The while Macro Instructions of SCM_{FSA}. Part II

Piotr Rudnicki University of Alberta Edmonton

Summary. An attempt to use the while macro, [16], was the origin of writing this article. The while semantics, as given by J.-C. Chen, is slightly extended by weakening its correctness conditions and this forced a quite straightforward remake of a number of theorems from [16]. Numerous additional properties of the while macro are then proven. In the last section, we define a macro instruction computing the fusc function (see the SCM program computing the same function in [12]) and prove its correctness.

MML Identifier: SCMFSA9A.

WWW: http://mizar.org/JFM/Vol10/scmfsa9a.html

The articles [23], [32], [24], [25], [22], [7], [9], [30], [8], [20], [33], [13], [14], [15], [11], [17], [26], [10], [21], [29], [27], [28], [5], [19], [6], [4], [3], [1], [2], [16], [18], and [31] provide the notation and terminology for this paper.

1. ARITHMETIC PRELIMINARIES

We adopt the following convention: k, m, n are natural numbers, i, j are integers, and r is a real number.

The scheme $\mathit{MinPred}$ deals with a unary functor $\mathcal F$ yielding a natural number and a unary predicate $\mathcal P$, and states that:

There exists k such that $\mathcal{P}[k]$ and for every n such that $\mathcal{P}[n]$ holds $k \leq n$ provided the parameters meet the following condition:

- For every k holds $\mathcal{F}(k+1) < \mathcal{F}(k)$ or $\mathcal{P}[k]$. One can prove the following propositions:
- (1) n is odd iff there exists a natural number k such that $n = 2 \cdot k + 1$.
- (2) For every integer i such that $i \le r$ holds $i \le |r|$.
- (3) If 0 < n, then $0 \le (m \text{ qua integer}) \div n$.
- (4) If 0 < i and 1 < j, then $i \div j < i$.
- (5) $(m \text{ qua integer}) \div n = m \div n \text{ and } (m \text{ qua integer}) \mod n = m \mod n.$

2. **SCM**_{ESA} PRELIMINARIES

In the sequel l denotes an instruction-location of \mathbf{SCM}_{FSA} and i denotes an instruction of \mathbf{SCM}_{FSA} . We now state several propositions:

- (6) Let N be a non empty set with non empty elements, S be a halting IC-Ins-separated definite non empty non void AMI over N, s be a state of S, and k be a natural number. If $CurInstr((Computation(s))(k)) = halt_S$, then (Computation(s))(LifeSpan(s)) = (Computation(s))(k).
- (7) UsedIntLoc($l \mapsto i$) = UsedIntLoc(i).
- (8) $UsedInt^*Loc(l \mapsto i) = UsedInt^*Loc(i)$.
- (9) $UsedIntLoc(Stop_{SCM_{FSA}}) = \emptyset.$
- (10) $UsedInt^*Loc(Stop_{SCM_{FSA}}) = \emptyset.$
- (11) UsedIntLoc(Goto(l)) = \emptyset .
- (12) UsedInt* Loc(Goto(l)) = \emptyset .

For simplicity, we follow the rules: s, s_1 , s_2 denote states of \mathbf{SCM}_{FSA} , a denotes a read-write integer location, b denotes an integer location, I, J denote macro instructions, I_1 denotes a good macro instruction, and i, j, k denote natural numbers.

One can prove the following four propositions:

- (13) UsedIntLoc(**if** b = 0 **then** I **else** J) = $\{b\} \cup$ UsedIntLoc(I) \cup UsedIntLoc(J).
- (14) For every integer location a holds UsedInt* Loc(**if** a = 0 **then** I **else** J) = UsedInt* Loc(I) \cup UsedInt* Loc(J).
- (15) UsedIntLoc(**if** b > 0 **then** I **else** J) = $\{b\} \cup$ UsedIntLoc(I) \cup UsedIntLoc(J).
- (16) UsedInt*Loc(**if** b > 0 **then** I **else** J) = UsedInt*Loc(I) \cup UsedInt*Loc(J).
 - 3. THE while=0 MACRO INSTRUCTION

The following two propositions are true:

- (17) UsedIntLoc(**while** b = 0 **do** I) = {b} \cup UsedIntLoc(I).
- (18) UsedInt* Loc(while b = 0 do I) = UsedInt* Loc(I).

Let *s* be a state of \mathbf{SCM}_{FSA} , let *a* be a read-write integer location, and let *I* be a macro instruction. The predicate ProperBodyWhile=0(a, I, s) is defined as follows:

(Def. 1) For every natural number k such that (StepWhile=0(a,I,s))(k)(a)=0 holds I is closed on (StepWhile=0(a,I,s))(k) and halting on (StepWhile=0(a,I,s))(k).

The predicate With Variant While=0(a, I, s) is defined by the condition (Def. 2).

(Def. 2) There exists a function f from Π (the object kind of \mathbf{SCM}_{FSA}) into \mathbb{N} such that for every natural number k holds

```
f((StepWhile=0(a,I,s))(k+1)) < f((StepWhile=0(a,I,s))(k)) \text{ or } (StepWhile=0(a,I,s))(k)(a) \neq 0.
```

We now state several propositions:

- (19) For every parahalting macro instruction *I* holds ProperBodyWhile=0(a, I, s).
- (20) If ProperBodyWhile=0(a, I, s) and WithVariantWhile=0(a, I, s), then while a = 0 do I is halting on s and while a = 0 do I is closed on s.
- (21) For every parahalting macro instruction I such that WithVariantWhile=0(a,I,s) holds while a=0 do I is halting on s and while a=0 do I is closed on s.

- (22) If (**while** a = 0 **do** I)+· $S_1 \subseteq s$ and $s(a) \neq 0$, then LifeSpan(s) = 4 and for every natural number k holds (Computation(s))(k)| D = s | D, where $S_1 = \text{Start-At}(\text{insloc}(0))$ and $D = \text{Int-Locations} \cup \text{FinSeq-Locations}$.
- (23) If I is closed on s and halting on s and s(a) = 0, then $(Computation(s+\cdot((\mathbf{while}\ a = 0\ \mathbf{do}\ I) + \cdot Start-At(insloc(0)))))(LifeSpan(s+\cdot(I+\cdot Start-At(insloc(0))))+3) \upharpoonright D = (Computation(s+\cdot(I+\cdot Start-At(insloc(0)))+3) \upharpoonright D = (Computation(s+\cdot(I+\cdot Start-At(insloc(0)))+3)$
- (24) If $(StepWhile=0(a,I,s))(k)(a) \neq 0$, then $(StepWhile=0(a,I,s))(k+1) \upharpoonright D = (StepWhile=0(a,I,s))(k) \upharpoonright D$, where $D = Int-Locations \cup FinSeq-Locations$.
- (25) Suppose I is halting on Initialize((StepWhile=0(a,I,s))(k)), closed on Initialize((StepWhile=0(a,I,s))(k)), and parahalting and (StepWhile=0(a,I,s))(k)(a)=0 and (StepWhile=0(a,I,s))(k)(intloc(0))=1. Then $(StepWhile=0(a,I,s))(k+1)\upharpoonright D= \text{IExec}(I,(StepWhile=0(a,I,s))(k))\upharpoonright D$, where $D= \text{Int-Locations} \cup \text{FinSeq-Locations}$.
- (26) If ProperBodyWhile= $0(a, I_1, s)$ or I_1 is parahalting and if s(intloc(0)) = 1, then for every k holds $(StepWhile=0(a, I_1, s))(k)(\text{intloc}(0)) = 1$.
- (27) If ProperBodyWhile= $0(a,I,s_1)$ and $s_1 \upharpoonright D = s_2 \upharpoonright D$, then for every k holds $(StepWhile=0(a,I,s_1))(k) \upharpoonright D = (StepWhile=0(a,I,s_2))(k) \upharpoonright D$, where D = Int-Locations \cup FinSeq-Locations.

Let *s* be a state of \mathbf{SCM}_{FSA} , let *a* be a read-write integer location, and let *I* be a macro instruction. Let us assume that ProperBodyWhile=0(a,I,s) or *I* is parahalting and WithVariantWhile=0(a,I,s). The functor ExitsAtWhile=0(a,I,s) yields a natural number and is defined by the condition (Def. 3).

- (Def. 3) There exists a natural number k such that
 - (i) ExitsAtWhile=0(a,I,s)=k,
 - (ii) $(StepWhile=0(a,I,s))(k)(a) \neq 0$,
 - (iii) for every natural number i such that $(StepWhile=0(a,I,s))(i)(a) \neq 0$ holds $k \leq i$, and
 - (iv) (Computation($s+\cdot((\mathbf{while}\ a=0\ \mathbf{do}\ I)+\cdot S_1)))(\text{LifeSpan}(s+\cdot((\mathbf{while}\ a=0\ \mathbf{do}\ I)+\cdot S_1)))\upharpoonright D=(StepWhile=0(a,I,s))(k)\upharpoonright D,$

where $S_1 = \text{Start-At}(\text{insloc}(0))$ and $D = \text{Int-Locations} \cup \text{FinSeq-Locations}$.

Next we state two propositions:

- (28) If s(intloc(0)) = 1 and $s(a) \neq 0$, then $\text{IExec}(\textbf{while } a = 0 \textbf{ do } I, s) \upharpoonright D = s \upharpoonright D$, where $D = \text{Int-Locations} \cup \text{FinSeq-Locations}$.
- (29) If ProperBodyWhile=0(a,I, Initialize(s)) or I is parahalting and if WithVariantWhile=0(a,I, Initialize(s)), then $\text{IExec}(\mathbf{while}\ a=0\ \mathbf{do}\ I,s) \upharpoonright D = (StepWhile=0(a,I, \text{Initialize}(s)))(ExitsAtWhile=0(a,I, \text{Initialize}(s))) \upharpoonright D$, where $D = \text{Int-Locations} \cup \text{FinSeq-Locations}$.
 - 4. THE while>0 MACRO INSTRUCTION

Next we state two propositions:

- (30) UsedIntLoc(while b > 0 do I) = $\{b\} \cup$ UsedIntLoc(I).
- (31) UsedInt* Loc(**while** b > 0 **do** I) = UsedInt* Loc(I).

Let *s* be a state of \mathbf{SCM}_{FSA} , let *a* be a read-write integer location, and let *I* be a macro instruction. The predicate ProperBodyWhile>0(a,I,s) is defined as follows:

(Def. 4) For every natural number k such that (StepWhile>0(a,I,s))(k)(a)>0 holds I is closed on (StepWhile>0(a,I,s))(k) and halting on (StepWhile>0(a,I,s))(k).

The predicate With Variant While > 0(a, I, s) is defined by the condition (Def. 5).

(Def. 5) There exists a function f from Π (the object kind of \mathbf{SCM}_{FSA}) into \mathbb{N} such that for every natural number k holds

```
f((StepWhile>0(a,I,s))(k+1)) < f((StepWhile>0(a,I,s))(k)) \text{ or } (StepWhile>0(a,I,s))(k)(a) \leq 0.
```

We now state several propositions:

- (32) For every parahalting macro instruction *I* holds ProperBodyWhile>0(a,I,s).
- (33) If ProperBodyWhile>0(a,I,s) and WithVariantWhile>0(a,I,s), then **while** a > 0 **do** I is halting on s and **while** a > 0 **do** I is closed on s.
- (34) For every parahalting macro instruction I such that WithVariantWhile>0(a,I,s) holds while a > 0 do I is halting on s and while a > 0 do I is closed on s.
- (35) If (**while** a > 0 **do** I)+· $S_1 \subseteq s$ and $s(a) \le 0$, then LifeSpan(s) = 4 and for every natural number k holds (Computation(s))(k)| D = s | D, where $S_1 = \text{Start-At}(\text{insloc}(0))$ and $D = \text{Int-Locations} \cup \text{FinSeq-Locations}$.
- (36) If I is closed on s and halting on s and s(a) > 0, then $(Computation(s+\cdot((\mathbf{while}\ a > 0\ \mathbf{do}\ I)+\cdot Start-At(insloc(0)))))(LifeSpan(s+\cdot(I+\cdot Start-At(insloc(0))))+3) \upharpoonright D = (Computation(s+\cdot(I+\cdot Start-At(insloc(0)))+3) \upharpoonright D = (Computation(s+\cdot(I+\cdot Start-At(insloc(0)))+3)$
- (37) If $(StepWhile > O(a,I,s))(k)(a) \le 0$, then $(StepWhile > O(a,I,s))(k+1) \upharpoonright D = (StepWhile > O(a,I,s))(k) \upharpoonright D$, where D = Int-Locations \cup FinSeq-Locations.
- (38) Suppose I is halting on Initialize (StepWhile>0(a,I,s))(k)), closed on Initialize (StepWhile>0(a,I,s))(k)), and parahalting and (StepWhile>0(a,I,s))(k)(a)>0 and (StepWhile>0(a,I,s))(k)(intloc(0))=1. Then $(StepWhile>0(a,I,s))(k+1)\upharpoonright D= \text{IExec}(I,(StepWhile>0(a,I,s))(k))\upharpoonright D$, where $D=\text{Int-Locations} \cup \text{FinSeq-Locations}$.
- (39) If ProperBodyWhile>0(a, I_1 ,s) or I_1 is parahalting and if s(intloc(0)) = 1, then for every k holds (StepWhile>0(a, I_1 ,s))(k)(intloc(0)) = 1.
- (40) If ProperBodyWhile>0(a,I,s₁) and s₁|D = s₂|D, then for every k holds (StepWhile>0(a,I,s₁))(k)|D = (StepWhile>0(a,I,s₂))(k)|D, where D = Int-Locations \cup FinSeq-Locations.

Let *s* be a state of SCM_{FSA} , let *a* be a read-write integer location, and let *I* be a macro instruction. Let us assume that ProperBodyWhile>0(a,I,s) or *I* is parahalting and WithVariantWhile>0(a,I,s). The functor ExitsAtWhile>0(a,I,s) yielding a natural number is defined by the condition (Def. 6).

- (Def. 6) There exists a natural number k such that
 - (i) ExitsAtWhile > O(a, I, s) = k,
 - (ii) $(StepWhile > O(a, I, s))(k)(a) \le 0$,
 - (iii) for every natural number i such that $(StepWhile>0(a,I,s))(i)(a) \le 0$ holds $k \le i$, and
 - (iv) (Computation($s+\cdot((\mathbf{while}\ a>0\ \mathbf{do}\ I)+\cdot S_1)))(\text{LifeSpan}(s+\cdot((\mathbf{while}\ a>0\ \mathbf{do}\ I)+\cdot S_1)))\upharpoonright D=(StepWhile>0(a,I,s))(k)\upharpoonright D,$

```
where S_1 = \text{Start-At}(\text{insloc}(0)) and D = \text{Int-Locations} \cup \text{FinSeq-Locations}.
```

Next we state several propositions:

- (41) If s(intloc(0)) = 1 and $s(a) \le 0$, then $\text{IExec}(\textbf{while } a > 0 \textbf{ do } I, s) \upharpoonright D = s \upharpoonright D$, where $D = \text{Int-Locations} \cup \text{FinSeq-Locations}$.
- (42) If ProperBodyWhile>0(a,I,Initialize(s)) or I is parahalting and if WithVariantWhile>0(a,I,Initialize(s)), then IExec(**while** a > 0 **do** I,s) |D| = (StepWhile>0(<math>a,I,Initialize(s)))(ExitsAtWhile>0(<math>a,I,Initialize(s)))|D|, where D = Int-Locations \cup FinSeq-Locations.

- (43) If $(StepWhile>0(a,I,s))(k)(a) \le 0$, then for every natural number n such that $k \le n$ holds $(StepWhile>0(a,I,s))(n) \upharpoonright D = (StepWhile>0(a,I,s))(k) \upharpoonright D$, where $D = Int-Locations \cup FinSeq-Locations$.
- (44) If $s_1 \upharpoonright D = s_2 \upharpoonright D$ and ProperBodyWhile>0 (a, I, s_1) , then ProperBodyWhile>0 (a, I, s_2) , where $D = \text{Int-Locations} \cup \text{FinSeq-Locations}$.
- (45) Suppose s(intloc(0)) = 1 and ProperBodyWhile> $0(a, I_1, s)$ and WithVariantWhile> $0(a, I_1, s)$. Let given i, j. Suppose $i \neq j$ and $i \leq ExitsAtWhile>0(a, I_1, s)$ and $j \leq ExitsAtWhile>0(a, I_1, s)$. Then $(StepWhile>0(a, I_1, s))(i) \neq (StepWhile>0(a, I_1, s))(j)$ and $(StepWhile>0(a, I_1, s))(i) \upharpoonright D \neq (StepWhile>0(a, I_1, s))(j) \upharpoonright D$, where $D = \text{Int-Locations} \cup \text{FinSeq-Locations}$.

Let f be a function from \prod (the object kind of SCM_{FSA}) into \mathbb{N} . We say that f is on data only if and only if:

- (Def. 7) For all s_1 , s_2 such that $s_1 \upharpoonright D = s_2 \upharpoonright D$ holds $f(s_1) = f(s_2)$, where $D = \text{Int-Locations} \cup \text{FinSeq-Locations}$. We now state two propositions:
 - (46) Suppose s(intloc(0)) = 1 and ProperBodyWhile> $0(a, I_1, s)$ and WithVariantWhile> $0(a, I_1, s)$. Then there exists a function f from Π (the object kind of \mathbf{SCM}_{FSA}) into $\mathbb N$ such that f is on data only and for every natural number k holds $f((StepWhile>0(a, I_1, s))(k+1)) < f((StepWhile>0(a, I_1, s))(k))$ or $(StepWhile>0(a, I_1, s))(k)(a) \leq 0$.
 - (47) If $s_1(\text{intloc}(0)) = 1$ and $s_1 \upharpoonright D = s_2 \upharpoonright D$ and ProperBodyWhile>0 (a, I_1, s_1) and WithVariantWhile>0 (a, I_1, s_1) , then WithVariantWhile>0 (a, I_1, s_2) , where $D = \text{Int-Locations} \cup \text{FinSeq-Locations}$.
 - 5. A MACRO FOR THE fusc Function

Let N, r_1 be integer locations. The functor Fusc_macro(N, r_1) yielding a macro instruction is defined by:

(Def. 8) Fusc_macro(N, r_1) = SubFrom(r_1, r_1); (n_1 :=intloc(0)); (a_1 :=N); (**while** $a_1 > 0$ **do** ((r_2 :=2); Divide(a_1, r_2); (**if** r_2 = 0 **then** Macro(AddTo(n_1, r_1)) **else** Macro(AddTo(r_1, n_1)))), where $n_1 = 1^{\text{st}}$ -RWNotIn($\{N, r_1\}$), $a_1 = 2^{\text{nd}}$ -RWNotIn($\{N, r_1\}$), and $r_2 = 3^{\text{rd}}$ -RWNotIn($\{N, r_1\}$).

One can prove the following proposition

(48) Let N, r_1 be read-write integer locations. Suppose $N \neq r_1$. Let n be a natural number. If n = s(N), then $(\text{IExec}(\text{Fusc_macro}(N, r_1), s))(r_1) = \text{Fusc}(n)$ and $(\text{IExec}(\text{Fusc_macro}(N, r_1), s))(N) = n$.

REFERENCES

- [1] Noriko Asamoto. Conditional branch macro instructions of SCM_{FSA}. Part I. *Journal of Formalized Mathematics*, 8, 1996. http://mizar.org/JFM/Vol8/scmfsa8a.html.
- [2] Noriko Asamoto. Conditional branch macro instructions of SCM_{FSA}. Part II. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/JFM/Vol8/scmfsa8b.html.
- [3] Noriko Asamoto. Constant assignment macro instructions of SCM_{FSA}. Part II. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/JFM/Vol8/scmfsa7b.html.
- [4] Noriko Asamoto. Some multi instructions defined by sequence of instructions of SCM_{FSA}. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/JFM/Vol8/scmfsa_7.html.
- [5] Noriko Asamoto, Yatsuka Nakamura, Piotr Rudnicki, and Andrzej Trybulec. On the composition of macro instructions. Part II. *Journal of Formalized Mathematics*, 8, 1996. http://mizar.org/JFM/Vol8/scmfsa6b.html.
- [6] Noriko Asamoto, Yatsuka Nakamura, Piotr Rudnicki, and Andrzej Trybulec. On the composition of macro instructions. Part III. *Journal of Formalized Mathematics*, 8, 1996. http://mizar.org/JFM/Vol8/scmfsa6c.html.
- [7] Grzegorz Bancerek. Cardinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/card_1.html.
- [8] Grzegorz Bancerek. The fundamental properties of natural numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/nat_1.html.

- [9] Grzegorz Bancerek. König's theorem. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/card_3.html.
- [10] Grzegorz Bancerek and Piotr Rudnicki. Development of terminology for scm. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/Vol5/scm_1.html.
- [11] Grzegorz Bancerek and Piotr Rudnicki. Two programs for scm. Part I preliminaries. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/Vol5/pre_ff.html.
- [12] Grzegorz Bancerek and Piotr Rudnicki. Two programs for scm. Part II programs. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/Vol5/fib_fusc.html.
- [13] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funct 1.html.
- [14] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_ 2.html.
- [15] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. *Journal of Formalized Mathematics*, 2, 1990. http://mizar.org/JFM/Vol2/funct_4.html.
- [16] Jing-Chao Chen. While macro instructions of SCM_{FSA}. Journal of Formalized Mathematics, 9, 1997. http://mizar.org/JFM/Vo19/scmfsa 9.html.
- [17] Yatsuka Nakamura and Andrzej Trybulec. A mathematical model of CPU. Journal of Formalized Mathematics, 4, 1992. http://mizar.org/JFM/Vo14/ami 1.html.
- [18] Piotr Rudnicki. On the composition of non-parahalting macro instructions. Journal of Formalized Mathematics, 10, 1998. http://mizar.org/JFM/Vol10/sfmastr1.html.
- [19] Piotr Rudnicki and Andrzej Trybulec. Memory handling for SCM_{FSA}. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/JFM/Vol8/sf_mastr.html.
- [20] Piotr Rudnicki and Andrzej Trybulec. Abian's fixed point theorem. *Journal of Formalized Mathematics*, 9, 1997. http://mizar.org/
- [21] Yasushi Tanaka. On the decomposition of the states of SCM. *Journal of Formalized Mathematics*, 5, 1993. http://mizar.org/JFM/Vol5/ami_5.html.
- [22] Andrzej Trybulec. Binary operations applied to functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funcop_1.html.
- [23] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [24] Andrzej Trybulec. Subsets of real numbers. Journal of Formalized Mathematics, Addenda, 2003. http://mizar.org/JFM/Addenda/numbers.html.
- [25] Andrzej Trybulec and Agata Darmochwał. Boolean domains. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/finsub 1.html.
- [26] Andrzej Trybulec and Yatsuka Nakamura. Some remarks on the simple concrete model of computer. *Journal of Formalized Mathematics*, 5, 1993. http://mizar.org/JFM/Vo15/ami_3.html.
- [27] Andrzej Trybulec and Yatsuka Nakamura. Modifying addresses of instructions of SCM_{FSA}. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/JFM/Vol8/scmfsa_4.html.
- [28] Andrzej Trybulec, Yatsuka Nakamura, and Noriko Asamoto. On the compositions of macro instructions. Part I. *Journal of Formalized Mathematics*, 8, 1996. http://mizar.org/JFM/Vol8/scmfsa6a.html.
- [29] Andrzej Trybulec, Yatsuka Nakamura, and Piotr Rudnicki. The SCM_{FSA} computer. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/JFM/Vol8/scmfsa_2.html.
- [30] Michał J. Trybulec. Integers. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/int_1.html.
- [31] Wojciech A. Trybulec. Groups. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/group_1.html.
- [33] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relat_1.html.

Received June 3, 1998

Published January 2, 2004