Modifying Addresses of Instructions of SCM_{FSA}

Andrzej Trybulec Warsaw University Białystok Yatsuka Nakamura Shinshu University Nagano

MML Identifier: SCMFSA_4.

WWW: http://mizar.org/JFM/Vol8/scmfsa_4.html

The articles [15], [14], [19], [1], [10], [11], [18], [20], [3], [4], [7], [5], [2], [8], [6], [9], [16], [12], [13], and [17] provide the notation and terminology for this paper.

1. Preliminaries

Let N be a set and let S be an AMI over N. Observe that every finite partial state of S is finite.

Let N be a set and let S be an AMI over N. One can verify that there exists a finite partial state of S which is programmed.

We now state the proposition

(1) Let N be a set with non empty elements, S be a definite non empty non void AMI over N, and p be a programmed finite partial state of S. Then rng $p \subseteq$ the instructions of S.

Let *N* be a set, let *S* be an AMI over *N*, and let *I*, *J* be programmed finite partial states of *S*. Then I+J is a programmed finite partial state of *S*.

We now state the proposition

- (2) Let N be a set with non empty elements, S be a definite non empty non void AMI over N, f be a function from the instructions of S into the instructions of S, and S be a programmed finite partial state of S. Then dom $(f \cdot s) = \text{dom } s$.
 - 2. Incrementing and decrementing the instruction locations

In the sequel k, l, m, n, p denote natural numbers.

Let l_1 be an instruction-location of \mathbf{SCM}_{FSA} and let k be a natural number. The functor $l_1 + k$ yields an instruction-location of \mathbf{SCM}_{FSA} and is defined as follows:

(Def. 1) There exists a natural number m such that $l_1 = \operatorname{insloc}(m)$ and $l_1 + k = \operatorname{insloc}(m+k)$.

The functor $l_1 - k$ yields an instruction-location of **SCM**_{FSA} and is defined as follows:

(Def. 2) There exists a natural number m such that $l_1 = \operatorname{insloc}(m)$ and $l_1 - k = \operatorname{insloc}(m - k)$.

One can prove the following propositions:

- (3) For every instruction-location l of **SCM**_{FSA} and for all m, n holds (l+m)+n=l+(m+n).
- (4) For every instruction-location l_1 of \mathbf{SCM}_{FSA} and for every natural number k holds $(l_1 + k) k = l_1$.

In the sequel *L* is an instruction-location of **SCM** and *I* is an instruction of **SCM**. We now state three propositions:

- (5) For every instruction-location l of \mathbf{SCM}_{FSA} and for every L such that L = l holds l + k = L + k.
- (6) For all instruction-locations l_2 , l_3 of \mathbf{SCM}_{FSA} and for every natural number k holds Start-At $(l_2 + k)$ = Start-At $(l_3 + k)$ iff Start-At (l_2) = Start-At (l_3) .
- (7) For all instruction-locations l_2 , l_3 of \mathbf{SCM}_{FSA} and for every natural number k such that $\mathsf{Start}\text{-At}(l_2) = \mathsf{Start}\text{-At}(l_3)$ holds $\mathsf{Start}\text{-At}(l_2-'k) = \mathsf{Start}\text{-At}(l_3-'k)$.

3. Incrementing addresses

Let i be an instruction of \mathbf{SCM}_{FSA} and let k be a natural number. The functor IncAddr(i,k) yielding an instruction of \mathbf{SCM}_{FSA} is defined as follows:

- (Def. 3)(i) There exists an instruction I of **SCM** such that I = i and IncAddr(i,k) = IncAddr(I,k) if $InsCode(i) \in \{6,7,8\}$,
 - (ii) IncAddr(i, k) = i, otherwise.

The following propositions are true:

- (8) For every natural number k holds $IncAddr(halt_{SCM_{FSA}}, k) = halt_{SCM_{FSA}}$.
- (9) For every natural number k and for all integer locations a, b holds IncAddr(a := b, k) = a := b.
- (10) For every natural number k and for all integer locations a, b holds IncAddr(AddTo(a,b),k) = AddTo(a,b).
- (11) For every natural number k and for all integer locations a, b holds IncAddr(SubFrom(a,b),k) = SubFrom(a,b).
- (12) For every natural number k and for all integer locations a, b holds IncAddr(MultBy(a,b),k) = MultBy(a,b).
- (13) For every natural number k and for all integer locations a, b holds IncAddr(Divide(a,b), k) = Divide(a,b).
- (14) For every natural number k and for every instruction-location l_1 of \mathbf{SCM}_{FSA} holds $\operatorname{IncAddr}(\operatorname{goto} l_1, k) = \operatorname{goto} (l_1 + k)$.
- (15) Let k be a natural number, l_1 be an instruction-location of \mathbf{SCM}_{FSA} , and a be an integer location. Then $\operatorname{IncAddr}(\mathbf{if}\ a=0\ \mathbf{goto}\ l_1,k)=\mathbf{if}\ a=0\ \mathbf{goto}\ l_1+k$.
- (16) Let k be a natural number, l_1 be an instruction-location of \mathbf{SCM}_{FSA} , and a be an integer location. Then $\operatorname{IncAddr}(\mathbf{if}\ a > 0\ \mathbf{goto}\ l_1, k) = \mathbf{if}\ a > 0\ \mathbf{goto}\ l_1 + k$.
- (17) Let k be a natural number, a, b be integer locations, and f be a finite sequence location. Then $\operatorname{IncAddr}(b:=f_a,k)=b:=f_a$.
- (18) Let k be a natural number, a, b be integer locations, and f be a finite sequence location. Then $\operatorname{IncAddr}(f_a := b, k) = f_a := b$.
- (19) Let k be a natural number, a be an integer location, and f be a finite sequence location. Then $\operatorname{IncAddr}(a:=\operatorname{len} f,k)=a:=\operatorname{len} f$.
- (20) Let k be a natural number, a be an integer location, and f be a finite sequence location. Then $\operatorname{IncAddr}(f:=\langle \underbrace{0,\ldots,0}\rangle,k)=f:=\langle \underbrace{0,\ldots,0}\rangle.$

- (21) For every instruction i of \mathbf{SCM}_{FSA} and for every I such that i = I holds $\operatorname{IncAddr}(i, k) = \operatorname{IncAddr}(I, k)$.
- (22) For every instruction I of \mathbf{SCM}_{FSA} and for every natural number k holds $\mathsf{InsCode}(\mathsf{IncAddr}(I,k)) = \mathsf{InsCode}(I)$.

Let I_1 be a finite partial state of **SCM**_{FSA}. We say that I_1 is initial if and only if:

(Def. 4) For all m, n such that $insloc(n) \in dom I_1$ and m < n holds $insloc(m) \in dom I_1$.

The finite partial state $Stop_{SCM_{FSA}}$ of SCM_{FSA} is defined by:

(Def. 5) $Stop_{SCM_{FSA}} = insloc(0) \mapsto halt_{SCM_{FSA}}$.

Let us note that $\mathsf{Stop}_{\mathsf{SCM}_{\mathsf{FSA}}}$ is non empty, initial, and programmed.

Let us observe that there exists a finite partial state of **SCM**_{FSA} which is initial, programmed, and non empty.

Let f be a function and let g be a finite function. Note that $f \cdot g$ is finite.

Let N be a non empty set with non empty elements, let S be a definite non empty non void AMI over N, let s be a programmed finite partial state of S, and let f be a function from the instructions of S into the instructions of S. Then $f \cdot s$ is a programmed finite partial state of S.

In the sequel i is an instruction of SCM_{ESA} .

One can prove the following proposition

- (23) $\operatorname{IncAddr}(\operatorname{IncAddr}(i, m), n) = \operatorname{IncAddr}(i, m + n).$
 - 4. INCREMETING ADDRESSES IN A FINITE PARTIAL STATE

Let p be a programmed finite partial state of \mathbf{SCM}_{FSA} and let k be a natural number. The functor IncAddr(p,k) yields a programmed finite partial state of \mathbf{SCM}_{FSA} and is defined as follows:

(Def. 6) $\operatorname{dom}\operatorname{IncAddr}(p,k) = \operatorname{dom} p$ and for every m such that $\operatorname{insloc}(m) \in \operatorname{dom} p$ holds $(\operatorname{IncAddr}(p,k))(\operatorname{insloc}(m)) = \operatorname{IncAddr}(\pi_{\operatorname{insloc}(m)}p,k)$.

One can prove the following propositions:

- (24) Let p be a programmed finite partial state of \mathbf{SCM}_{FSA} , k be a natural number, and l be an instruction-location of \mathbf{SCM}_{FSA} . If $l \in \text{dom } p$, then $(\text{IncAddr}(p,k))(l) = \text{IncAddr}(\pi_l p,k)$.
- (25) For all programmed finite partial states I, J of \mathbf{SCM}_{FSA} holds $\operatorname{IncAddr}(I+J,n) = \operatorname{IncAddr}(I,n) + \cdot \operatorname{IncAddr}(J,n)$.
- (26) Let f be a function from the instructions of \mathbf{SCM}_{FSA} into the instructions of \mathbf{SCM}_{FSA} . Suppose $f = \mathrm{id}_{\mathsf{the \; instructions \; of \; } \mathbf{SCM}_{FSA} + \cdot (\mathbf{halt}_{\mathbf{SCM}_{FSA}} \mapsto i)$. Let s be a programmed finite partial state of \mathbf{SCM}_{FSA} . Then $\mathrm{IncAddr}(f \cdot s, n) = (\mathrm{id}_{\mathsf{the \; instructions \; of \; } \mathbf{SCM}_{FSA} + \cdot (\mathbf{halt}_{\mathbf{SCM}_{FSA}} \mapsto \mathrm{IncAddr}(i, n))) \cdot \mathrm{IncAddr}(s, n)$.
- (27) For every programmed finite partial state I of \mathbf{SCM}_{FSA} holds $\operatorname{IncAddr}(\operatorname{IncAddr}(I, m), n) = \operatorname{IncAddr}(I, m+n)$.
- (28) For every state s of \mathbf{SCM}_{FSA} holds $\operatorname{Exec}(\operatorname{IncAddr}(\operatorname{CurInstr}(s), k), s + \cdot \operatorname{Start-At}(\mathbf{IC}_s + k)) = \operatorname{Following}(s) + \cdot \operatorname{Start-At}(\mathbf{IC}_{\operatorname{Following}(s)} + k)$.
- (29) Let I_2 be an instruction of \mathbf{SCM}_{FSA} , s be a state of \mathbf{SCM}_{FSA} , p be a finite partial state of \mathbf{SCM}_{FSA} , and i, j, k be natural numbers. If $\mathbf{IC}_s = \mathrm{insloc}(j+k)$, then $\mathrm{Exec}(I_2, s+\cdot \mathrm{Start-At}(\mathbf{IC}_s-'k)) = \mathrm{Exec}(\mathrm{IncAddr}(I_2,k),s)+\cdot \mathrm{Start-At}(\mathbf{IC}_{\mathrm{Exec}(\mathrm{IncAddr}(I_2,k),s)}-'k)$.

5. SHIFTING THE FINITE PARTIAL STATE

Let p be a finite partial state of \mathbf{SCM}_{FSA} and let k be a natural number. The functor $\mathbf{Shift}(p,k)$ yields a programmed finite partial state of \mathbf{SCM}_{FSA} and is defined by:

(Def. 7) $\operatorname{dom} \operatorname{Shift}(p,k) = \{\operatorname{insloc}(m+k) : \operatorname{insloc}(m) \in \operatorname{dom} p\}$ and for every m such that $\operatorname{insloc}(m) \in \operatorname{dom} p$ holds $(\operatorname{Shift}(p,k))(\operatorname{insloc}(m+k)) = p(\operatorname{insloc}(m))$.

One can prove the following propositions:

- (30) Let l be an instruction-location of \mathbf{SCM}_{FSA} , k be a natural number, and p be a finite partial state of \mathbf{SCM}_{FSA} . If $l \in \text{dom } p$, then (Shift(p,k))(l+k) = p(l).
- (31) Let p be a finite partial state of \mathbf{SCM}_{FSA} and k be a natural number. Then dom Shift $(p, k) = \{i_1 + k; i_1 \text{ ranges over instruction-locations of } \mathbf{SCM}_{FSA}: i_1 \in \text{dom } p\}.$
- (32) For every finite partial state *I* of SCM_{FSA} holds Shift(Shift(I, m), n) = Shift(I, m + n).
- (33) Let *s* be a programmed finite partial state of \mathbf{SCM}_{FSA} , *f* be a function from the instructions of \mathbf{SCM}_{FSA} into the instructions of \mathbf{SCM}_{FSA} , and given *n*. Then $\mathrm{Shift}(f \cdot s, n) = f \cdot \mathrm{Shift}(s, n)$.
- (34) For all finite partial states I, J of SCM_{FSA} holds Shift(I+J, n) = Shift(I, n) + Shift(J, n).
- (35) For all natural numbers i, j and for every programmed finite partial state p of \mathbf{SCM}_{FSA} holds $\mathsf{Shift}(\mathsf{IncAddr}(p,i),j) = \mathsf{IncAddr}(\mathsf{Shift}(p,j),i)$.

REFERENCES

- Grzegorz Bancerek. The fundamental properties of natural numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/nat_1.html.
- [2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/finseg 1.html.
- [3] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funct_1.html.
- [4] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_2.html.
- [5] Czesław Byliński. A classical first order language. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/cqc_lang.html.
- [6] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/finseq_2.html.
- [7] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. *Journal of Formalized Mathematics*, 2, 1990. http://mizar.org/JFM/Vol2/funct_4.html.
- [8] Agata Darmochwał. Finite sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/finset_1.html.
- [9] Yatsuka Nakamura and Andrzej Trybulec. A mathematical model of CPU. Journal of Formalized Mathematics, 4, 1992. http://mizar.org/JFM/Vol4/ami_1.html.
- [10] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/Vol5/binarith.html.
- [11] Jan Popiotek. Some properties of functions modul and signum. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/ JFM/Voll/absvalue.html.
- [12] Yasushi Tanaka. On the decomposition of the states of SCM. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/Vol5/ami_5.html.
- [13] Yasushi Tanaka. Relocatability. Journal of Formalized Mathematics, 6, 1994. http://mizar.org/JFM/Vol6/reloc.html.
- [14] Andrzej Trybulec. Enumerated sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/enumset1.html.
- [15] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [16] Andrzej Trybulec and Yatsuka Nakamura. Some remarks on the simple concrete model of computer. *Journal of Formalized Mathematics*, 5, 1993. http://mizar.org/JFM/Vol5/ami_3.html.

- [17] Andrzej Trybulec, Yatsuka Nakamura, and Piotr Rudnicki. The SCM_{FSA} computer. *Journal of Formalized Mathematics*, 8, 1996. http://mizar.org/JFM/Vol8/scmfsa_2.html.
- [18] Michał J. Trybulec. Integers. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/int_1.html.
- $\textbf{[19] Zinaida Trybulec. Properties of subsets.} \textit{Journal of Formalized Mathematics}, \textbf{1, 1989}. \\ \texttt{http://mizar.org/JFM/Vol1/subset_1.html}.$
- [20] Edmund Woronowicz. Relations and their basic properties. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/relat_1.html.

Received February 14, 1996

Published January 2, 2004