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Summary. The earlier SCM computer did not contain recursive function, so Trybulec
and Nakamura proved the correctness of the Euclid’s algorithm only by way of an iterative
program. However, the recursive method is a very important programming method, further-
more, for some algorithms, for example Quicksort, only by employing a recursive method
(note push-down stack is essentially also a recursive method) can they be implemented. The
main goal of the article is to test the recursive function of the SCMPDS computer by prov-
ing the correctness of the Euclid’s algorithm by way of a recursive program. In this article,
we observed that the memory required by the recursive Euclide algorithm is variable but it
is still autonomic. Although the algorithm here is more complicated than the non-recursive
algorithm, its focus is that the SCMPDS computer will be able to implement many algorithms
like Quicksort which the SCM computer cannot do.

MML Identifier: SCMP_GCD.

WWW: http://mizar.org/JFM/Vol11/scmp_gcd.html

The articles [15], [3], [13], [2], [4], [10], [11], [12], [8], [7], [5], [1], [6], [14], and [9] provide the
notation and terminology for this paper.

1. PRELIMINARIES

For simplicity, we use the following convention:m, n denote natural numbers,i, j denote instruc-
tions of SCMPDS,s denotes a state of SCMPDS, andI , J denote Program-blocks.

The following three propositions are true:

(1) If m> 0, then gcd(n,m) = gcd(m,nmodm).

(2) For all integersi, j such thati ≥ 0 and j > 0 holdsi gcd j = j gcdi mod j.

(3) For every natural numbermand for every integerj such that insposm= j holds insposm+
2 = 2· (| j|÷2)+4.

Let k be a natural number. The functor intposk yields an Int position and is defined by:

(Def. 1) intposk = dk.

We now state three propositions:

(4) For all natural numbersn1, n2 such thatn1 6= n2 holds intposn1 6= intposn2.

(5) For all natural numbersn1, n2 holds DataLoc(n1,n2) = intposn1 +n2.
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(6) For every states of SCMPDS and for all natural numbersm1, m2 such thatIC s =
insposm1 +m2 holds ICplusConst(s,−m2) = insposm1.

The Int position GBP is defined as follows:

(Def. 2) GBP= intpos0.

The Int position SBP is defined by:

(Def. 3) SBP= intpos1.

We now state several propositions:

(7) GBP6= SBP.

(8) card(I ; i) = cardI +1.

(9) card(i; j) = 2.

(10) (I ; i)(insposcardI) = i and insposcardI ∈ dom(I ; i).

(11) (I ; i; J)(insposcardI) = i.

2. THE CONSTRUCTION OFRECURSIVEEUCLIDE ALGORITHM

The Program-block GCD-Algorithm is defined by:

(Def. 4) GCD-Algorithm=(GBP:=0); (SBP:=7); saveIC(SBP,RetIC); goto 2;haltSCMPDS; ((SBP,3)<=
0 goto 9); ((SBP,6) :=(SBP,3)); Divide(SBP,2,SBP,3); ((SBP,7) :=(SBP,3)); ((SBP,4+
RetSP) :=(GBP,1)); AddTo(GBP,1,4); saveIC(SBP,RetIC); goto(−7); ((SBP,2) :=(SBP,6)); returnSBP.

3. THE COMPUTATION OF RECURSIVEEUCLIDE ALGORITHM

One can prove the following propositions:

(12) cardGCD-Algorithm= 15.

(13) n < 15 iff insposn∈ domGCD-Algorithm.

(14) (GCD-Algorithm)(inspos0) = GBP:=0 and (GCD-Algorithm)(inspos1) = SBP:=7
and (GCD-Algorithm)(inspos2) = saveIC(SBP,RetIC) and (GCD-Algorithm)(inspos3) =
goto 2 and(GCD-Algorithm)(inspos4) = haltSCMPDS and (GCD-Algorithm)(inspos5) =
(SBP,3) <= 0 goto 9 and (GCD-Algorithm)(inspos6) = (SBP,6) := (SBP,3) and
(GCD-Algorithm)(inspos7) = Divide(SBP,2,SBP,3) and (GCD-Algorithm)(inspos8) =
(SBP,7) := (SBP,3) and (GCD-Algorithm)(inspos9) = (SBP,4 + RetSP) := (GBP,1)
and(GCD-Algorithm)(inspos10) = AddTo(GBP,1,4) and(GCD-Algorithm)(inspos11) =
saveIC(SBP,RetIC) and(GCD-Algorithm)(inspos12)= goto(−7) and(GCD-Algorithm)(inspos13)=
(SBP,2) := (SBP,6) and(GCD-Algorithm)(inspos14) = returnSBP.

(15) Let s be a state of SCMPDS. Suppose Initialized(GCD-Algorithm) ⊆ s. Then
IC (Computation(s))(4) = inspos5 and(Computation(s))(4)(GBP)= 0 and(Computation(s))(4)(SBP)=
7 and(Computation(s))(4)(intpos7+RetIC)= inspos2 and(Computation(s))(4)(intpos9)=
s(intpos9) and(Computation(s))(4)(intpos10) = s(intpos10).

(16) Let s be a state of SCMPDS. Suppose GCD-Algorithm⊆ s and ICs = inspos5 and
s(SBP) > 0 ands(GBP) = 0 ands(DataLoc(s(SBP),3)) ≥ 0 ands(DataLoc(s(SBP),2)) ≥
s(DataLoc(s(SBP),3)). Then there existsn such that

(i) CurInstr((Computation(s))(n)) = returnSBP,

(ii) s(SBP) = (Computation(s))(n)(SBP),
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(iii) (Computation(s))(n)(DataLoc(s(SBP),2))= s(DataLoc(s(SBP),2))gcds(DataLoc(s(SBP),3)),
and

(iv) for every natural numberj such that 1< j and j ≤ s(SBP) + 1 holds s(intposj) =
(Computation(s))(n)(intposj).

(17) Let s be a state of SCMPDS. Suppose GCD-Algorithm⊆ s and ICs = inspos5 and
s(SBP) > 0 ands(GBP) = 0 ands(DataLoc(s(SBP),3))≥ 0 ands(DataLoc(s(SBP),2))≥ 0.
Then there existsn such that

(i) CurInstr((Computation(s))(n)) = returnSBP,

(ii) s(SBP) = (Computation(s))(n)(SBP),

(iii) (Computation(s))(n)(DataLoc(s(SBP),2))= s(DataLoc(s(SBP),2))gcds(DataLoc(s(SBP),3)),
and

(iv) for every natural numberj such that 1< j and j ≤ s(SBP) + 1 holds s(intposj) =
(Computation(s))(n)(intposj).

4. THE CORRECTNESS OFRECURSIVEEUCLIDE ALGORITHM

One can prove the following proposition

(18) Letsbe a state of SCMPDS. Suppose Initialized(GCD-Algorithm)⊆ s. Let x, y be integers.
If s(intpos9)= xands(intpos10)= yandx≥0 andy≥0, then(Result(s))(intpos9)= xgcdy.

5. THE AUTONOMY OF RECURSIVEEUCLIDE ALGORITHM

One can prove the following proposition

(19) Let p be a finite partial state of SCMPDS andx, y be integers. Ify≥ 0 andx≥ y and
p = [intpos97−→ x, intpos107−→ y], then Initialized(GCD-Algorithm)+·p is autonomic.
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