
JOURNAL OF FORMALIZED MATHEMATICS

Volume10, Released 1998, Published 2003

Inst. of Computer Science, Univ. of Białystok

The while Macro Instructions of SCMFSA. Part II

Piotr Rudnicki
University of Alberta

Edmonton

Summary. An attempt to use thewhile macro, [16], was the origin of writing this
article. Thewhile semantics, as given by J.-C. Chen, is slightly extended by weakening its
correctness conditions and this forced a quite straightforward remake of a number of theorems
from [16]. Numerous additional properties of thewhile macro are then proven. In the last
section, we define a macro instruction computing thefusc function (see the SCM program
computing the same function in [12]) and prove its correctness.

MML Identifier: SCMFSA9A.

WWW: http://mizar.org/JFM/Vol10/scmfsa9a.html

The articles [23], [32], [24], [25], [22], [7], [9], [30], [8], [20], [33], [13], [14], [15], [11], [17], [26],
[10], [21], [29], [27], [28], [5], [19], [6], [4], [3], [1], [2], [16], [18], and [31] provide the notation
and terminology for this paper.

1. ARITHMETIC PRELIMINARIES

We adopt the following convention:k, m, n are natural numbers,i, j are integers, andr is a real
number.

The schemeMinPred deals with a unary functorF yielding a natural number and a unary
predicateP , and states that:

There existsk such thatP [k] and for everyn such thatP [n] holdsk≤ n
provided the parameters meet the following condition:

• For everyk holdsF (k+1) < F (k) or P [k].
One can prove the following propositions:

(1) n is odd iff there exists a natural numberk such thatn = 2·k+1.

(2) For every integeri such thati ≤ r holdsi ≤ brc.

(3) If 0 < n, then 0≤ (m qua integer)÷n.

(4) If 0 < i and 1< j, theni÷ j < i.

(5) (m qua integer)÷n = m÷n and(mqua integer) modn = mmodn.

2. SCMFSA PRELIMINARIES

In the sequell denotes an instruction-location ofSCMFSA andi denotes an instruction ofSCMFSA.
We now state several propositions:

1 c© Association of Mizar Users

http://mizar.org/JFM/Vol10/scmfsa9a.html

THE while MACRO INSTRUCTIONS OF. . . 2

(6) Let N be a non empty set with non empty elements,S be a halting IC-Ins-separated
definite non empty non void AMI overN, s be a state ofS, and k be a natural num-
ber. If CurInstr((Computation(s))(k)) = haltS, then (Computation(s))(LifeSpan(s)) =
(Computation(s))(k).

(7) UsedIntLoc(l 7−→. i) = UsedIntLoc(i).

(8) UsedInt∗Loc(l 7−→. i) = UsedInt∗Loc(i).

(9) UsedIntLoc(StopSCMFSA
) = /0.

(10) UsedInt∗Loc(StopSCMFSA
) = /0.

(11) UsedIntLoc(Goto(l)) = /0.

(12) UsedInt∗Loc(Goto(l)) = /0.

For simplicity, we follow the rules:s, s1, s2 denote states ofSCMFSA, a denotes a read-write
integer location,b denotes an integer location,I , J denote macro instructions,I1 denotes a good
macro instruction, andi, j, k denote natural numbers.

One can prove the following four propositions:

(13) UsedIntLoc(if b = 0 then I elseJ) = {b}∪UsedIntLoc(I)∪UsedIntLoc(J).

(14) For every integer locationa holds UsedInt∗Loc(if a= 0 then I elseJ) = UsedInt∗Loc(I)∪
UsedInt∗Loc(J).

(15) UsedIntLoc(if b > 0 then I elseJ) = {b}∪UsedIntLoc(I)∪UsedIntLoc(J).

(16) UsedInt∗Loc(if b > 0 then I elseJ) = UsedInt∗Loc(I)∪UsedInt∗Loc(J).

3. THE while=0 MACRO INSTRUCTION

The following two propositions are true:

(17) UsedIntLoc(while b = 0 do I) = {b}∪UsedIntLoc(I).

(18) UsedInt∗Loc(while b = 0 do I) = UsedInt∗Loc(I).

Let sbe a state ofSCMFSA, leta be a read-write integer location, and letI be a macro instruction.
The predicate ProperBodyWhile=0(a, I ,s) is defined as follows:

(Def. 1) For every natural numberk such that(StepWhile=0(a, I ,s))(k)(a) = 0 holdsI is closed on
(StepWhile=0(a, I ,s))(k) and halting on(StepWhile=0(a, I ,s))(k).

The predicate WithVariantWhile=0(a, I ,s) is defined by the condition (Def. 2).

(Def. 2) There exists a functionf from ∏ (the object kind ofSCMFSA) into N such that for every
natural numberk holds

f ((StepWhile=0(a, I ,s))(k+1))< f ((StepWhile=0(a, I ,s))(k)) or (StepWhile=0(a, I ,s))(k)(a) 6=
0.

We now state several propositions:

(19) For every parahalting macro instructionI holds ProperBodyWhile=0(a, I ,s).

(20) If ProperBodyWhile=0(a, I ,s) and WithVariantWhile=0(a, I ,s), thenwhile a = 0 do I is
halting ons andwhile a = 0 do I is closed ons.

(21) For every parahalting macro instructionI such that WithVariantWhile=0(a, I ,s) holds
while a = 0 do I is halting ons andwhile a = 0 do I is closed ons.

THE while MACRO INSTRUCTIONS OF. . . 3

(22) If (while a = 0 do I)+·S1 ⊆ s and s(a) 6= 0, then LifeSpan(s) = 4 and for every nat-
ural numberk holds (Computation(s))(k)�D = s�D, where S1 = Start-At(insloc(0)) and
D = Int-Locations∪FinSeq-Locations.

(23) If I is closed ons and halting ons and s(a) = 0, then (Computation(s+·((while a =
0 do I)+·Start-At(insloc(0)))))(LifeSpan(s+·(I+·Start-At(insloc(0))))+3)�D =(Computation(s+·(I+·Start-At(insloc(0)))))(LifeSpan(s+·(I+·Start-At(insloc(0)))))�D,
whereD = Int-Locations∪FinSeq-Locations.

(24) If (StepWhile=0(a, I ,s))(k)(a) 6= 0, then(StepWhile=0(a, I ,s))(k+1)�D =(StepWhile=0(a, I ,s))(k)�D,
whereD = Int-Locations∪FinSeq-Locations.

(25) SupposeI is halting on Initialize((StepWhile=0(a, I ,s))(k)), closed on Initialize((StepWhile=0(a, I ,s))(k)),
and parahalting and(StepWhile=0(a, I ,s))(k)(a)= 0 and(StepWhile=0(a, I ,s))(k)(intloc(0))=
1. Then(StepWhile=0(a, I ,s))(k+1)�D = IExec(I ,(StepWhile=0(a, I ,s))(k))�D, whereD =
Int-Locations∪FinSeq-Locations.

(26) If ProperBodyWhile=0(a, I1,s) or I1 is parahalting and ifs(intloc(0)) = 1, then for every
k holds(StepWhile=0(a, I1,s))(k)(intloc(0)) = 1.

(27) If ProperBodyWhile=0(a, I ,s1) ands1�D = s2�D, then for everyk holds(StepWhile=0(a, I ,s1))(k)�D =
(StepWhile=0(a, I ,s2))(k)�D, whereD = Int-Locations∪FinSeq-Locations.

Let sbe a state ofSCMFSA, leta be a read-write integer location, and letI be a macro instruction.
Let us assume that ProperBodyWhile=0(a, I ,s) or I is parahalting and WithVariantWhile=0(a, I ,s).
The functorExitsAtWhile=0(a, I ,s) yields a natural number and is defined by the condition (Def. 3).

(Def. 3) There exists a natural numberk such that

(i) ExitsAtWhile=0(a, I ,s) = k,

(ii) (StepWhile=0(a, I ,s))(k)(a) 6= 0,

(iii) for every natural numberi such that(StepWhile=0(a, I ,s))(i)(a) 6= 0 holdsk≤ i, and

(iv) (Computation(s+·((while a= 0 do I)+·S1)))(LifeSpan(s+·((while a= 0 do I)+·S1)))�D =
(StepWhile=0(a, I ,s))(k)�D,

whereS1 = Start-At(insloc(0)) andD = Int-Locations∪FinSeq-Locations.

Next we state two propositions:

(28) If s(intloc(0)) = 1 ands(a) 6= 0, then IExec(while a = 0 do I ,s)�D = s�D, whereD =
Int-Locations∪FinSeq-Locations.

(29) If ProperBodyWhile=0(a, I , Initialize(s)) or I is parahalting and if WithVariantWhile=0(a, I , Initialize(s)),
then IExec(while a= 0 do I ,s)�D =(StepWhile=0(a, I , Initialize(s)))(ExitsAtWhile=0(a, I , Initialize(s)))�D,
whereD = Int-Locations∪FinSeq-Locations.

4. THE while>0 MACRO INSTRUCTION

Next we state two propositions:

(30) UsedIntLoc(while b > 0 do I) = {b}∪UsedIntLoc(I).

(31) UsedInt∗Loc(while b > 0 do I) = UsedInt∗Loc(I).

Let sbe a state ofSCMFSA, leta be a read-write integer location, and letI be a macro instruction.
The predicate ProperBodyWhile>0(a, I ,s) is defined as follows:

(Def. 4) For every natural numberk such that(StepWhile>0(a, I ,s))(k)(a) > 0 holdsI is closed on
(StepWhile>0(a, I ,s))(k) and halting on(StepWhile>0(a, I ,s))(k).

The predicate WithVariantWhile>0(a, I ,s) is defined by the condition (Def. 5).

THE while MACRO INSTRUCTIONS OF. . . 4

(Def. 5) There exists a functionf from ∏ (the object kind ofSCMFSA) into N such that for every
natural numberk holds

f ((StepWhile>0(a, I ,s))(k+1))< f ((StepWhile>0(a, I ,s))(k)) or (StepWhile>0(a, I ,s))(k)(a)≤
0.

We now state several propositions:

(32) For every parahalting macro instructionI holds ProperBodyWhile>0(a, I ,s).

(33) If ProperBodyWhile>0(a, I ,s) and WithVariantWhile>0(a, I ,s), thenwhile a > 0 do I is
halting ons andwhile a > 0 do I is closed ons.

(34) For every parahalting macro instructionI such that WithVariantWhile>0(a, I ,s) holds
while a > 0 do I is halting ons andwhile a > 0 do I is closed ons.

(35) If (while a > 0 do I)+·S1 ⊆ s and s(a) ≤ 0, then LifeSpan(s) = 4 and for every nat-
ural numberk holds (Computation(s))(k)�D = s�D, where S1 = Start-At(insloc(0)) and
D = Int-Locations∪FinSeq-Locations.

(36) If I is closed ons and halting ons and s(a) > 0, then (Computation(s+·((while a >
0 do I)+·Start-At(insloc(0)))))(LifeSpan(s+·(I+·Start-At(insloc(0))))+3)�D =(Computation(s+·(I+·Start-At(insloc(0)))))(LifeSpan(s+·(I+·Start-At(insloc(0)))))�D,
whereD = Int-Locations∪FinSeq-Locations.

(37) If (StepWhile>0(a, I ,s))(k)(a)≤0, then(StepWhile>0(a, I ,s))(k+1)�D =(StepWhile>0(a, I ,s))(k)�D,
whereD = Int-Locations∪FinSeq-Locations.

(38) SupposeI is halting on Initialize((StepWhile>0(a, I ,s))(k)), closed on Initialize((StepWhile>0(a, I ,s))(k)),
and parahalting and(StepWhile>0(a, I ,s))(k)(a)> 0 and(StepWhile>0(a, I ,s))(k)(intloc(0))=
1. Then(StepWhile>0(a, I ,s))(k+1)�D = IExec(I ,(StepWhile>0(a, I ,s))(k))�D, whereD =
Int-Locations∪FinSeq-Locations.

(39) If ProperBodyWhile>0(a, I1,s) or I1 is parahalting and ifs(intloc(0)) = 1, then for every
k holds(StepWhile>0(a, I1,s))(k)(intloc(0)) = 1.

(40) If ProperBodyWhile>0(a, I ,s1) ands1�D = s2�D, then for everyk holds(StepWhile>0(a, I ,s1))(k)�D =
(StepWhile>0(a, I ,s2))(k)�D, whereD = Int-Locations∪FinSeq-Locations.

Let sbe a state ofSCMFSA, leta be a read-write integer location, and letI be a macro instruction.
Let us assume that ProperBodyWhile>0(a, I ,s) or I is parahalting and WithVariantWhile>0(a, I ,s).
The functorExitsAtWhile>0(a, I ,s) yielding a natural number is defined by the condition (Def. 6).

(Def. 6) There exists a natural numberk such that

(i) ExitsAtWhile>0(a, I ,s) = k,

(ii) (StepWhile>0(a, I ,s))(k)(a)≤ 0,

(iii) for every natural numberi such that(StepWhile>0(a, I ,s))(i)(a)≤ 0 holdsk≤ i, and

(iv) (Computation(s+·((while a> 0 do I)+·S1)))(LifeSpan(s+·((while a> 0 do I)+·S1)))�D =
(StepWhile>0(a, I ,s))(k)�D,

whereS1 = Start-At(insloc(0)) andD = Int-Locations∪FinSeq-Locations.

Next we state several propositions:

(41) If s(intloc(0)) = 1 ands(a) ≤ 0, then IExec(while a > 0 do I ,s)�D = s�D, whereD =
Int-Locations∪FinSeq-Locations.

(42) If ProperBodyWhile>0(a, I , Initialize(s)) or I is parahalting and if WithVariantWhile>0(a, I , Initialize(s)),
then IExec(while a> 0 do I ,s)�D =(StepWhile>0(a, I , Initialize(s)))(ExitsAtWhile>0(a, I , Initialize(s)))�D,
whereD = Int-Locations∪FinSeq-Locations.

THE while MACRO INSTRUCTIONS OF. . . 5

(43) If (StepWhile>0(a, I ,s))(k)(a) ≤ 0, then for every natural numbern such that
k ≤ n holds (StepWhile>0(a, I ,s))(n)�D = (StepWhile>0(a, I ,s))(k)�D, where D =
Int-Locations∪FinSeq-Locations.

(44) If s1�D = s2�D and ProperBodyWhile>0(a, I ,s1), then ProperBodyWhile>0(a, I ,s2),
whereD = Int-Locations∪FinSeq-Locations.

(45) Supposes(intloc(0))= 1 and ProperBodyWhile>0(a, I1,s) and WithVariantWhile>0(a, I1,s).
Let giveni, j. Supposei 6= j andi≤ExitsAtWhile>0(a, I1,s) and j ≤ExitsAtWhile>0(a, I1,s).
Then(StepWhile>0(a, I1,s))(i) 6=(StepWhile>0(a, I1,s))(j) and(StepWhile>0(a, I1,s))(i)�D 6=
(StepWhile>0(a, I1,s))(j)�D, whereD = Int-Locations∪FinSeq-Locations.

Let f be a function from∏ (the object kind ofSCMFSA) into N. We say thatf is on data only if
and only if:

(Def. 7) For alls1, s2 such thats1�D = s2�D holds f (s1)= f (s2), whereD = Int-Locations∪FinSeq-Locations.

We now state two propositions:

(46) Supposes(intloc(0))= 1 and ProperBodyWhile>0(a, I1,s) and WithVariantWhile>0(a, I1,s).
Then there exists a functionf from ∏ (the object kind ofSCMFSA) into N such that f
is on data only and for every natural numberk holds f ((StepWhile>0(a, I1,s))(k+ 1)) <
f ((StepWhile>0(a, I1,s))(k)) or (StepWhile>0(a, I1,s))(k)(a)≤ 0.

(47) If s1(intloc(0))= 1 ands1�D = s2�D and ProperBodyWhile>0(a, I1,s1) and WithVariantWhile>0(a, I1,s1),
then WithVariantWhile>0(a, I1,s2), whereD = Int-Locations∪FinSeq-Locations.

5. A MACRO FOR THEfusc FUNCTION

Let N, r1 be integer locations. The functor Fuscmacro(N, r1) yielding a macro instruction is defined
by:

(Def. 8) Fuscmacro(N, r1)= SubFrom(r1, r1); (n1:= intloc(0)); (a1:=N); (while a1 > 0 do ((r2:=2); Divide(a1, r2); (if r2 =
0 then Macro(AddTo(n1, r1)) elseMacro(AddTo(r1,n1))))), wheren1 = 1st-RWNotIn({N, r1}),
a1 = 2nd-RWNotIn({N, r1}), andr2 = 3rd -RWNotIn({N, r1}).

One can prove the following proposition

(48) Let N, r1 be read-write integer locations. SupposeN 6= r1. Let n be a nat-
ural number. If n = s(N), then (IExec(Fuscmacro(N, r1),s))(r1) = Fusc(n) and
(IExec(Fuscmacro(N, r1),s))(N) = n.

REFERENCES

[1] Noriko Asamoto. Conditional branch macro instructions ofSCMFSA. Part I. Journal of Formalized Mathematics, 8, 1996. http:
//mizar.org/JFM/Vol8/scmfsa8a.html.

[2] Noriko Asamoto. Conditional branch macro instructions ofSCMFSA. Part II. Journal of Formalized Mathematics, 8, 1996. http:
//mizar.org/JFM/Vol8/scmfsa8b.html.

[3] Noriko Asamoto. Constant assignment macro instructions ofSCMFSA. Part II. Journal of Formalized Mathematics, 8, 1996. http:
//mizar.org/JFM/Vol8/scmfsa7b.html.

[4] Noriko Asamoto. Some multi instructions defined by sequence of instructions ofSCMFSA. Journal of Formalized Mathematics, 8, 1996.
http://mizar.org/JFM/Vol8/scmfsa_7.html.

[5] Noriko Asamoto, Yatsuka Nakamura, Piotr Rudnicki, and Andrzej Trybulec. On the composition of macro instructions. Part II.Journal
of Formalized Mathematics, 8, 1996.http://mizar.org/JFM/Vol8/scmfsa6b.html.

[6] Noriko Asamoto, Yatsuka Nakamura, Piotr Rudnicki, and Andrzej Trybulec. On the composition of macro instructions. Part III.Journal
of Formalized Mathematics, 8, 1996.http://mizar.org/JFM/Vol8/scmfsa6c.html.

[7] Grzegorz Bancerek. Cardinal numbers.Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/card_1.html.

[8] Grzegorz Bancerek. The fundamental properties of natural numbers.Journal of Formalized Mathematics, 1, 1989. http://mizar.
org/JFM/Vol1/nat_1.html.

http://mizar.org/JFM/Vol8/scmfsa8a.html
http://mizar.org/JFM/Vol8/scmfsa8a.html
http://mizar.org/JFM/Vol8/scmfsa8b.html
http://mizar.org/JFM/Vol8/scmfsa8b.html
http://mizar.org/JFM/Vol8/scmfsa7b.html
http://mizar.org/JFM/Vol8/scmfsa7b.html
http://mizar.org/JFM/Vol8/scmfsa_7.html
http://mizar.org/JFM/Vol8/scmfsa6b.html
http://mizar.org/JFM/Vol8/scmfsa6c.html
http://mizar.org/JFM/Vol1/card_1.html
http://mizar.org/JFM/Vol1/nat_1.html
http://mizar.org/JFM/Vol1/nat_1.html

THE while MACRO INSTRUCTIONS OF. . . 6

[9] Grzegorz Bancerek. K̈onig’s theorem.Journal of Formalized Mathematics, 2, 1990.http://mizar.org/JFM/Vol2/card_3.html.

[10] Grzegorz Bancerek and Piotr Rudnicki. Development of terminology forscm. Journal of Formalized Mathematics, 5, 1993. http:
//mizar.org/JFM/Vol5/scm_1.html.

[11] Grzegorz Bancerek and Piotr Rudnicki. Two programs forscm. Part I - preliminaries.Journal of Formalized Mathematics, 5, 1993.
http://mizar.org/JFM/Vol5/pre_ff.html.

[12] Grzegorz Bancerek and Piotr Rudnicki. Two programs forscm. Part II - programs.Journal of Formalized Mathematics, 5, 1993.
http://mizar.org/JFM/Vol5/fib_fusc.html.

[13] Czesław Bylínski. Functions and their basic properties.Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/
funct_1.html.

[14] Czesław Bylínski. Functions from a set to a set.Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/funct_
2.html.

[15] Czesław Bylínski. The modification of a function by a function and the iteration of the composition of a function.Journal of Formalized
Mathematics, 2, 1990.http://mizar.org/JFM/Vol2/funct_4.html.

[16] Jing-Chao Chen. While macro instructions ofSCMFSA. Journal of Formalized Mathematics, 9, 1997.http://mizar.org/JFM/Vol9/
scmfsa_9.html.

[17] Yatsuka Nakamura and Andrzej Trybulec. A mathematical model of CPU.Journal of Formalized Mathematics, 4, 1992. http:
//mizar.org/JFM/Vol4/ami_1.html.

[18] Piotr Rudnicki. On the composition of non-parahalting macro instructions.Journal of Formalized Mathematics, 10, 1998. http:
//mizar.org/JFM/Vol10/sfmastr1.html.

[19] Piotr Rudnicki and Andrzej Trybulec. Memory handling forSCMFSA. Journal of Formalized Mathematics, 8, 1996.http://mizar.
org/JFM/Vol8/sf_mastr.html.

[20] Piotr Rudnicki and Andrzej Trybulec. Abian’s fixed point theorem.Journal of Formalized Mathematics, 9, 1997.http://mizar.org/
JFM/Vol9/abian.html.

[21] Yasushi Tanaka. On the decomposition of the states of SCM.Journal of Formalized Mathematics, 5, 1993.http://mizar.org/JFM/
Vol5/ami_5.html.

[22] Andrzej Trybulec. Binary operations applied to functions.Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/
Vol1/funcop_1.html.

[23] Andrzej Trybulec. Tarski Grothendieck set theory.Journal of Formalized Mathematics, Axiomatics, 1989.http://mizar.org/JFM/
Axiomatics/tarski.html.

[24] Andrzej Trybulec. Subsets of real numbers.Journal of Formalized Mathematics, Addenda, 2003.http://mizar.org/JFM/Addenda/
numbers.html.

[25] Andrzej Trybulec and Agata Darmochwał. Boolean domains.Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/
Vol1/finsub_1.html.

[26] Andrzej Trybulec and Yatsuka Nakamura. Some remarks on the simple concrete model of computer.Journal of Formalized Mathematics,
5, 1993.http://mizar.org/JFM/Vol5/ami_3.html.

[27] Andrzej Trybulec and Yatsuka Nakamura. Modifying addresses of instructions ofSCMFSA. Journal of Formalized Mathematics, 8,
1996.http://mizar.org/JFM/Vol8/scmfsa_4.html.

[28] Andrzej Trybulec, Yatsuka Nakamura, and Noriko Asamoto. On the compositions of macro instructions. Part I.Journal of Formalized
Mathematics, 8, 1996.http://mizar.org/JFM/Vol8/scmfsa6a.html.

[29] Andrzej Trybulec, Yatsuka Nakamura, and Piotr Rudnicki. TheSCMFSA computer. Journal of Formalized Mathematics, 8, 1996.
http://mizar.org/JFM/Vol8/scmfsa_2.html.

[30] Michał J. Trybulec. Integers.Journal of Formalized Mathematics, 2, 1990.http://mizar.org/JFM/Vol2/int_1.html.

[31] Wojciech A. Trybulec. Groups.Journal of Formalized Mathematics, 2, 1990.http://mizar.org/JFM/Vol2/group_1.html.

[32] Zinaida Trybulec. Properties of subsets.Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/subset_1.html.

[33] Edmund Woronowicz. Relations and their basic properties.Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/
Vol1/relat_1.html.

Received June 3, 1998

Published January 2, 2004

http://mizar.org/JFM/Vol2/card_3.html
http://mizar.org/JFM/Vol5/scm_1.html
http://mizar.org/JFM/Vol5/scm_1.html
http://mizar.org/JFM/Vol5/pre_ff.html
http://mizar.org/JFM/Vol5/fib_fusc.html
http://mizar.org/JFM/Vol1/funct_1.html
http://mizar.org/JFM/Vol1/funct_1.html
http://mizar.org/JFM/Vol1/funct_2.html
http://mizar.org/JFM/Vol1/funct_2.html
http://mizar.org/JFM/Vol2/funct_4.html
http://mizar.org/JFM/Vol9/scmfsa_9.html
http://mizar.org/JFM/Vol9/scmfsa_9.html
http://mizar.org/JFM/Vol4/ami_1.html
http://mizar.org/JFM/Vol4/ami_1.html
http://mizar.org/JFM/Vol10/sfmastr1.html
http://mizar.org/JFM/Vol10/sfmastr1.html
http://mizar.org/JFM/Vol8/sf_mastr.html
http://mizar.org/JFM/Vol8/sf_mastr.html
http://mizar.org/JFM/Vol9/abian.html
http://mizar.org/JFM/Vol9/abian.html
http://mizar.org/JFM/Vol5/ami_5.html
http://mizar.org/JFM/Vol5/ami_5.html
http://mizar.org/JFM/Vol1/funcop_1.html
http://mizar.org/JFM/Vol1/funcop_1.html
http://mizar.org/JFM/Axiomatics/tarski.html
http://mizar.org/JFM/Axiomatics/tarski.html
http://mizar.org/JFM/Addenda/numbers.html
http://mizar.org/JFM/Addenda/numbers.html
http://mizar.org/JFM/Vol1/finsub_1.html
http://mizar.org/JFM/Vol1/finsub_1.html
http://mizar.org/JFM/Vol5/ami_3.html
http://mizar.org/JFM/Vol8/scmfsa_4.html
http://mizar.org/JFM/Vol8/scmfsa6a.html
http://mizar.org/JFM/Vol8/scmfsa_2.html
http://mizar.org/JFM/Vol2/int_1.html
http://mizar.org/JFM/Vol2/group_1.html
http://mizar.org/JFM/Vol1/subset_1.html
http://mizar.org/JFM/Vol1/relat_1.html
http://mizar.org/JFM/Vol1/relat_1.html

	the while macro instructions of … By piotr rudnicki

