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The articles [15], [14], [19], [1], [10], [11], [18], [20], [3], [4], [7], [5], [2], [8], [6], [9], [16], [12],
[13], and [17] provide the notation and terminology for this paper.

1. PRELIMINARIES

Let N be a set and letSbe an AMI overN. Observe that every finite partial state ofS is finite.
Let N be a set and letSbe an AMI overN. One can verify that there exists a finite partial state

of Swhich is programmed.
We now state the proposition

(1) Let N be a set with non empty elements,Sbe a definite non empty non void AMI overN,
andp be a programmed finite partial state ofS. Then rngp⊆ the instructions ofS.

Let N be a set, letS be an AMI overN, and letI , J be programmed finite partial states ofS.
ThenI+·J is a programmed finite partial state ofS.

We now state the proposition

(2) Let N be a set with non empty elements,Sbe a definite non empty non void AMI overN,
f be a function from the instructions ofS into the instructions ofS, ands be a programmed
finite partial state ofS. Then dom( f ·s) = doms.

2. INCREMENTING AND DECREMENTING THE INSTRUCTION LOCATIONS

In the sequelk, l , m, n, p denote natural numbers.
Let l1 be an instruction-location ofSCMFSA and letk be a natural number. The functorl1 + k

yields an instruction-location ofSCMFSA and is defined as follows:

(Def. 1) There exists a natural numberm such thatl1 = insloc(m) andl1 +k = insloc(m+k).

The functorl1−′ k yields an instruction-location ofSCMFSA and is defined as follows:

(Def. 2) There exists a natural numberm such thatl1 = insloc(m) andl1−′ k = insloc(m−′ k).

One can prove the following propositions:

(3) For every instruction-locationl of SCMFSA and for allm, n holds(l +m)+n= l +(m+n).

(4) For every instruction-locationl1 of SCMFSA and for every natural numberk holds(l1 +
k)−′ k = l1.

1 c© Association of Mizar Users

http://mizar.org/JFM/Vol8/scmfsa_4.html


MODIFYING ADDRESSES OF INSTRUCTIONS OF. . . 2

In the sequelL is an instruction-location ofSCM andI is an instruction ofSCM.
We now state three propositions:

(5) For every instruction-locationl of SCMFSA and for everyL such thatL = l holdsl + k =
L+k.

(6) For all instruction-locationsl2, l3 of SCMFSA and for every natural numberk holds
Start-At(l2 +k) = Start-At(l3 +k) iff Start-At(l2) = Start-At(l3).

(7) For all instruction-locationsl2, l3 of SCMFSA and for every natural numberk such that
Start-At(l2) = Start-At(l3) holds Start-At(l2−′ k) = Start-At(l3−′ k).

3. INCREMENTING ADDRESSES

Let i be an instruction ofSCMFSA and letk be a natural number. The functor IncAddr(i,k) yielding
an instruction ofSCMFSA is defined as follows:

(Def. 3)(i) There exists an instructionI of SCM such thatI = i and IncAddr(i,k) = IncAddr(I ,k)
if InsCode(i) ∈ {6,7,8},

(ii) IncAddr(i,k) = i, otherwise.

The following propositions are true:

(8) For every natural numberk holds IncAddr(haltSCMFSA,k) = haltSCMFSA.

(9) For every natural numberk and for all integer locationsa, b holds IncAddr(a:=b,k) =
a:=b.

(10) For every natural numberk and for all integer locationsa, bholds IncAddr(AddTo(a,b),k)=
AddTo(a,b).

(11) For every natural numberk and for all integer locationsa, bholds IncAddr(SubFrom(a,b),k)=
SubFrom(a,b).

(12) For every natural numberk and for all integer locationsa, bholds IncAddr(MultBy(a,b),k)=
MultBy(a,b).

(13) For every natural numberk and for all integer locationsa, bholds IncAddr(Divide(a,b),k)=
Divide(a,b).

(14) For every natural numberk and for every instruction-locationl1 of SCMFSA holds
IncAddr(goto l1,k) = goto(l1 +k).

(15) Let k be a natural number,l1 be an instruction-location ofSCMFSA, anda be an integer
location. Then IncAddr(if a = 0 goto l1,k) = if a = 0 goto l1 +k.

(16) Let k be a natural number,l1 be an instruction-location ofSCMFSA, anda be an integer
location. Then IncAddr(if a > 0 goto l1,k) = if a > 0 goto l1 +k.

(17) Let k be a natural number,a, b be integer locations, andf be a finite sequence location.
Then IncAddr(b:= fa,k) = b:= fa.

(18) Let k be a natural number,a, b be integer locations, andf be a finite sequence location.
Then IncAddr( fa:=b,k) = fa:=b.

(19) Let k be a natural number,a be an integer location, andf be a finite sequence location.
Then IncAddr(a:=lenf ,k) = a:=lenf .

(20) Let k be a natural number,a be an integer location, andf be a finite sequence location.
Then IncAddr( f :=〈0, . . . ,0︸ ︷︷ ︸

a

〉,k) = f :=〈0, . . . ,0︸ ︷︷ ︸
a

〉.
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(21) For every instructioni of SCMFSA and for everyI such thati = I holds IncAddr(i,k) =
IncAddr(I ,k).

(22) For every instruction I of SCMFSA and for every natural numberk holds
InsCode(IncAddr(I ,k)) = InsCode(I).

Let I1 be a finite partial state ofSCMFSA. We say thatI1 is initial if and only if:

(Def. 4) For allm, n such that insloc(n) ∈ domI1 andm< n holds insloc(m) ∈ domI1.

The finite partial state StopSCMFSA
of SCMFSA is defined by:

(Def. 5) StopSCMFSA
= insloc(0)7−→. haltSCMFSA.

Let us note that StopSCMFSA
is non empty, initial, and programmed.

Let us observe that there exists a finite partial state ofSCMFSA which is initial, programmed,
and non empty.

Let f be a function and letg be a finite function. Note thatf ·g is finite.
Let N be a non empty set with non empty elements, letSbe a definite non empty non void AMI

overN, let s be a programmed finite partial state ofS, and let f be a function from the instructions
of S into the instructions ofS. Then f ·s is a programmed finite partial state ofS.

In the sequeli is an instruction ofSCMFSA.
One can prove the following proposition

(23) IncAddr(IncAddr(i,m),n) = IncAddr(i,m+n).

4. INCREMETING ADDRESSES IN A FINITE PARTIAL STATE

Let p be a programmed finite partial state ofSCMFSA and letk be a natural number. The functor
IncAddr(p,k) yields a programmed finite partial state ofSCMFSA and is defined as follows:

(Def. 6) domIncAddr(p,k) = domp and for every m such that insloc(m) ∈ domp holds
(IncAddr(p,k))(insloc(m)) = IncAddr(πinsloc(m)p,k).

One can prove the following propositions:

(24) Let p be a programmed finite partial state ofSCMFSA, k be a natural number, andl be an
instruction-location ofSCMFSA. If l ∈ domp, then(IncAddr(p,k))(l) = IncAddr(πl p,k).

(25) For all programmed finite partial statesI , J of SCMFSA holds IncAddr(I+·J,n) =
IncAddr(I ,n)+· IncAddr(J,n).

(26) Let f be a function from the instructions ofSCMFSA into the instructions ofSCMFSA.
Supposef = idthe instructions ofSCMFSA+·(haltSCMFSA 7−→

. i). Let sbe a programmed finite partial
state ofSCMFSA. Then IncAddr( f ·s,n)= (idthe instructions ofSCMFSA+·(haltSCMFSA 7−→

. IncAddr(i,n)))·
IncAddr(s,n).

(27) For every programmed finite partial stateI of SCMFSA holds IncAddr(IncAddr(I ,m),n) =
IncAddr(I ,m+n).

(28) For every statesof SCMFSA holds Exec(IncAddr(CurInstr(s),k),s+·Start-At(ICs+k)) =
Following(s)+·Start-At(ICFollowing(s) +k).

(29) Let I2 be an instruction ofSCMFSA, s be a state ofSCMFSA, p be a finite par-
tial state of SCMFSA, and i, j, k be natural numbers. IfICs = insloc( j + k), then
Exec(I2,s+·Start-At(IC s−′ k)) = Exec(IncAddr(I2,k),s)+·Start-At(ICExec(IncAddr(I2,k),s) −′

k).
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5. SHIFTING THE FINITE PARTIAL STATE

Let p be a finite partial state ofSCMFSA and letk be a natural number. The functor Shift(p,k) yields
a programmed finite partial state ofSCMFSA and is defined by:

(Def. 7) domShift(p,k) = {insloc(m + k) : insloc(m) ∈ domp} and for every m such that
insloc(m) ∈ domp holds(Shift(p,k))(insloc(m+k)) = p(insloc(m)).

One can prove the following propositions:

(30) Let l be an instruction-location ofSCMFSA, k be a natural number, andp be a finite partial
state ofSCMFSA. If l ∈ domp, then(Shift(p,k))(l +k) = p(l).

(31) Letp be a finite partial state ofSCMFSA andk be a natural number. Then domShift(p,k) =
{i1 +k; i1 ranges over instruction-locations ofSCMFSA: i1 ∈ domp}.

(32) For every finite partial stateI of SCMFSA holds Shift(Shift(I ,m),n) = Shift(I ,m+n).

(33) Letsbe a programmed finite partial state ofSCMFSA, f be a function from the instructions
of SCMFSA into the instructions ofSCMFSA, and givenn. Then Shift( f ·s,n) = f ·Shift(s,n).

(34) For all finite partial statesI , J of SCMFSA holds Shift(I+·J,n) = Shift(I ,n)+·Shift(J,n).

(35) For all natural numbersi, j and for every programmed finite partial statep of SCMFSA

holds Shift(IncAddr(p, i), j) = IncAddr(Shift(p, j), i).
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