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Summary. An attempt to use thewhile macro, [16], was the origin of writing this
article. Thewhile semantics, as given by J.-C. Chen, is slightly extended by weakening its
correctness conditions and this forced a quite straightforward remake of a number of theorems
from [16]. Numerous additional properties of thewhile macro are then proven. In the last
section, we define a macro instruction computing thefusc function (see the SCM program
computing the same function in [12]) and prove its correctness.

MML Identifier: SCMFSA9A.

WWW: http://mizar.org/JFM/Vol10/scmfsa9a.html

The articles [23], [32], [24], [25], [22], [7], [9], [30], [8], [20], [33], [13], [14], [15], [11], [17], [26],
[10], [21], [29], [27], [28], [5], [19], [6], [4], [3], [1], [2], [16], [18], and [31] provide the notation
and terminology for this paper.

1. ARITHMETIC PRELIMINARIES

We adopt the following convention:k, m, n are natural numbers,i, j are integers, andr is a real
number.

The schemeMinPred deals with a unary functorF yielding a natural number and a unary
predicateP , and states that:

There existsk such thatP [k] and for everyn such thatP [n] holdsk≤ n
provided the parameters meet the following condition:

• For everyk holdsF (k+1) < F (k) or P [k].
One can prove the following propositions:

(1) n is odd iff there exists a natural numberk such thatn = 2·k+1.

(2) For every integeri such thati ≤ r holdsi ≤ brc.

(3) If 0 < n, then 0≤ (m qua integer)÷n.

(4) If 0 < i and 1< j, theni÷ j < i.

(5) (m qua integer)÷n = m÷n and(mqua integer) modn = mmodn.

2. SCMFSA PRELIMINARIES

In the sequell denotes an instruction-location ofSCMFSA andi denotes an instruction ofSCMFSA.
We now state several propositions:
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(6) Let N be a non empty set with non empty elements,S be a halting IC-Ins-separated
definite non empty non void AMI overN, s be a state ofS, and k be a natural num-
ber. If CurInstr((Computation(s))(k)) = haltS, then (Computation(s))(LifeSpan(s)) =
(Computation(s))(k).

(7) UsedIntLoc(l 7−→. i) = UsedIntLoc(i).

(8) UsedInt∗Loc(l 7−→. i) = UsedInt∗Loc(i).

(9) UsedIntLoc(StopSCMFSA
) = /0.

(10) UsedInt∗Loc(StopSCMFSA
) = /0.

(11) UsedIntLoc(Goto(l)) = /0.

(12) UsedInt∗Loc(Goto(l)) = /0.

For simplicity, we follow the rules:s, s1, s2 denote states ofSCMFSA, a denotes a read-write
integer location,b denotes an integer location,I , J denote macro instructions,I1 denotes a good
macro instruction, andi, j, k denote natural numbers.

One can prove the following four propositions:

(13) UsedIntLoc(if b = 0 then I elseJ) = {b}∪UsedIntLoc(I)∪UsedIntLoc(J).

(14) For every integer locationa holds UsedInt∗Loc(if a= 0 then I elseJ) = UsedInt∗Loc(I)∪
UsedInt∗Loc(J).

(15) UsedIntLoc(if b > 0 then I elseJ) = {b}∪UsedIntLoc(I)∪UsedIntLoc(J).

(16) UsedInt∗Loc(if b > 0 then I elseJ) = UsedInt∗Loc(I)∪UsedInt∗Loc(J).

3. THE while=0 MACRO INSTRUCTION

The following two propositions are true:

(17) UsedIntLoc(while b = 0 do I) = {b}∪UsedIntLoc(I).

(18) UsedInt∗Loc(while b = 0 do I) = UsedInt∗Loc(I).

Let sbe a state ofSCMFSA, leta be a read-write integer location, and letI be a macro instruction.
The predicate ProperBodyWhile=0(a, I ,s) is defined as follows:

(Def. 1) For every natural numberk such that(StepWhile=0(a, I ,s))(k)(a) = 0 holdsI is closed on
(StepWhile=0(a, I ,s))(k) and halting on(StepWhile=0(a, I ,s))(k).

The predicate WithVariantWhile=0(a, I ,s) is defined by the condition (Def. 2).

(Def. 2) There exists a functionf from ∏ (the object kind ofSCMFSA) into N such that for every
natural numberk holds

f ((StepWhile=0(a, I ,s))(k+1))< f ((StepWhile=0(a, I ,s))(k)) or (StepWhile=0(a, I ,s))(k)(a) 6=
0.

We now state several propositions:

(19) For every parahalting macro instructionI holds ProperBodyWhile=0(a, I ,s).

(20) If ProperBodyWhile=0(a, I ,s) and WithVariantWhile=0(a, I ,s), thenwhile a = 0 do I is
halting ons andwhile a = 0 do I is closed ons.

(21) For every parahalting macro instructionI such that WithVariantWhile=0(a, I ,s) holds
while a = 0 do I is halting ons andwhile a = 0 do I is closed ons.
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(22) If (while a = 0 do I)+·S1 ⊆ s and s(a) 6= 0, then LifeSpan(s) = 4 and for every nat-
ural numberk holds (Computation(s))(k)�D = s�D, where S1 = Start-At(insloc(0)) and
D = Int-Locations∪FinSeq-Locations.

(23) If I is closed ons and halting ons and s(a) = 0, then (Computation(s+·((while a =
0 do I)+·Start-At(insloc(0)))))(LifeSpan(s+·(I+·Start-At(insloc(0))))+3)�D =(Computation(s+·(I+·Start-At(insloc(0)))))(LifeSpan(s+·(I+·Start-At(insloc(0)))))�D,
whereD = Int-Locations∪FinSeq-Locations.

(24) If (StepWhile=0(a, I ,s))(k)(a) 6= 0, then(StepWhile=0(a, I ,s))(k+1)�D =(StepWhile=0(a, I ,s))(k)�D,
whereD = Int-Locations∪FinSeq-Locations.

(25) SupposeI is halting on Initialize((StepWhile=0(a, I ,s))(k)), closed on Initialize((StepWhile=0(a, I ,s))(k)),
and parahalting and(StepWhile=0(a, I ,s))(k)(a)= 0 and(StepWhile=0(a, I ,s))(k)(intloc(0))=
1. Then(StepWhile=0(a, I ,s))(k+1)�D = IExec(I ,(StepWhile=0(a, I ,s))(k))�D, whereD =
Int-Locations∪FinSeq-Locations.

(26) If ProperBodyWhile=0(a, I1,s) or I1 is parahalting and ifs(intloc(0)) = 1, then for every
k holds(StepWhile=0(a, I1,s))(k)(intloc(0)) = 1.

(27) If ProperBodyWhile=0(a, I ,s1) ands1�D = s2�D, then for everyk holds(StepWhile=0(a, I ,s1))(k)�D =
(StepWhile=0(a, I ,s2))(k)�D, whereD = Int-Locations∪FinSeq-Locations.

Let sbe a state ofSCMFSA, leta be a read-write integer location, and letI be a macro instruction.
Let us assume that ProperBodyWhile=0(a, I ,s) or I is parahalting and WithVariantWhile=0(a, I ,s).
The functorExitsAtWhile=0(a, I ,s) yields a natural number and is defined by the condition (Def. 3).

(Def. 3) There exists a natural numberk such that

(i) ExitsAtWhile=0(a, I ,s) = k,

(ii) (StepWhile=0(a, I ,s))(k)(a) 6= 0,

(iii) for every natural numberi such that(StepWhile=0(a, I ,s))(i)(a) 6= 0 holdsk≤ i, and

(iv) (Computation(s+·((while a= 0 do I)+·S1)))(LifeSpan(s+·((while a= 0 do I)+·S1)))�D =
(StepWhile=0(a, I ,s))(k)�D,

whereS1 = Start-At(insloc(0)) andD = Int-Locations∪FinSeq-Locations.

Next we state two propositions:

(28) If s(intloc(0)) = 1 ands(a) 6= 0, then IExec(while a = 0 do I ,s)�D = s�D, whereD =
Int-Locations∪FinSeq-Locations.

(29) If ProperBodyWhile=0(a, I , Initialize(s)) or I is parahalting and if WithVariantWhile=0(a, I , Initialize(s)),
then IExec(while a= 0 do I ,s)�D =(StepWhile=0(a, I , Initialize(s)))(ExitsAtWhile=0(a, I , Initialize(s)))�D,
whereD = Int-Locations∪FinSeq-Locations.

4. THE while>0 MACRO INSTRUCTION

Next we state two propositions:

(30) UsedIntLoc(while b > 0 do I) = {b}∪UsedIntLoc(I).

(31) UsedInt∗Loc(while b > 0 do I) = UsedInt∗Loc(I).

Let sbe a state ofSCMFSA, leta be a read-write integer location, and letI be a macro instruction.
The predicate ProperBodyWhile>0(a, I ,s) is defined as follows:

(Def. 4) For every natural numberk such that(StepWhile>0(a, I ,s))(k)(a) > 0 holdsI is closed on
(StepWhile>0(a, I ,s))(k) and halting on(StepWhile>0(a, I ,s))(k).

The predicate WithVariantWhile>0(a, I ,s) is defined by the condition (Def. 5).
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(Def. 5) There exists a functionf from ∏ (the object kind ofSCMFSA) into N such that for every
natural numberk holds

f ((StepWhile>0(a, I ,s))(k+1))< f ((StepWhile>0(a, I ,s))(k)) or (StepWhile>0(a, I ,s))(k)(a)≤
0.

We now state several propositions:

(32) For every parahalting macro instructionI holds ProperBodyWhile>0(a, I ,s).

(33) If ProperBodyWhile>0(a, I ,s) and WithVariantWhile>0(a, I ,s), thenwhile a > 0 do I is
halting ons andwhile a > 0 do I is closed ons.

(34) For every parahalting macro instructionI such that WithVariantWhile>0(a, I ,s) holds
while a > 0 do I is halting ons andwhile a > 0 do I is closed ons.

(35) If (while a > 0 do I)+·S1 ⊆ s and s(a) ≤ 0, then LifeSpan(s) = 4 and for every nat-
ural numberk holds (Computation(s))(k)�D = s�D, where S1 = Start-At(insloc(0)) and
D = Int-Locations∪FinSeq-Locations.

(36) If I is closed ons and halting ons and s(a) > 0, then (Computation(s+·((while a >
0 do I)+·Start-At(insloc(0)))))(LifeSpan(s+·(I+·Start-At(insloc(0))))+3)�D =(Computation(s+·(I+·Start-At(insloc(0)))))(LifeSpan(s+·(I+·Start-At(insloc(0)))))�D,
whereD = Int-Locations∪FinSeq-Locations.

(37) If (StepWhile>0(a, I ,s))(k)(a)≤0, then(StepWhile>0(a, I ,s))(k+1)�D =(StepWhile>0(a, I ,s))(k)�D,
whereD = Int-Locations∪FinSeq-Locations.

(38) SupposeI is halting on Initialize((StepWhile>0(a, I ,s))(k)), closed on Initialize((StepWhile>0(a, I ,s))(k)),
and parahalting and(StepWhile>0(a, I ,s))(k)(a)> 0 and(StepWhile>0(a, I ,s))(k)(intloc(0))=
1. Then(StepWhile>0(a, I ,s))(k+1)�D = IExec(I ,(StepWhile>0(a, I ,s))(k))�D, whereD =
Int-Locations∪FinSeq-Locations.

(39) If ProperBodyWhile>0(a, I1,s) or I1 is parahalting and ifs(intloc(0)) = 1, then for every
k holds(StepWhile>0(a, I1,s))(k)(intloc(0)) = 1.

(40) If ProperBodyWhile>0(a, I ,s1) ands1�D = s2�D, then for everyk holds(StepWhile>0(a, I ,s1))(k)�D =
(StepWhile>0(a, I ,s2))(k)�D, whereD = Int-Locations∪FinSeq-Locations.

Let sbe a state ofSCMFSA, leta be a read-write integer location, and letI be a macro instruction.
Let us assume that ProperBodyWhile>0(a, I ,s) or I is parahalting and WithVariantWhile>0(a, I ,s).
The functorExitsAtWhile>0(a, I ,s) yielding a natural number is defined by the condition (Def. 6).

(Def. 6) There exists a natural numberk such that

(i) ExitsAtWhile>0(a, I ,s) = k,

(ii) (StepWhile>0(a, I ,s))(k)(a)≤ 0,

(iii) for every natural numberi such that(StepWhile>0(a, I ,s))(i)(a)≤ 0 holdsk≤ i, and

(iv) (Computation(s+·((while a> 0 do I)+·S1)))(LifeSpan(s+·((while a> 0 do I)+·S1)))�D =
(StepWhile>0(a, I ,s))(k)�D,

whereS1 = Start-At(insloc(0)) andD = Int-Locations∪FinSeq-Locations.

Next we state several propositions:

(41) If s(intloc(0)) = 1 ands(a) ≤ 0, then IExec(while a > 0 do I ,s)�D = s�D, whereD =
Int-Locations∪FinSeq-Locations.

(42) If ProperBodyWhile>0(a, I , Initialize(s)) or I is parahalting and if WithVariantWhile>0(a, I , Initialize(s)),
then IExec(while a> 0 do I ,s)�D =(StepWhile>0(a, I , Initialize(s)))(ExitsAtWhile>0(a, I , Initialize(s)))�D,
whereD = Int-Locations∪FinSeq-Locations.



THE while MACRO INSTRUCTIONS OF. . . 5

(43) If (StepWhile>0(a, I ,s))(k)(a) ≤ 0, then for every natural numbern such that
k ≤ n holds (StepWhile>0(a, I ,s))(n)�D = (StepWhile>0(a, I ,s))(k)�D, where D =
Int-Locations∪FinSeq-Locations.

(44) If s1�D = s2�D and ProperBodyWhile>0(a, I ,s1), then ProperBodyWhile>0(a, I ,s2),
whereD = Int-Locations∪FinSeq-Locations.

(45) Supposes(intloc(0))= 1 and ProperBodyWhile>0(a, I1,s) and WithVariantWhile>0(a, I1,s).
Let giveni, j. Supposei 6= j andi≤ExitsAtWhile>0(a, I1,s) and j ≤ExitsAtWhile>0(a, I1,s).
Then(StepWhile>0(a, I1,s))(i) 6=(StepWhile>0(a, I1,s))( j) and(StepWhile>0(a, I1,s))(i)�D 6=
(StepWhile>0(a, I1,s))( j)�D, whereD = Int-Locations∪FinSeq-Locations.

Let f be a function from∏ (the object kind ofSCMFSA) into N. We say thatf is on data only if
and only if:

(Def. 7) For alls1, s2 such thats1�D = s2�D holds f (s1)= f (s2), whereD = Int-Locations∪FinSeq-Locations.

We now state two propositions:

(46) Supposes(intloc(0))= 1 and ProperBodyWhile>0(a, I1,s) and WithVariantWhile>0(a, I1,s).
Then there exists a functionf from ∏ (the object kind ofSCMFSA) into N such that f
is on data only and for every natural numberk holds f ((StepWhile>0(a, I1,s))(k+ 1)) <
f ((StepWhile>0(a, I1,s))(k)) or (StepWhile>0(a, I1,s))(k)(a)≤ 0.

(47) If s1(intloc(0))= 1 ands1�D = s2�D and ProperBodyWhile>0(a, I1,s1) and WithVariantWhile>0(a, I1,s1),
then WithVariantWhile>0(a, I1,s2), whereD = Int-Locations∪FinSeq-Locations.

5. A MACRO FOR THEfusc FUNCTION

Let N, r1 be integer locations. The functor Fuscmacro(N, r1) yielding a macro instruction is defined
by:

(Def. 8) Fuscmacro(N, r1)= SubFrom(r1, r1); (n1:= intloc(0)); (a1:=N); (while a1 > 0 do ((r2:=2); Divide(a1, r2); (if r2 =
0 then Macro(AddTo(n1, r1)) elseMacro(AddTo(r1,n1))))), wheren1 = 1st-RWNotIn({N, r1}),
a1 = 2nd-RWNotIn({N, r1}), andr2 = 3rd -RWNotIn({N, r1}).

One can prove the following proposition

(48) Let N, r1 be read-write integer locations. SupposeN 6= r1. Let n be a nat-
ural number. If n = s(N), then (IExec(Fuscmacro(N, r1),s))(r1) = Fusc(n) and
(IExec(Fuscmacro(N, r1),s))(N) = n.
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[14] Czesław Bylínski. Functions from a set to a set.Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/funct_
2.html.
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