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Summary. The SCMFSA computer can prove the correctness of many algorithms.
Unfortunately, it cannot prove the correctness of recursive algorithms. For this reason, this
article improves the SCMFSA computer and presents a Small Computer Model with Push-
Down Stack (called SCMPDS for short). In addition to conventional arithmetic and ”goto”
instructions, we increase two new instructions such as ”return” and ”save instruction-counter”
in order to be able to design recursive programs.

MML Identifier: SCMPDS_1.

WWW: http://mizar.org/JFM/Vol11/scmpds_1.html

The articles [13], [12], [6], [20], [21], [4], [5], [11], [14], [16], [2], [17], [1], [3], [15], [19], [7], [8],
[9], [10], and [18] provide the notation and terminology for this paper.

1. PRELIMINARIES

For simplicity, we use the following convention:x1, x2, x3, x4, x5 denote sets,i, j, k denote natural
numbers,I denotes an element ofZ14, i1 denotes an element of Instr-LocSCM, d1, d2 denote elements
of Data-LocSCM, andk1, k2 denote integers.

Let x1, x2, x3, x4 be sets. The functor〈x1,x2,x3,x4〉 yielding a set is defined by:

(Def. 1) 〈x1,x2,x3,x4〉= 〈x1,x2,x3〉a 〈x4〉.

Let x5 be a set. The functor〈x1,x2,x3,x4,x5〉 yields a set and is defined by:

(Def. 2) 〈x1,x2,x3,x4,x5〉= 〈x1,x2,x3〉a 〈x4,x5〉.

Let x1, x2, x3, x4 be sets. Observe that〈x1,x2,x3,x4〉 is function-like and relation-like. Letx5 be
a set. Note that〈x1,x2,x3,x4,x5〉 is function-like and relation-like.

Let x1, x2, x3, x4 be sets. Note that〈x1,x2,x3,x4〉 is finite sequence-like. Letx5 be a set. Observe
that〈x1,x2,x3,x4,x5〉 is finite sequence-like.

Let D be a non empty set and letx1, x2, x3, x4 be elements ofD. Then〈x1,x2,x3,x4〉 is a finite
sequence of elements ofD.

Let D be a non empty set and letx1, x2, x3, x4, x5 be elements ofD. Then〈x1,x2,x3,x4,x5〉 is a
finite sequence of elements ofD.

One can prove the following propositions:

(1) 〈x1,x2,x3,x4〉 = 〈x1,x2,x3〉 a 〈x4〉 and 〈x1,x2,x3,x4〉 = 〈x1,x2〉 a 〈x3,x4〉 and 〈x1,x2,x3,
x4〉= 〈x1〉a 〈x2,x3,x4〉 and〈x1,x2,x3,x4〉= 〈x1〉a 〈x2〉a 〈x3〉a 〈x4〉.

(2) 〈x1,x2,x3,x4,x5〉 = 〈x1,x2,x3〉a 〈x4,x5〉 and 〈x1,x2,x3,x4,x5〉 = 〈x1,x2,x3,x4〉a 〈x5〉 and
〈x1,x2,x3,x4,x5〉 = 〈x1〉a 〈x2〉a 〈x3〉a 〈x4〉a 〈x5〉 and 〈x1,x2,x3,x4,x5〉 = 〈x1,x2〉a 〈x3,x4,
x5〉 and〈x1,x2,x3,x4,x5〉= 〈x1〉a 〈x2,x3,x4,x5〉.

1This work was done while the author visited Shinshu University March–April 1999.

1 c© Association of Mizar Users
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We follow the rules:N1 denotes a non empty set,y1, y2, y3, y4, y5 denote elements ofN1, andp
denotes a finite sequence.

Next we state several propositions:

(3) p = 〈x1,x2,x3,x4〉 iff len p = 4 andp(1) = x1 andp(2) = x2 andp(3) = x3 andp(4) = x4.

(4) dom〈x1,x2,x3,x4〉= Seg4.

(5) p= 〈x1,x2,x3,x4,x5〉 iff len p= 5 andp(1) = x1 andp(2) = x2 andp(3) = x3 andp(4) = x4

andp(5) = x5.

(6) dom〈x1,x2,x3,x4,x5〉= Seg5.

(7) 〈y1,y2,y3,y4〉1 = y1 and〈y1,y2,y3,y4〉2 = y2 and〈y1,y2,y3,y4〉3 = y3 and〈y1,y2,y3,y4〉4 =
y4.

(8) 〈y1,y2,y3,y4,y5〉1 = y1 and〈y1,y2,y3,y4,y5〉2 = y2 and〈y1,y2,y3,y4,y5〉3 = y3 and〈y1,y2,
y3,y4,y5〉4 = y4 and〈y1,y2,y3,y4,y5〉5 = y5.

(9) For every integerk holdsk∈
⋃
{Z}∪N.

(10) For every integerk holdsk∈ Data-LocSCM∪Z.

(11) For every elementd of Data-LocSCM holdsd ∈ Data-LocSCM∪Z.

2. THE CONSTRUCTION OFSCM WITH PUSH-DOWN STACK

The subset SCMPDS-Instr of[:Z14, (
⋃
{Z}∪N)∗ :] is defined by the condition (Def. 3).

(Def. 3) SCMPDS-Instr= {〈〈0, 〈l〉〉〉 : l ranges over elements ofZ}∪{〈〈1, 〈s1〉〉〉 : s1 ranges over ele-
ments of Data-LocSCM}∪{〈〈I , 〈v,c〉〉〉; I ranges over elements ofZ14, v ranges over elements
of Data-LocSCM, c ranges over elements ofZ: I ∈ {2,3}} ∪ {〈〈I , 〈v,c1,c2〉〉〉; I ranges over
elements ofZ14, v ranges over elements of Data-LocSCM, c1 ranges over elements ofZ, c2

ranges over elements ofZ: I ∈ {4,5,6,7,8}}∪{〈〈I , 〈v1,v2,c1,c2〉〉〉; I ranges over elements of
Z14, v1 ranges over elements of Data-LocSCM, v2 ranges over elements of Data-LocSCM, c1

ranges over elements ofZ, c2 ranges over elements ofZ: I ∈ {9,10,11,12,13}}.

We now state the proposition

(13)1 〈〈0, 〈0〉〉〉 ∈ SCMPDS-Instr.

One can check that SCMPDS-Instr is non empty.
We now state three propositions:

(14) k = 0 or there existsj such thatk = 2· j +1 or there existsj such thatk = 2· j +2.

(15) If k = 0, then it is not true that there existsj such thatk = 2 · j + 1 and it is not true that
there existsj such thatk = 2· j +2.

(16)(i) If there existsj such thatk = 2 · j + 1, thenk 6= 0 and it is not true that there existsj
such thatk = 2· j +2, and

(ii) if there exists j such thatk = 2 · j +2, thenk 6= 0 and it is not true that there existsj such
thatk = 2· j +1.

The function SCMPDS-OK fromN into {Z}∪{SCMPDS-Instr, Instr-LocSCM} is defined by:

(Def. 4) (SCMPDS-OK)(0)= Instr-LocSCM and for every natural numberk holds(SCMPDS-OK)(2·
k+1) = Z and(SCMPDS-OK)(2·k+2) = SCMPDS-Instr.

1 The proposition (12) has been removed.
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A SCMPDS-State is an element of∏SCMPDS-OK.
We now state several propositions:

(17) Instr-LocSCM 6= SCMPDS-Instr and SCMPDS-Instr6= Z.

(18) (SCMPDS-OK)(i) = Instr-LocSCM iff i = 0.

(19) (SCMPDS-OK)(i) = Z iff there existsk such thati = 2·k+1.

(20) (SCMPDS-OK)(i) = SCMPDS-Instr iff there existsk such thati = 2·k+2.

(21) (SCMPDS-OK)(d1) = Z.

(22) (SCMPDS-OK)(i1) = SCMPDS-Instr.

(23) π0 ∏SCMPDS-OK= Instr-LocSCM.

(24) πd1 ∏SCMPDS-OK= Z.

(25) πi1 ∏SCMPDS-OK= SCMPDS-Instr.

Let s be a SCMPDS-State. The functorICs yielding an element of Instr-LocSCM is defined as
follows:

(Def. 5) ICs = s(0).

Let s be a SCMPDS-State and letu be an element of Instr-LocSCM. The functor ChgSCM(s,u)
yielding a SCMPDS-State is defined as follows:

(Def. 6) ChgSCM(s,u) = s+·(07−→. u).

We now state three propositions:

(26) For every SCMPDS-States and for every elementu of Instr-LocSCM holds
(ChgSCM(s,u))(0) = u.

(27) For every SCMPDS-Statesand for every elementu of Instr-LocSCM and for every element
m1 of Data-LocSCM holds(ChgSCM(s,u))(m1) = s(m1).

(28) For every SCMPDS-States and for all elementsu, v of Instr-LocSCM holds
(ChgSCM(s,u))(v) = s(v).

Let s be a SCMPDS-State, lett be an element of Data-LocSCM, and letu be an integer. The
functor ChgSCM(s, t,u) yielding a SCMPDS-State is defined as follows:

(Def. 7) ChgSCM(s, t,u) = s+·(t 7−→. u).

One can prove the following four propositions:

(29) For every SCMPDS-States and for every elementt of Data-LocSCM and for every integer
u holds(ChgSCM(s, t,u))(0) = s(0).

(30) For every SCMPDS-States and for every elementt of Data-LocSCM and for every integer
u holds(ChgSCM(s, t,u))(t) = u.

(31) Lets be a SCMPDS-State,t be an element of Data-LocSCM, u be an integer, andm1 be an
element of Data-LocSCM. If m1 6= t, then(ChgSCM(s, t,u))(m1) = s(m1).

(32) Lets be a SCMPDS-State,t be an element of Data-LocSCM, u be an integer, andv be an
element of Instr-LocSCM. Then(ChgSCM(s, t,u))(v) = s(v).

Let s be a SCMPDS-State and leta be an element of Data-LocSCM. Thens(a) is an integer.
Let s be a SCMPDS-State, leta be an element of Data-LocSCM, and letn be an integer. The

functor AddressAdd(s,a,n) yields an element of Data-LocSCM and is defined by:
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(Def. 8) AddressAdd(s,a,n) = 2· |s(a)+n|+1.

Let s be a SCMPDS-State and letn be an integer. The functor jumpaddress(s,n) yielding an
element of Instr-LocSCM is defined as follows:

(Def. 9) jumpaddress(s,n) = |((ICs qua natural number)−2)+2·n|+2.

Let d be an element of Data-LocSCM and lets be an integer. Then〈d,s〉 is a finite sequence of
elements of Data-LocSCM∪Z.

Let x be an element of SCMPDS-Instr. Let us assume that there exist an elementm1 of
Data-LocSCM andI such thatx= 〈〈I , 〈m1〉〉〉. The functorxaddress1 yields an element of Data-LocSCM

and is defined as follows:

(Def. 10) There exists a finite sequencef of elements of Data-LocSCM such that f = x2 and
xaddress1 = f1.

Next we state the proposition

(33) For every elementx of SCMPDS-Instr and for every elementm1 of Data-LocSCM such that
x = 〈〈I , 〈m1〉〉〉 holdsxaddress1 = m1.

Let x be an element of SCMPDS-Instr. Let us assume that there exist an integerr and I such
thatx = 〈〈I , 〈r〉〉〉. The functorxconstINT yields an integer and is defined as follows:

(Def. 11) There exists a finite sequencef of elements ofZ such thatf = x2 andxconstINT = f1.

One can prove the following proposition

(34) For every elementx of SCMPDS-Instr and for every integerk such thatx = 〈〈I , 〈k〉〉〉 holds
xconstINT = k.

Let x be an element of SCMPDS-Instr. Let us assume that there exist an elementm1 of
Data-LocSCM, an integerr, and I such thatx = 〈〈I , 〈m1, r〉〉〉. The functorxP21address yields an
element of Data-LocSCM and is defined by:

(Def. 12) There exists a finite sequencef of elements of Data-LocSCM∪Z such thatf = x2 and
xP21address= f1.

The functorxP22const yielding an integer is defined as follows:

(Def. 13) There exists a finite sequencef of elements of Data-LocSCM∪Z such thatf = x2 and
xP22const= f2.

We now state the proposition

(35) Let x be an element of SCMPDS-Instr,m1 be an element of Data-LocSCM, andr be an
integer. Ifx = 〈〈I , 〈m1, r〉〉〉, thenxP21address= m1 andxP22const= r.

Let x be an element of SCMPDS-Instr. Let us assume that there exist an elementm2 of
Data-LocSCM, integersk1, k2, andI such thatx= 〈〈I , 〈m2,k1,k2〉〉〉. The functorxP31address yielding
an element of Data-LocSCM is defined as follows:

(Def. 14) There exists a finite sequencef of elements of Data-LocSCM∪Z such thatf = x2 and
xP31address= f1.

The functorxP32const yielding an integer is defined as follows:

(Def. 15) There exists a finite sequencef of elements of Data-LocSCM∪Z such thatf = x2 and
xP32const= f2.

The functorxP33const yielding an integer is defined by:
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(Def. 16) There exists a finite sequencef of elements of Data-LocSCM∪Z such thatf = x2 and
xP33const= f3.

We now state the proposition

(36) Let x be an element of SCMPDS-Instr,d1 be an element of Data-LocSCM, andk1, k2 be
integers. Ifx= 〈〈I , 〈d1,k1,k2〉〉〉, thenxP31address= d1 andxP32const= k1 andxP33const=
k2.

Let x be an element of SCMPDS-Instr. Let us assume that there exist elementsm2, m3 of
Data-LocSCM, integersk1, k2, and I such thatx = 〈〈I , 〈m2,m3,k1,k2〉〉〉. The functorxP41address
yielding an element of Data-LocSCM is defined by:

(Def. 17) There exists a finite sequencef of elements of Data-LocSCM∪Z such thatf = x2 and
xP41address= f1.

The functorxP42address yielding an element of Data-LocSCM is defined as follows:

(Def. 18) There exists a finite sequencef of elements of Data-LocSCM∪Z such thatf = x2 and
xP42address= f2.

The functorxP43const yields an integer and is defined as follows:

(Def. 19) There exists a finite sequencef of elements of Data-LocSCM∪Z such thatf = x2 and
xP43const= f3.

The functorxP44const yields an integer and is defined by:

(Def. 20) There exists a finite sequencef of elements of Data-LocSCM∪Z such thatf = x2 and
xP44const= f4.

We now state the proposition

(37) Let x be an element of SCMPDS-Instr,d1, d2 be elements of Data-LocSCM, andk1, k2

be integers. Ifx = 〈〈I , 〈d1,d2,k1,k2〉〉〉, then xP41address= d1 and xP42address= d2 and
xP43const= k1 andxP44const= k2.

Letsbe a SCMPDS-State and letabe an element of Data-LocSCM. The functor PopInstrLoc(s,a)
yielding an element of Instr-LocSCM is defined as follows:

(Def. 21) PopInstrLoc(s,a) = 2· (|s(a)|÷2)+4.

The natural number RetSP is defined as follows:

(Def. 22) RetSP= 0.

The natural number RetIC is defined by:

(Def. 23) RetIC= 1.

Letxbe an element of SCMPDS-Instr and letsbe a SCMPDS-State. The functor Exec-ResSCM(x,s)
yielding a SCMPDS-State is defined as follows:

(Def. 24) Exec-ResSCM(x,s)=



ChgSCM(s, jump address(s,xconstINT)), if thereexistsk1suchthatx = 〈〈0, 〈k1〉〉〉,
ChgSCM(ChgSCM(s,xP21address,xP22const),Next(ICs)), if thereexistd1,k1suchthatx = 〈〈2, 〈d1,k1〉〉〉,
ChgSCM(ChgSCM(s,AddressAdd(s,xP21address,xP22const),(ICs qua natural number)),Next(ICs)), if thereexistd1,k1suchthatx = 〈〈3, 〈d1,k1〉〉〉,
ChgSCM(ChgSCM(s,xaddress1,s(AddressAdd(s,xaddress1,RetSP))),PopInstrLoc(s,AddressAdd(s,xaddress1,RetIC))), if thereexistsd1suchthatx = 〈〈1, 〈d1〉〉〉,
ChgSCM(s,(s(AddressAdd(s,xP31address,xP32const)) = 0→ Next(IC s), jump address(s,xP33const))), if thereexistd1,k1,k2suchthatx = 〈〈4, 〈d1,k1,k2〉〉〉,
ChgSCM(s,(s(AddressAdd(s,xP31address,xP32const)) > 0→ Next(IC s), jump address(s,xP33const))), if thereexistd1,k1,k2suchthatx = 〈〈5, 〈d1,k1,k2〉〉〉,
ChgSCM(s,(0 > s(AddressAdd(s,xP31address,xP32const))→ Next(IC s), jump address(s,xP33const))), if thereexistd1,k1,k2suchthatx = 〈〈6, 〈d1,k1,k2〉〉〉,
ChgSCM(ChgSCM(s,AddressAdd(s,xP31address,xP32const),xP33const),Next(ICs)), if thereexistd1,k1,k2suchthatx = 〈〈7, 〈d1,k1,k2〉〉〉,
ChgSCM(ChgSCM(s,AddressAdd(s,xP31address,xP32const),s(AddressAdd(s,xP31address,xP32const))+xP33const),Next(ICs)), if thereexistd1,k1,k2suchthatx = 〈〈8, 〈d1,k1,k2〉〉〉,
ChgSCM(ChgSCM(s,AddressAdd(s,xP41address,xP43const),s(AddressAdd(s,xP41address,xP43const))+s(AddressAdd(s,xP42address,xP44const))),Next(ICs)), if thereexistd1,d2,k1,k2suchthatx = 〈〈9, 〈d1,d2,k1,k2〉〉〉,
ChgSCM(ChgSCM(s,AddressAdd(s,xP41address,xP43const),s(AddressAdd(s,xP41address,xP43const))−s(AddressAdd(s,xP42address,xP44const))),Next(ICs)), if thereexistd1,d2,k1,k2suchthatx = 〈〈10, 〈d1,d2,k1,k2〉〉〉,
ChgSCM(ChgSCM(s,AddressAdd(s,xP41address,xP43const),s(AddressAdd(s,xP41address,xP43const)) ·s(AddressAdd(s,xP42address,xP44const))),Next(ICs)), if thereexistd1,d2,k1,k2suchthatx = 〈〈11, 〈d1,d2,k1,k2〉〉〉,
ChgSCM(ChgSCM(s,AddressAdd(s,xP41address,xP43const),s(AddressAdd(s,xP42address,xP44const))),Next(ICs)), if thereexistd1,d2,k1,k2suchthatx = 〈〈13, 〈d1,d2,k1,k2〉〉〉,
ChgSCM(ChgSCM(ChgSCM(s,AddressAdd(s,xP41address,xP43const),s(AddressAdd(s,xP41address,xP43const))÷s(AddressAdd(s,xP42address,xP44const))),AddressAdd(s,xP42address,xP44const),s(AddressAdd(s,xP41address,xP43const))mods(AddressAdd(s,xP42address,xP44const))),Next(ICs)), if thereexistd1,d2,k1,k2suchthatx = 〈〈12, 〈d1,d2,k1,k2〉〉〉,
s, otherwise.
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Let f be a function from SCMPDS-Instr into(∏SCMPDS-OK)∏SCMPDS-OK and letx be an
element of SCMPDS-Instr. Observe thatf (x) is function-like and relation-like.

The function SCMPDS-Exec from SCMPDS-Instr into(∏SCMPDS-OK)∏SCMPDS-OK is de-
fined as follows:

(Def. 25) For every elementx of SCMPDS-Instr and for every SCMPDS-Statey holds
(SCMPDS-Exec)(x)(y) = Exec-ResSCM(x,y).
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