A Small Computer Model with Push-Down Stack¹

Jing-Chao Chen Shanghai Jiaotong University

Summary. The SCMFSA computer can prove the correctness of many algorithms. Unfortunately, it cannot prove the correctness of recursive algorithms. For this reason, this article improves the SCMFSA computer and presents a Small Computer Model with PushDown Stack (called SCMPDS for short). In addition to conventional arithmetic and "goto" instructions, we increase two new instructions such as "return" and "save instruction-counter" in order to be able to design recursive programs.

MML Identifier: SCMPDS_1.

WWW: http://mizar.org/JFM/Vol11/scmpds_1.html

The articles [13], [12], [6], [20], [21], [4], [5], [11], [14], [16], [2], [17], [1], [3], [15], [19], [7], [8], [9], [10], and [18] provide the notation and terminology for this paper.

1. Preliminaries

For simplicity, we use the following convention: x_1 , x_2 , x_3 , x_4 , x_5 denote sets, i, j, k denote natural numbers, I denotes an element of \mathbb{Z}_{14} , i_1 denotes an element of Instr-Loc_{SCM}, d_1 , d_2 denote elements of Data-Loc_{SCM}, and k_1 , k_2 denote integers.

Let x_1, x_2, x_3, x_4 be sets. The functor $\langle x_1, x_2, x_3, x_4 \rangle$ yielding a set is defined by:

(Def. 1)
$$\langle x_1, x_2, x_3, x_4 \rangle = \langle x_1, x_2, x_3 \rangle \cap \langle x_4 \rangle$$
.

Let x_5 be a set. The functor $\langle x_1, x_2, x_3, x_4, x_5 \rangle$ yields a set and is defined by:

(Def. 2)
$$\langle x_1, x_2, x_3, x_4, x_5 \rangle = \langle x_1, x_2, x_3 \rangle \cap \langle x_4, x_5 \rangle$$
.

Let x_1, x_2, x_3, x_4 be sets. Observe that $\langle x_1, x_2, x_3, x_4 \rangle$ is function-like and relation-like. Let x_5 be a set. Note that $\langle x_1, x_2, x_3, x_4, x_5 \rangle$ is function-like and relation-like.

Let x_1, x_2, x_3, x_4 be sets. Note that $\langle x_1, x_2, x_3, x_4 \rangle$ is finite sequence-like. Let x_5 be a set. Observe that $\langle x_1, x_2, x_3, x_4, x_5 \rangle$ is finite sequence-like.

Let *D* be a non empty set and let x_1 , x_2 , x_3 , x_4 be elements of *D*. Then $\langle x_1, x_2, x_3, x_4 \rangle$ is a finite sequence of elements of *D*.

Let *D* be a non empty set and let x_1 , x_2 , x_3 , x_4 , x_5 be elements of *D*. Then $\langle x_1, x_2, x_3, x_4, x_5 \rangle$ is a finite sequence of elements of *D*.

One can prove the following propositions:

(1)
$$\langle x_1, x_2, x_3, x_4 \rangle = \langle x_1, x_2, x_3 \rangle \cap \langle x_4 \rangle$$
 and $\langle x_1, x_2, x_3, x_4 \rangle = \langle x_1, x_2 \rangle \cap \langle x_3, x_4 \rangle$ and $\langle x_1, x_2, x_3, x_4 \rangle = \langle x_1 \rangle \cap \langle x_2 \rangle \cap \langle x_3 \rangle \cap \langle x_4 \rangle$.

(2)
$$\langle x_1, x_2, x_3, x_4, x_5 \rangle = \langle x_1, x_2, x_3 \rangle \cap \langle x_4, x_5 \rangle$$
 and $\langle x_1, x_2, x_3, x_4, x_5 \rangle = \langle x_1, x_2, x_3, x_4 \rangle \cap \langle x_5 \rangle$ and $\langle x_1, x_2, x_3, x_4, x_5 \rangle = \langle x_1 \rangle \cap \langle x_2 \rangle \cap \langle x_3 \rangle \cap \langle x_4 \rangle \cap \langle x_5 \rangle$ and $\langle x_1, x_2, x_3, x_4, x_5 \rangle = \langle x_1, x_2 \rangle \cap \langle x_3, x_4, x_5 \rangle$ and $\langle x_1, x_2, x_3, x_4, x_5 \rangle = \langle x_1 \rangle \cap \langle x_2, x_3, x_4, x_5 \rangle$.

¹This work was done while the author visited Shinshu University March–April 1999.

We follow the rules: N_1 denotes a non empty set, y_1 , y_2 , y_3 , y_4 , y_5 denote elements of N_1 , and p denotes a finite sequence.

Next we state several propositions:

- (3) $p = \langle x_1, x_2, x_3, x_4 \rangle$ iff len p = 4 and $p(1) = x_1$ and $p(2) = x_2$ and $p(3) = x_3$ and $p(4) = x_4$.
- (4) $dom\langle x_1, x_2, x_3, x_4 \rangle = Seg 4.$
- (5) $p = \langle x_1, x_2, x_3, x_4, x_5 \rangle$ iff len p = 5 and $p(1) = x_1$ and $p(2) = x_2$ and $p(3) = x_3$ and $p(4) = x_4$ and $p(5) = x_5$.
- (6) $\operatorname{dom}\langle x_1, x_2, x_3, x_4, x_5 \rangle = \operatorname{Seg} 5.$
- (7) $\langle y_1, y_2, y_3, y_4 \rangle_1 = y_1$ and $\langle y_1, y_2, y_3, y_4 \rangle_2 = y_2$ and $\langle y_1, y_2, y_3, y_4 \rangle_3 = y_3$ and $\langle y_1, y_2, y_3, y_4 \rangle_4 = y_4$.
- (8) $\langle y_1, y_2, y_3, y_4, y_5 \rangle_1 = y_1$ and $\langle y_1, y_2, y_3, y_4, y_5 \rangle_2 = y_2$ and $\langle y_1, y_2, y_3, y_4, y_5 \rangle_3 = y_3$ and $\langle y_1, y_2, y_3, y_4, y_5 \rangle_4 = y_4$ and $\langle y_1, y_2, y_3, y_4, y_5 \rangle_5 = y_5$.
- (9) For every integer k holds $k \in \bigcup \{\mathbb{Z}\} \cup \mathbb{N}$.
- (10) For every integer k holds $k \in \text{Data-Loc}_{SCM} \cup \mathbb{Z}$.
- (11) For every element d of Data-Loc_{SCM} holds $d \in \text{Data-Loc}_{\text{SCM}} \cup \mathbb{Z}$.
 - 2. THE CONSTRUCTION OF SCM WITH PUSH-DOWN STACK

The subset SCMPDS-Instr of $[:\mathbb{Z}_{14}, (\bigcup \{\mathbb{Z}\} \cup \mathbb{N})^*:]$ is defined by the condition (Def. 3).

(Def. 3) SCMPDS-Instr = $\{\langle 0, \langle l \rangle \rangle : l \text{ ranges over elements of } \mathbb{Z}\} \cup \{\langle 1, \langle s_1 \rangle \rangle : s_1 \text{ ranges over elements of Data-Loc}_{SCM}\} \cup \{\langle I, \langle v, c \rangle \rangle; I \text{ ranges over elements of } \mathbb{Z}_{14}, v \text{ ranges over elements of Data-Loc}_{SCM}, c \text{ ranges over elements of } \mathbb{Z}: I \in \{2,3\}\} \cup \{\langle I, \langle v, c_1, c_2 \rangle \rangle; I \text{ ranges over elements of } \mathbb{Z}_{14}, v \text{ ranges over elements of Data-Loc}_{SCM}, c_1 \text{ ranges over elements of } \mathbb{Z}, c_2 \text{ ranges over elements of } \mathbb{Z}: I \in \{4,5,6,7,8\}\} \cup \{\langle I, \langle v_1, v_2, c_1, c_2 \rangle \}; I \text{ ranges over elements of } \mathbb{Z}_{14}, v_1 \text{ ranges over elements of Data-Loc}_{SCM}, v_2 \text{ ranges over elements of Data-Loc}_{SCM}, c_1 \text{ ranges over elements of } \mathbb{Z}, c_2 \text{ ranges over elements of } \mathbb{Z}: I \in \{9,10,11,12,13\}\}.$

We now state the proposition

 $(13)^1$ $\langle 0, \langle 0 \rangle \rangle \in SCMPDS-Instr.$

One can check that SCMPDS-Instr is non empty.

We now state three propositions:

- (14) k = 0 or there exists j such that $k = 2 \cdot j + 1$ or there exists j such that $k = 2 \cdot j + 2$.
- (15) If k = 0, then it is not true that there exists j such that $k = 2 \cdot j + 1$ and it is not true that there exists j such that $k = 2 \cdot j + 2$.
- (16)(i) If there exists j such that $k = 2 \cdot j + 1$, then $k \neq 0$ and it is not true that there exists j such that $k = 2 \cdot j + 2$, and
- (ii) if there exists j such that $k = 2 \cdot j + 2$, then $k \neq 0$ and it is not true that there exists j such that $k = 2 \cdot j + 1$.

The function SCMPDS-OK from \mathbb{N} into $\{\mathbb{Z}\} \cup \{\text{SCMPDS-Instr}, \text{Instr-Loc}_{\text{SCM}}\}$ is defined by:

(Def. 4) $(SCMPDS-OK)(0) = Instr-Loc_{SCM}$ and for every natural number k holds $(SCMPDS-OK)(2 \cdot k+1) = \mathbb{Z}$ and $(SCMPDS-OK)(2 \cdot k+2) = SCMPDS-Instr$.

¹ The proposition (12) has been removed.

A SCMPDS-State is an element of \prod SCMPDS-OK.

We now state several propositions:

- (17) Instr-Loc_{SCM} \neq SCMPDS-Instr and SCMPDS-Instr \neq \mathbb{Z} .
- (18) $(SCMPDS-OK)(i) = Instr-Loc_{SCM} \text{ iff } i = 0.$
- (19) (SCMPDS-OK)(i) = \mathbb{Z} iff there exists k such that $i = 2 \cdot k + 1$.
- (20) (SCMPDS-OK)(i) = SCMPDS-Instr iff there exists k such that $i = 2 \cdot k + 2$.
- (21) $(SCMPDS-OK)(d_1) = \mathbb{Z}.$
- (22) $(SCMPDS-OK)(i_1) = SCMPDS-Instr.$
- (23) $\pi_0 \prod SCMPDS-OK = Instr-Loc_{SCM}$.
- (24) $\pi_{d_1} \prod SCMPDS-OK = \mathbb{Z}$.
- (25) $\pi_{i_1} \prod SCMPDS-OK = SCMPDS-Instr.$

Let s be a SCMPDS-State. The functor \mathbf{IC}_s yielding an element of Instr-Loc_{SCM} is defined as follows:

(Def. 5) $IC_s = s(0)$.

Let s be a SCMPDS-State and let u be an element of Instr-Loc_{SCM}. The functor $Chg_{SCM}(s, u)$ yielding a SCMPDS-State is defined as follows:

(Def. 6) $Chg_{SCM}(s, u) = s + \cdot (0 \mapsto u).$

We now state three propositions:

- (26) For every SCMPDS-State s and for every element u of Instr-Loc_{SCM} holds $(\operatorname{Chg}_{\operatorname{SCM}}(s,u))(0) = u$.
- (27) For every SCMPDS-State s and for every element u of Instr-Loc_{SCM} and for every element m_1 of Data-Loc_{SCM} holds $(\operatorname{Chg}_{SCM}(s,u))(m_1) = s(m_1)$.
- (28) For every SCMPDS-State s and for all elements u, v of Instr-Loc_{SCM} holds $(\operatorname{Chg}_{\operatorname{SCM}}(s,u))(v) = s(v)$.

Let s be a SCMPDS-State, let t be an element of Data-Loc_{SCM}, and let u be an integer. The functor $Chg_{SCM}(s,t,u)$ yielding a SCMPDS-State is defined as follows:

(Def. 7)
$$Chg_{SCM}(s,t,u) = s + \cdot (t \mapsto u).$$

One can prove the following four propositions:

- (29) For every SCMPDS-State s and for every element t of Data-Loc_{SCM} and for every integer u holds $(\operatorname{Chg}_{\operatorname{SCM}}(s,t,u))(0) = s(0)$.
- (30) For every SCMPDS-State s and for every element t of Data-Loc_{SCM} and for every integer u holds $(\operatorname{Chg}_{\operatorname{SCM}}(s,t,u))(t) = u$.
- (31) Let *s* be a SCMPDS-State, *t* be an element of Data-Loc_{SCM}, *u* be an integer, and m_1 be an element of Data-Loc_{SCM}. If $m_1 \neq t$, then $(\text{Chg}_{SCM}(s,t,u))(m_1) = s(m_1)$.
- (32) Let s be a SCMPDS-State, t be an element of Data-Loc_{SCM}, u be an integer, and v be an element of Instr-Loc_{SCM}. Then $(\operatorname{Chg}_{\operatorname{SCM}}(s,t,u))(v) = s(v)$.

Let s be a SCMPDS-State and let a be an element of Data-Loc_{SCM}. Then s(a) is an integer. Let s be a SCMPDS-State, let a be an element of Data-Loc_{SCM}, and let n be an integer. The functor Address_Add(s,a,n) yields an element of Data-Loc_{SCM} and is defined by:

(Def. 8) Address_Add $(s, a, n) = 2 \cdot |s(a) + n| + 1$.

Let s be a SCMPDS-State and let n be an integer. The functor jump_address(s,n) yielding an element of Instr-Loc_{SCM} is defined as follows:

(Def. 9) $\text{jump_address}(s, n) = |((\mathbf{IC}_s \mathbf{qua} \text{ natural number}) - 2) + 2 \cdot n| + 2.$

Let d be an element of Data-Loc_{SCM} and let s be an integer. Then $\langle d, s \rangle$ is a finite sequence of elements of Data-Loc_{SCM} $\cup \mathbb{Z}$.

Let x be an element of SCMPDS-Instr. Let us assume that there exist an element m_1 of Data-Loc_{SCM} and I such that $x = \langle I, \langle m_1 \rangle \rangle$. The functor x address₁ yields an element of Data-Loc_{SCM} and is defined as follows:

(Def. 10) There exists a finite sequence f of elements of Data-Loc_{SCM} such that $f = x_2$ and x address₁ = f_1 .

Next we state the proposition

(33) For every element x of SCMPDS-Instr and for every element m_1 of Data-Loc_{SCM} such that $x = \langle I, \langle m_1 \rangle \rangle$ holds x address₁ = m_1 .

Let x be an element of SCMPDS-Instr. Let us assume that there exist an integer r and I such that $x = \langle I, \langle r \rangle \rangle$. The functor x const_INT yields an integer and is defined as follows:

(Def. 11) There exists a finite sequence f of elements of \mathbb{Z} such that $f = x_2$ and $x \operatorname{const_INT} = f_1$.

One can prove the following proposition

(34) For every element x of SCMPDS-Instr and for every integer k such that $x = \langle I, \langle k \rangle \rangle$ holds $x \text{ const_INT} = k$.

Let x be an element of SCMPDS-Instr. Let us assume that there exist an element m_1 of Data-Loc_{SCM}, an integer r, and I such that $x = \langle I, \langle m_1, r \rangle \rangle$. The functor xP21address yields an element of Data-Loc_{SCM} and is defined by:

(Def. 12) There exists a finite sequence f of elements of Data-Loc_{SCM} $\cup \mathbb{Z}$ such that $f = x_2$ and $x \text{ P21address} = f_1$.

The functor *x* P22const yielding an integer is defined as follows:

(Def. 13) There exists a finite sequence f of elements of Data-Loc_{SCM} $\cup \mathbb{Z}$ such that $f = x_2$ and $x \text{ P22const} = f_2$.

We now state the proposition

(35) Let x be an element of SCMPDS-Instr, m_1 be an element of Data-Loc_{SCM}, and r be an integer. If $x = \langle I, \langle m_1, r \rangle \rangle$, then x P21address = m_1 and x P22const = r.

Let x be an element of SCMPDS-Instr. Let us assume that there exist an element m_2 of Data-Loc_{SCM}, integers k_1 , k_2 , and I such that $x = \langle I, \langle m_2, k_1, k_2 \rangle \rangle$. The functor x P31 address yielding an element of Data-Loc_{SCM} is defined as follows:

(Def. 14) There exists a finite sequence f of elements of Data-Loc_{SCM} $\cup \mathbb{Z}$ such that $f = x_2$ and $x \text{ P31address} = f_1$.

The functor x P32const yielding an integer is defined as follows:

(Def. 15) There exists a finite sequence f of elements of Data-Loc_{SCM} $\cup \mathbb{Z}$ such that $f = x_2$ and $x \operatorname{P32const} = f_2$.

The functor xP33const yielding an integer is defined by:

(Def. 16) There exists a finite sequence f of elements of Data-Loc_{SCM} $\cup \mathbb{Z}$ such that $f = x_2$ and $x \text{ P33const} = f_3$.

We now state the proposition

(36) Let x be an element of SCMPDS-Instr, d_1 be an element of Data-Loc_{SCM}, and k_1 , k_2 be integers. If $x = \langle I, \langle d_1, k_1, k_2 \rangle \rangle$, then xP31address = d_1 and xP32const = k_1 and xP33const = k_2 .

Let x be an element of SCMPDS-Instr. Let us assume that there exist elements m_2 , m_3 of Data-Loc_{SCM}, integers k_1 , k_2 , and I such that $x = \langle I, \langle m_2, m_3, k_1, k_2 \rangle \rangle$. The functor xP41address yielding an element of Data-Loc_{SCM} is defined by:

(Def. 17) There exists a finite sequence f of elements of Data-Loc_{SCM} $\cup \mathbb{Z}$ such that $f = x_2$ and x P41address $= f_1$.

The functor x P42address yielding an element of Data-Loc_{SCM} is defined as follows:

(Def. 18) There exists a finite sequence f of elements of Data-Loc_{SCM} $\cup \mathbb{Z}$ such that $f = x_2$ and x P42address $= f_2$.

The functor xP43const yields an integer and is defined as follows:

(Def. 19) There exists a finite sequence f of elements of Data-Loc_{SCM} $\cup \mathbb{Z}$ such that $f = x_2$ and $x \text{ P43const} = f_3$.

The functor xP44const yields an integer and is defined by:

(Def. 20) There exists a finite sequence f of elements of Data-Loc_{SCM} $\cup \mathbb{Z}$ such that $f = x_2$ and x P44const $= f_4$.

We now state the proposition

(37) Let x be an element of SCMPDS-Instr, d_1 , d_2 be elements of Data-Loc_{SCM}, and k_1 , k_2 be integers. If $x = \langle I, \langle d_1, d_2, k_1, k_2 \rangle \rangle$, then xP41address = d_1 and xP42address = d_2 and xP43const = k_1 and xP44const = k_2 .

Let s be a SCMPDS-State and let a be an element of Data-Loc_{SCM}. The functor PopInstrLoc(s,a) yielding an element of Instr-Loc_{SCM} is defined as follows:

(Def. 21) PopInstrLoc(s, a) = $2 \cdot (|s(a)| \div 2) + 4$.

The natural number RetSP is defined as follows:

(Def. 22) RetSP = 0.

The natural number RetIC is defined by:

(Def. 23) RetIC = 1.

Let x be an element of SCMPDS-Instr and let s be a SCMPDS-State. The functor Exec-Res_{SCM}(x, s) yielding a SCMPDS-State is defined as follows:

s, otherwise.

```
 \left\{ \begin{array}{l} \mathsf{Chg}_{\mathsf{SCM}}(s,\mathsf{jump\_address}(s,x\mathsf{const\_INT})), \text{ if thereexists} k_1 \mathsf{suchthat} x = \left<0, \left< k_1 \right>\right>, \\ \mathsf{Chg}_{\mathsf{SCM}}(\mathsf{Chg}_{\mathsf{SCM}}(s,x\mathsf{P21address},x\mathsf{P22const}), \mathsf{Next}(\mathbf{IC}_s)), \text{ if thereexist} d_1, k_1 \mathsf{suchthat} x = \left< k_1 \right>, \\ \mathsf{Chg}_{\mathsf{SCM}}(\mathsf{Chg}_{\mathsf{SCM}}(s,\mathsf{Address\_Add}(s,x\mathsf{P21address},x\mathsf{P22const})), (\mathbf{IC}_s \mathbf{qua} \text{ natural number})), \\ \mathsf{Chg}_{\mathsf{SCM}}(\mathsf{Chg}_{\mathsf{SCM}}(s,\mathsf{Address\_Add}(s,x\mathsf{P21address},x\mathsf{P22const}))), \mathsf{PopInstrLoc}(s,\mathsf{Address\_Add}(s,x\mathsf{P31address},x\mathsf{P32const}))) = 0 \rightarrow \mathsf{Next}(\mathbf{IC}_s), \mathsf{jump\_address}(s,\mathsf{Chg}_{\mathsf{SCM}}(s,(s(\mathsf{Address\_Add}(s,x\mathsf{P31address},x\mathsf{P32const}))))), \mathsf{Next}(\mathbf{IC}_s), \mathsf{jump\_address}(s,\mathsf{Chg}_{\mathsf{SCM}}(s,(s(\mathsf{Address\_Add}(s,x\mathsf{P31address},x\mathsf{P32const})))))), \mathsf{Next}(\mathbf{IC}_s), \mathsf{jump\_address}(s,\mathsf{Chg}_{\mathsf{SCM}}(\mathsf{Chg}_{\mathsf{SCM}}(s,\mathsf{Address\_Add}(s,x\mathsf{P31address},x\mathsf{P32const}))))), \mathsf{Next}(\mathbf{IC}_s), \mathsf{jump\_address}(s,\mathsf{Naddress\_Add}(s,\mathsf{Naddress\_Add}(s,\mathsf{Naddress\_Address\_Naddress\_Naddress\_Naddress\_Naddress\_Naddress\_Naddress\_Naddress\_Naddress\_Naddress\_Naddress\_Naddress\_Naddress\_Naddress\_Naddress\_Naddress\_Naddress\_Naddress\_Naddress\_Naddress\_Naddress\_Naddress\_Naddress\_Naddress\_Naddress\_Naddress\_Naddress\_Naddress\_Naddress\_Naddress\_Naddress\_Naddress\_Naddress\_Naddress\_Naddress\_Naddress\_Naddress\_Naddress\_Naddress\_Naddress\_Naddress\_Naddress\_Naddress\_Naddress\_Naddress\_Naddress\_Naddress\_Naddress\_Naddress\_Naddress\_Naddress\_Naddress\_Naddress\_Naddress\_Naddress\_Naddress\_Naddress\_Naddress\_Naddress\_Naddress\_Naddress\_Naddress\_Naddress\_Naddress\_Naddress\_Naddress\_Naddress\_Naddress\_Naddress\_Naddress\_Naddress\_Naddress\_Naddress\_Naddress\_Naddress\_Naddress\_Naddress\_Naddress\_Naddress\_Naddress\_Naddress\_Naddress\_Naddress\_Naddress\_Naddress\_Naddress\_Naddress\_Naddress\_Naddress\_Naddress\_Naddress\_Naddress\_Naddress\_Naddress\_Naddress\_Naddress\_Naddress\_Naddress\_Naddress\_Naddress\_Naddress\_Naddress\_Naddress\_Naddress\_Naddress\_Naddress\_Naddress\_Naddress\_Naddress\_Naddress\_Naddress\_Naddress\_Naddress\_Naddress\_Naddress\_Naddress\_Naddress\_Naddress\_Naddress\_Naddress\_Naddress
```

Let f be a function from SCMPDS-Instr into $(\prod SCMPDS-OK)^{\prod SCMPDS-OK}$ and let x be an element of SCMPDS-Instr. Observe that f(x) is function-like and relation-like.

The function SCMPDS-Exec from SCMPDS-Instr into $(\prod SCMPDS-OK)^{\prod SCMPDS-OK}$ is defined as follows:

(Def. 25) For every element x of SCMPDS-Instr and for every SCMPDS-State y holds $(SCMPDS-Exec)(x)(y) = Exec-Res_{SCM}(x, y)$.

ACKNOWLEDGMENTS

We wish to thank Prof. Y. Nakamura for many helpful suggestions.

REFERENCES

- Grzegorz Bancerek. The fundamental properties of natural numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/nat_1.html.
- [2] Grzegorz Bancerek. König's theorem. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/card_3.html.
- [3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/finseq_1.html.
- [4] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funct_1.html.
- [5] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_2 html
- [6] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/zfmisc 1.html.
- [7] Czesław Byliński. A classical first order language. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/cqc_lang.html.
- [8] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. *Journal of Formalized Mathematics*, 2, 1990. http://mizar.org/JFM/Vol2/funct_4.html.
- [9] Czesław Byliński. Subcategories and products of categories. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/ Vol2/cat_2.html.
- [10] Yatsuka Nakamura and Andrzej Trybulec. On a mathematical model of programs. Journal of Formalized Mathematics, 4, 1992. http://mizar.org/JFM/Vol4/ami_2.html.
- [11] Dariusz Surowik. Cyclic groups and some of their properties part I. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/gr_cy_1.html.
- [12] Andrzej Trybulec. Enumerated sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/enumsetl.html.
- [13] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [14] Andrzej Trybulec. Tuples, projections and Cartesian products. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/moart_1.html.
- [15] Andrzej Trybulec. Function domains and Frænkel operator. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/fraenkel.html.
- [16] Andrzej Trybulec. Subsets of real numbers. Journal of Formalized Mathematics, Addenda, 2003. http://mizar.org/JFM/Addenda/numbers.html.
- [17] Michał J. Trybulec. Integers. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/int_1.html.
- $[18] \begin{tabular}{ll} Wojciech A.\ Trybulec.\ Groups.\ {\it Journal of Formalized Mathematics}}, 2, 1990.\ \verb|http://mizar.org/JFM/Vol2/group_1.html|.\\ \end{tabular}$
- [19] Wojciech A. Trybulec. Pigeon hole principle. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/finseq_4.html.
- [20] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset 1.html.

[21] Edmund Woronowicz. Relations and their basic properties. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Voll/relat_1.html.

Received June 15, 1999

Published January 2, 2004
