotokp,s))(ICscmppy =
Next(ICs) and(Exeq(a, k1) <= 0_gotoky,s))(b) = s(b).

(69) Ifs(DataLods(a),k1)) > 0,then(Exeq(a, ki) >=0_gotoky,s))(IC scmpps) = ICplusConsts, kz)
and if s(DataLods(a),ki)) < 0, then (Exed(a,ki) >= 0_gotokp,s))(ICscmppy =
Next(ICs) and(Exed(a, ki) >= 0_gotoky,s))(b) = s(b).

(70) (Exedreturna,s))(ICscmppg = 2- (|s(DataLods(a), RetlC))| = 2)+4 and(Exedreturna, s))(a) =
s(DataLods(a), RetSP) and for everyb such thas # b holds(Exeqreturna, s))(b) = s(b).

(71) (ExedsavelGa,ki),s))(ICscmppg = Next(ICs) and(ExeqsavelGa,k;),s))(DatalLods(a), k1)) =
ICs and for evenb such that DataLas(a), k1) # b holds(ExedsavelGa, k;),s))(b) = s(b).

(72) For every integek there exists a functiof from Data-Logcy into Z such that for every
elementx of Data-Logcwm holds f (x) = k.

(73) For every integek there exists a statof SCMPDS such that for every Int positidrholds
s(d) =k.

(74) Letk be an integer anfd be an instruction-location of SCMPDS. Then there exists a state
sof SCMPDS such thag(0) = |1 and for every Int position holdss(d) = k.

(75) goto 0 is halting.

(76) Foreveryinstructiohof SCMPDS such that there existsuch thatExed], s))(IC scmppg) =
Nex{(ICs) holdsl is non halting.

(77) a=k;y is non halting.

(78) ak,:=ko is non halting.

(79) (a,ki) := (b,ko) is non halting.
(80) AddTqa,ki,ky) is non halting.
(81) AddTda,ki,b, ko) is non halting.
(82) SubFronfa, ki, b, ko) is non halting.
(83) MultBy(a,ki,b,ky) is non halting.
(84) Divide(a, kg, b, kz) is non halting.
(85) Ifky # 0, then gotdk; is non halting.
(86) (a,ki) <> 0_gotoky is non halting.
(87) (a ki) <= 0_gotoky is non halting.
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(88) (a ki) >= 0_gotoky is non halting.

(89) returrais non halting.

(90) savelQa,k;) is non halting.

(91) Letl be a set. Thet is an instruction of SCMPDS if and only if one of the following

conditions is satisfied:

there existk; such that = gotok; or there exista such thatl = returna or there exist,
ki such that = savelGQa,k;) or there exish, k; such that = a:=k; or there exis®, ki, k»
such thal = a, :=k> or there exish, ki, ko such that = (a,k;) <> 0_gotok; or there exist
a, ki, ko such that = (a,k;) <= 0_gotoky or there exist, ki, ko such thatl = (a,k;) >=
0_gotoky or there exisg, b, ki, kx such thatl = AddTo(a, ki,kz) or there exist, b, ki, kz
such that = AddTo(a, ki, b, k) or there exisg, b, ki, kz such thal = SubFronfa, ki, b, k)
or there exisg, b, ki, kz such thal = MultBy (a, ki, b, k) or there exist, b, ki, k2 such that
| = Divide(a, ki,b, ko) or there exisg, b, ki, ko such thal = (a,k;) := (b, ky).

Let us note that SCMPDS is halting.
The following propositions are true:

(92) For every instructioh of SCMPDS such thdtis halting holdd = haltscmpps
(93) haltscmpps= goto Q

(96@ For every states of SCMPDS and for every instructionof SCMPDS and for every
instruction-locatiod of SCMPDS holdgExedi,s))(l) = s(I).

(97) SCMPDS is realistic.

One can verify that SCMPDS is steady-programmed and realistic.
The following propositions are true:

(98) ICscmpps# di andIC scmpps# ii-
(99) For every instructioh of SCMPDS such thdt= goto 0 holdd is halting.
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