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Summary. The SCMFSA computer can prove the correctness of many algorithms.
Unfortunately, it cannot prove the correctness of recursive algorithms. For this reason, this
article improves the SCMFSA computer and presents a Small Computer Model with Push-
Down Stack (called SCMPDS for short). In addition to conventional arithmetic and "goto”
instructions, we increase two new instructions such as "return” and "save instruction-counter”
in order to be able to design recursive programs.

MML Identifier: sScMPDS_1.

WWW: http://mizar.org/JEM/Volll/scmpds_1.html

The articles[[18],[[12],[16],[120],121],[[4].[16],[[11],[[14]/[16], 12], [17]  11], [3] [115], [19] [17], 18],
[Q], [10], and [18] provide the notation and terminology for this paper.

1. PRELIMINARIES

For simplicity, we use the following conventiori, X», X3, X4, X5 denote setd, j, k denote natural
numbers| denotes an element @f 4, i; denotes an element of Instr-Lagy, di, d> denote elements
of Data-Logcw, andky, ko denote integers.

Let x1, X2, X3, X4 be sets. The functgy, X2, X3, Xa) yielding a set is defined by:

(Def. 1) (X1,X2,X3,X4) = (X1,X2,X3) " (X4)-
Let x5 be a set. The functdixi, X2, X3, X4, Xs) yields a set and is defined by:

(Def. 2)  (X1,X2,X3,Xa,Xs5) = (X1,%2,%X3) " (X4,X5).

Letxg, X2, X3, X4 be sets. Observe théat;, xp, X3, X4) is function-like and relation-like. Lets be
a set. Note thafxi, X2, X3, X4, Xs) is function-like and relation-like.

Letxq, X2, X3, X4 be sets. Note thak, xp, X3,Xa) is finite sequence-like. Leg be a set. Observe
that (x1, X2, X3, X4, Xs) is finite sequence-like.

Let D be a non empty set and bet, X2, X3, X4 be elements oD. Then(x1,X2, X3, X4) is a finite
sequence of elements Df

Let D be a non empty set and bet, Xo, X3, X4, X5 be elements ob. Then(xi, X2, X3, X4, Xs5) iS a
finite sequence of elements Df

One can prove the following propositions:

(1)  (X1,%2,X3,Xa) = (X1,%2,%3) ~ (X4) and (X,X2,X3,X4) = (X1,X2) ~ (X3,Xa) and (X, X2, X3,
X4> = <X1> - <X27X37X4> and<X1)X27X37X4> = <X1> - <X2> - <X3> - <X4>

(2)  (X1,X2,X3,X4,X5) = (X1,X2,X3) ™ (X4,%5) and (X1, X2, X3, X4,X5) = (X1,X%2,X3,X4) ~ (X5) and
(X1,X2,%3,%X4,X5) = (X1) ™ (X2) ™ (Xa) ™ (Xa) ~ (X5) and (Xq,X2,X3,%X4,X5) = (X1,X2) ~ (X3,X4,
Xs) and (X1, X2, X3, Xa, Xs) = (X1) ™ (X2,X3,X4,X5).

1This work was done while the author visited Shinshu University March—April 1999.
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We follow the rules:N; denotes a hon empty s&i, Yo, Y3, V4, Y5 denote elements &y, andp
denotes a finite sequence.
Next we state several propositions:

(3) p= (x1,X2,%3,X4) iff len p=4 andp(1) = x; andp(2) = x andp(3) = xz andp(4) = X4.
(4) dom(xy,Xz,X3,X4) = Seg4

(5) p=(x1,%2,X3,X4,Xs) ifflen p=5andp(1) =x; andp(2) = x; andp(3) = xz andp(4) = x4
andp(5) = xs.

(6) dom(x1,X2,X3,%4,Xs5) = Seg5

() (Y1,¥2,¥3,Y4)1 = Y1 and(y1,¥2,Y3,Ya)2 = Y2 and(y1,Y2,Ys, Ya)3 = Y3 and(y1,y2,Ys, Ya)a =
Ya.

(8)  (Y1,¥2,Y3,¥4,Y5)1 = Y1 and(y1,Y2,¥3,Ya,¥5)2 = Y2 and(y1,y2,Y3, Y4, Ys)3 = Y3 and(y1, ya,
Y3,Y4,Ys5)4 = Y4 and(y1,Y2,Y3,Ya, Ys)5 = Ys.

(9) For every integek holdsk € [ J{Z} UN.
(10) For every integek holdsk € Data-Logcm U Z.

(11) For every elemert of Data-Logcm holdsd € Data-LogcumU Z.

2. THE CONSTRUCTION OFSCMWITH PUSH-DOWN STACK

The subset SCMPDS-Instr 614, (U{Z} UN)* ] is defined by the condition (Def. 3).

(Def. 3) SCMPDS-Inste= {(0, (I}) : | ranges over elements @f U {(1, (s1)) : s1 ranges over ele-
ments of Data-Logcm} U {(l, (v,C));| ranges over elements @f4, v ranges over elements
of Data-Logcw, € ranges over elements @ | € {2,3}} U {{l, (v,c1,C2));| ranges over
elements ofZ14, v ranges over elements of Data-lge¢, €1 ranges over elements @f, ¢,
ranges over elements @f | € {4,5,6,7,8}} U{(l, (v1,Vv2,¢1,C2));| ranges over elements of
Z14, V1 ranges over elements of Data-lgeg, V2 ranges over elements of Data-lg@g, C1
ranges over elements &f c, ranges over elements @f | € {9,10,11,12,13}}.

We now state the proposition
3f] (o, (0)) € SCMPDS-Instr

One can check that SCMPDS-Instr is non empty.
We now state three propositions:

(14) k=0 orthere existg such thak =2- j + 1 or there existg such thak =2-j + 2.

(15) If k=0, then it is not true that there exisjssuch thatkk = 2- j + 1 and it is not true that
there existg such thak=2-j+2.

(16)()) If there existsj such thatkk = 2- j + 1, thenk # 0 and it is not true that there exisjs
such thak=2-j+2 and
(i) if there existsj such thak = 2- j+ 2, thenk # 0 and it is not true that there existsuch
thatk=2-j+1.
The function SCMPDS-OK frori¥ into {Z} U {SCMPDS-Instyinstr-Locscum} is defined by:

(Def. 4) (SCMPDS-OK(0) = Instr-Locscm and for every natural numbkiholds(SCMPDS-OK (2-
k+ 1) = Z and(SCMPDS-OK(2- k+2) = SCMPDS-Instr

1 The proposition (12) has been removed.
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A SCMPDS-State is an element GiSCMPDS-OK
We now state several propositions:

(17) Instr-Logcm # SCMPDS-Instr and SCMPDS-Ins# Z.
(18)
(19)

(SCMPDS-OK(i) = Instr-Locscm iff i = 0.
(

(20) (SCMPDS-OK(i) = SCMPDS-Instr iff there existe such thai = 2-k+ 2.
(
(

SCMPDS-OK(i) = Z iff there existsk such thai = 2-k+ 1.

(21)
(22)

SCMPDS-OK(d;) = Z.
SCMPDS-0OK(i1) = SCMPDS-Instr
(23) T1H[1SCMPDS-OK= Instr-Locscm.
(24) T4, [1SCMPDS-OK=Z.

(25) 15, [ITSCMPDS-OK= SCMPDS-Instr

Let she a SCMPDS-State. The funct@@ s yielding an element of Instr-Legy is defined as
follows:

(Def. 5) ICs=s(0).

Let sbe a SCMPDS-State and letbe an element of Instr-Lgenm. The functor Chgepy(s,u)
yielding a SCMPDS-State is defined as follows:

(Def. 6) Chgcp(s,u) = s+-(0——u).
We now state three propositions:

(26) For every SCMPDS-States and for every elementu of Instr-Locscym holds
(Chgsc(s U))(0) = u.

(27) For every SCMPDS-Stagand for every element of Instr-Locscym and for every element
my of Data-Logcm holds(Chggepm(s,u)) (M) = s(my).

(28) For every SCMPDS-Stats and for all elementsu, v of Instr-Locscuy holds
(Chgscm(s,u))(v) = s(v).

Let s be a SCMPDS-State, Iétbe an element of Data-Lggm, and letu be an integer. The
functor Chg,cp(s,t,u) yielding a SCMPDS-State is defined as follows:

(Def. 7)  Chgycpm(s t,u) = s+-(t—u).
One can prove the following four propositions:

(29) For every SCMPDS-Stateand for every elemeritof Data-Logcy and for every integer
u holds(Chggepm(s,t,u))(0) = s(0).

(30) For every SCMPDS-Stateand for every elemeritof Data-Logcy and for every integer
u holds(Chggepm(s,t,u))(t) = u.

(31) Letsbe a SCMPDS-Statébe an element of Data-Lggwm, U be an integer, andy be an
element of Data-Logcw. If my #t, then(Chggepm(s,t,u)) (M) = s(my).

(32) Letsbe a SCMPDS-Staté,be an element of Data-Lggwm, U be an integer, and be an
element of Instr-Logcm. Then(Chggep(s,t,u)) (V) = s(v).

Letsbe a SCMPDS-State and ebe an element of Data-Lgem. Thens(a) is an integer.
Let sbe a SCMPDS-State, letbe an element of Data-Lgeym, and letn be an integer. The
functor AddressAdd(s,a, n) yields an element of Data-Legem and is defined by:
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(Def. 8) AddressAdd(s,a,n) =2-|s(a) +n|+ 1.

Let sbe a SCMPDS-State and letbe an integer. The functor jumgddresés,n) yielding an
element of Instr-Logcy is defined as follows:

(Def. 9) jumpaddresés, n) = |((ICs qua natural number}2) +2-n| + 2.

Letd be an element of Data-Lgem and lets be an integer. Thefd,s) is a finite sequence of
elements of Data-Lagm U Z.

Let x be an element of SCMPDS-Instr. Let us assume that there exist an elemeaft
Data-Logcm andl such thak= (I, (my)). The functorxaddressyields an element of Data-Lggm
and is defined as follows:

(Def. 10) There exists a finite sequenfeof elements of Data-Lagy such thatf = x, and
xaddresg= f;.

Next we state the proposition

(33) For every elementof SCMPDS-Instr and for every elememni of Data-Logcy such that
x= (I, (m)) holdsxaddress= my.

Let x be an element of SCMPDS-Instr. Let us assume that there exist an intagdt such
thatx = (I, (r)). The functorxconstINT yields an integer and is defined as follows:

(Def. 11) There exists a finite sequenicef elements ofZ such thatf = x, andxconstINT = f;.

One can prove the following proposition

(34) For every elementof SCMPDS-Instr and for every integkisuch that = (I, (k)) holds
xconstINT =k.

Let x be an element of SCMPDS-Instr. Let us assume that there exist an elemegit
Data-Logcm, an integerr, andl such thatx = (I, (my,r)). The functorxP2laddress yields an
element of Data-Logcw and is defined by:

(Def. 12) There exists a finite sequenteof elements of Data-Lagy U Z such thatf = x, and
xP21laddress: fj.

The functorxP22const yielding an integer is defined as follows:

(Def. 13) There exists a finite sequentef elements of Data-Lagy U Z such thatf = x, and
xP22const fo.

We now state the proposition

(35) Letx be an element of SCMPDS-Instry be an element of Data-Lggn, andr be an
integer. Ifx= (I, (my,r)), thenxP21address- my andxP22const=r.

Let x be an element of SCMPDS-Instr. Let us assume that there exist an elemerit
Data-Logcwm, integers, kp, andl such thak = (I, (mp, kg, k2)). The functorxP31address yielding
an element of Data-Legy is defined as follows:

(Def. 14) There exists a finite sequentef elements of Data-Lagy U Z such thatf = x, and
xP3laddress: fj.

The functorxP32const yielding an integer is defined as follows:

(Def. 15) There exists a finite sequentef elements of Data-Lag:mU Z such thatf = x; and
xP32const= fs.

The functorxP33const yielding an integer is defined by:
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(Def. 16) There exists a finite sequentef elements of Data-LagmU Z such thatf = x; and
xP33const= fs.

We now state the proposition
(36) Letx be an element of SCMPDS-Instl; be an element of Data-Lggn, andks, ko be

integers. Ifx= (I, (di, ki, kp)), thenxP3laddress d; andxP32const k; andxP33const
ko.

Let x be an element of SCMPDS-Instr. Let us assume that there exist elemgnts of
Data-Logcwm, integersks, kp, andl such thatx = (I, (mp,mg, ki, k2)). The functorxP4laddress
yielding an element of Data-Legy is defined by:

(Def. 17) There exists a finite sequenteof elements of Data-Lagy U Z such thatf = x, and
xP4laddress f;.

The functorxP42address yielding an element of Data-4®gis defined as follows:

(Def. 18) There exists a finite sequenteof elements of Data-Lagy U Z such thatf = x, and
xP42address: f,.

The functorxP43const yields an integer and is defined as follows:

(Def. 19) There exists a finite sequentef elements of Data-Lagv U Z such thatf = x, and
xP43const fs.

The functorxP44const yields an integer and is defined by:

(Def. 20) There exists a finite sequentef elements of Data-Lagv U Z such thatf = x, and
xP44const fy.

We now state the proposition

(87) Letx be an element of SCMPDS-Inst, d, be elements of Data-Legn, andks, ko
be integers. Iix = (I, (d1,dy, ki, ko)), thenxP4laddress- d; andxP42address- d; and
xP43const k; andxP44const k.

Letsbe a SCMPDS-State and kebe an element of Data-Lggw. The functor PoplinstrLgs, a)
yielding an element of Instr-Lag v is defined as follows:

(Def. 21) PoplnstrLots,a) = 2- (|s(a)| +2) +
The natural number RetSP is defined as follows:
(Def. 22) RetSP=0.
The natural number RetIC is defined by:
(Def. 23) RetlC=1.

Letxbe an element of SCMPDS-Instr andddéle a SCMPDS-State. The functor Exec-Rg&X,S)
yielding a SCMPDS-State is defined as follows:

Chgsem(s,jump.addrests, xconstINT)), if thereexist&;suchthat = (0, (ki)),
Chgscm(Chgsem(s, xP21addressP22const Next(ICs)), if thereexistl, kysuchthat = (.
Chgscm(Chgsepm(s,AddressAdd(s,xP21addressP22const, (IC s qua natural number))
Chgscm(Chgsepm(s, xaddress, s(AddressAdd(s, xaddress, RetSH)), PoplinstrLogs, Addt
Chgscm(s, (s(AddressAdd(s,xP31addresgP32const) = 0 — Next(ICs),jump_addresé
Chgscm(s, (s(AddressAdd(s,xP31addresgP32consk) > 0 — Next(ICs),jump_addresé
Chgscm(s, (0 > s(AddressAdd(s,xP3laddresgP32const) — Next(ICs),jump_addresé
(Def. 24) Exec-Rescm(x,S) =< Chogem(Chgsem(s, AddressAdd(s, xP3laddressP32const, xP33const Next(ICs)), if t

(

(

(

(

(

<

( (
Chgscm(Chgsepm(s, AddressAdd(s, xP31addressP32const, s(AddressAdd(s, xP31adc
Chgsepm(Chggem(s, AddressAdd(s, xP41laddresxP43const s(AddressAdd(s,xP4ladc
Chgscm(Chgsem(s, AddressAdd(s, xP41addressP43const s(AddressAdd(s, xP4ladc

( (

(

(

<

Chgscm(Chgsem(s,AddressAdd(s, xP41addressP43const, s(AddressAdd(s, xP4ladc
Chgsem(Chgsem(s, AddressAdd(s, xP4laddresxP43const, s(AddressAdd(s, xP42adc
Chgsem(Chgsepm(Chasem(s, AddressAdd(s, xP4laddressP43const s(AddressAdd(s,:
s, otherwise.
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Let f be a function from SCMPDS-Instr int(f] SCMPDS-OKMSCMPDSOK gng |etx be an

element of SCMPDS-Instr. Observe tHdk) is function-like and relation-like.

The function SCMPDS-Exec from SCMPDS-Instr irig SCMPDS-OKMSCMPDSOK g de-

fined as follows:

(Def. 25) For every elemenx of SCMPDS-Instr and for every SCMPDS-State holds

(SCMPDS-Exep(x)(y) = Exec-Regcm(X,Y).
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