
JOURNAL OF FORMALIZED MATHEMATICS

Volume9, Released 1997, Published 2003

Inst. of Computer Science, Univ. of Białystok

The loop and Times Macroinstruction for SCM FSA

Noriko Asamoto
Ochanomizu University

Tokyo

Summary. We implement two macroinstructionsloop andTimeswhich iterate macroin-
structions ofSCMFSA. In a loop macroinstruction it jumps to the head when the original
macroinstruction stops, in aTimes macroinstruction it behaves as if the original macroinstru-
cion repeatsn times.

MML Identifier: SCMFSA8C.

WWW: http://mizar.org/JFM/Vol9/scmfsa8c.html

The articles [18], [17], [7], [11], [24], [10], [12], [9], [6], [13], [19], [16], [23], [20], [21], [8], [15],
[22], [4], [5], [3], [1], [2], and [14] provide the notation and terminology for this paper.

1. PRELIMINARIES

One can check that there exists a macro instruction which is pseudo-paraclosed.
One can prove the following propositions:

(2)1 Let s be a state ofSCMFSA and P be an initial finite partial state ofSCMFSA. Sup-
poseP is pseudo-closed ons. Let k be a natural number. Suppose that for every natu-
ral numbern such thatn≤ k holds IC (Computation(s+·(P+·Start-At(insloc(0)))))(n) ∈ domP. Then
k < pseudo−LifeSpan(s,P).

(6)2 For every functionf and for every setx such thatx∈ dom f holds f+·(x7−→. f (x)) = f .

(7) For every instruction-locationl of SCMFSA holdsl +0 = l .

(8) For every instructioni of SCMFSA holds IncAddr(i,0) = i.

(9) For every programmed finite partial statePof SCMFSA holds ProgramPart(Relocated(P,0))=
P.

(10) For all finite partial statesP, Q of SCMFSA such thatP ⊆ Q holds ProgramPart(P) ⊆
ProgramPart(Q).

(11) For all programmed finite partial statesP, Q of SCMFSA and for every natural numberk
such thatP⊆Q holds Shift(P,k)⊆ Shift(Q,k).

(12) For all finite partial statesP, Q of SCMFSA and for every natural numberk such thatP⊆Q
holds ProgramPart(Relocated(P,k))⊆ ProgramPart(Relocated(Q,k)).

1 The proposition (1) has been removed.
2 The propositions (3)–(5) have been removed.

1 c© Association of Mizar Users

http://mizar.org/JFM/Vol9/scmfsa8c.html

THE loop AND times . . . 2

(13) Let I , J be macro instructions andk be a natural number. Suppose cardI ≤ k and
k < cardI + cardJ. Let i be an instruction ofSCMFSA. If i = J(insloc(k−′ cardI)), then
(I ; J)(insloc(k)) = IncAddr(i,cardI).

(14) For every states of SCMFSA such thats(intloc(0)) = 1 and IC s = insloc(0) holds
Initialize(s) = s.

(15) For every states of SCMFSA holds Initialize(Initialize(s)) = Initialize(s).

(16) For every statesof SCMFSA and for every macro instructionI holdss+·(Initialized(I)+·Start-At(insloc(0)))=
Initialize(s)+·(I+·Start-At(insloc(0))).

(17) For every states of SCMFSA and for every macro instructionI holds IExec(I ,s) =
IExec(I , Initialize(s)).

(18) For every states of SCMFSA and for every macro instructionI such thats(intloc(0)) = 1
holdss+·(I+·Start-At(insloc(0))) = s+· Initialized(I).

(19) For every macro instructionI holdsI+·Start-At(insloc(0))⊆ Initialized(I).

(20) For every instruction-locationl of SCMFSA and for every macro instructionI holds l ∈
domI iff l ∈ domInitialized(I).

(21) For every statesof SCMFSA and for every macro instructionI holds Initialized(I) is closed
ons iff I is closed on Initialize(s).

(22) For every statesof SCMFSA and for every macro instructionI holds Initialized(I) is halting
ons iff I is halting on Initialize(s).

(23) For every macro instructionI such that for every states of SCMFSA holdsI is halting on
Initialize(s) holds Initialized(I) is halting.

(24) For every macro instructionI such that for every states of SCMFSA holds Initialized(I) is
halting ons holds Initialized(I) is halting.

(25) For every macro instructionI holds ProgramPart(Initialized(I)) = I .

(26) Let s be a state ofSCMFSA, I be a macro instruction,l be an instruction-location of
SCMFSA, andx be a set. Ifx∈ domI , thenI(x) = (s+·(I+·Start-At(l)))(x).

(27) For every statesof SCMFSA such thats(intloc(0))= 1 holds Initialize(s)�(Int-Locations∪FinSeq-Locations)=
s�(Int-Locations∪FinSeq-Locations).

(28) Lets be a state ofSCMFSA, I be a macro instruction,a be an integer location, andl be an
instruction-location ofSCMFSA. Then(s+·(I+·Start-At(l)))(a) = s(a).

(29) For every programmed finite partial stateI of SCMFSA and for every instruction-locationl
of SCMFSA holdsICSCMFSA ∈ dom(I+·Start-At(l)).

(30) For every programmed finite partial stateI of SCMFSA and for every instruction-locationl
of SCMFSA holds(I+·Start-At(l))(ICSCMFSA) = l .

(31) Lets be a state ofSCMFSA, P be a finite partial state ofSCMFSA, andl be an instruction-
location ofSCMFSA. ThenICs+·(P+·Start-At(l)) = l .

(32) For every statesof SCMFSA and for every instructioni of SCMFSA such that InsCode(i) ∈
{0,6,7,8} holds Exec(i,s)�(Int-Locations∪FinSeq-Locations)= s�(Int-Locations∪FinSeq-Locations).

(33) Lets1, s2 be states ofSCMFSA. Suppose that

(i) s1(intloc(0)) = s2(intloc(0)),

(ii) for every read-write integer locationa holdss1(a) = s2(a), and

(iii) for every finite sequence locationf holdss1(f) = s2(f).

Thens1�(Int-Locations∪FinSeq-Locations) = s2�(Int-Locations∪FinSeq-Locations).

THE loop AND times . . . 3

(34) For every states of SCMFSA and for every programmed finite partial stateP of SCMFSA

holds(s+·P)�(Int-Locations∪FinSeq-Locations) = s�(Int-Locations∪FinSeq-Locations).

(35) For all statess, s3 of SCMFSA holds(s+·s3�the instruction locations ofSCMFSA)�(Int-Locations∪FinSeq-Locations)=
s�(Int-Locations∪FinSeq-Locations).

(36) For every states of SCMFSA holds Initialize(s)�the instruction locations ofSCMFSA =
s�the instruction locations ofSCMFSA.

(37) Lets, s3 be states ofSCMFSA andI be a macro instruction. Then(s3+·s�the instruction lo-
cations ofSCMFSA)�(Int-Locations∪FinSeq-Locations)= s3�(Int-Locations∪FinSeq-Locations).

(38) For every statesof SCMFSA holds IExec(StopSCMFSA
,s)= Initialize(s)+·Start-At(insloc(0)).

(39) For every states of SCMFSA and for every macro instructionI such thatI is closed ons
holds insloc(0) ∈ domI .

(40) For every statesof SCMFSA and for every paraclosed macro instructionI holds insloc(0)∈
domI .

(41) For every instructioni of SCMFSA holds rngMacro(i) = {i,haltSCMFSA}.

(42) Let s1, s2 be states of SCMFSA and I be a macro instruction. Sup-
pose I is closed on s1 and I+·Start-At(insloc(0)) ⊆ s1. Let n be a natural
number. Suppose ProgramPart(Relocated(I ,n)) ⊆ s2 and IC (s2) = insloc(n) and
s1�(Int-Locations∪FinSeq-Locations) = s2�(Int-Locations∪FinSeq-Locations). Let i be a
natural number. ThenIC (Computation(s1))(i)+n= IC (Computation(s2))(i) and IncAddr(CurInstr((Computation(s1))(i)),n)=
CurInstr((Computation(s2))(i)) and(Computation(s1))(i)�(Int-Locations∪FinSeq-Locations)=
(Computation(s2))(i)�(Int-Locations∪FinSeq-Locations).

(43) Let s1, s2 be states ofSCMFSA and I be a macro instruction. SupposeI is
closed on s1 and I+·Start-At(insloc(0)) ⊆ s1 and I+·Start-At(insloc(0)) ⊆ s2 and
s1�(Int-Locations∪FinSeq-Locations) = s2�(Int-Locations∪FinSeq-Locations). Let i be a
natural number. ThenIC (Computation(s1))(i) = IC (Computation(s2))(i) and CurInstr((Computation(s1))(i))=
CurInstr((Computation(s2))(i)) and(Computation(s1))(i)�(Int-Locations∪FinSeq-Locations)=
(Computation(s2))(i)�(Int-Locations∪FinSeq-Locations).

(44) Let s1, s2 be states ofSCMFSA and I be a macro instruction. SupposeI is closed
on s1 and halting ons1 and I+·Start-At(insloc(0)) ⊆ s1 and I+·Start-At(insloc(0)) ⊆ s2

and s1�(Int-Locations∪FinSeq-Locations) = s2�(Int-Locations∪FinSeq-Locations). Then
LifeSpan(s1) = LifeSpan(s2).

(45) Lets1, s2 be states ofSCMFSA andI be a macro instruction. Suppose that

(i) s1(intloc(0)) = 1,

(ii) I is closed ons1 and halting ons1,

(iii) for every read-write integer locationa holdss1(a) = s2(a), and

(iv) for every finite sequence locationf holdss1(f) = s2(f).

Then IExec(I ,s1)�(Int-Locations∪FinSeq-Locations)= IExec(I ,s2)�(Int-Locations∪FinSeq-Locations).

(46) Let s1, s2 be states ofSCMFSA and I be a macro instruction. Supposes1(intloc(0)) =
1 and I is closed ons1 and halting ons1 and s1�(Int-Locations∪FinSeq-Locations) =
s2�(Int-Locations∪FinSeq-Locations). Then IExec(I ,s1)�(Int-Locations∪FinSeq-Locations)=
IExec(I ,s2)�(Int-Locations∪FinSeq-Locations).

Let I be a macro instruction. One can check that Initialized(I) is initial.
Next we state a number of propositions:

(47) Let s be a state ofSCMFSA and I be a macro instruction. Then Initialized(I) is pseudo-
closed ons if and only if I is pseudo-closed on Initialize(s).

THE loop AND times . . . 4

(48) For every statesof SCMFSA and for every macro instructionI such thatI is pseudo-closed
on Initialize(s) holds pseudo−LifeSpan(s, Initialized(I))= pseudo−LifeSpan(Initialize(s), I).

(49) For every states of SCMFSA and for every macro instructionI such that Initialized(I) is
pseudo-closed onsholds pseudo−LifeSpan(s, Initialized(I))= pseudo−LifeSpan(Initialize(s), I).

(50) Let s be a state ofSCMFSA and I be an initial finite partial state ofSCMFSA. Sup-
poseI is pseudo-closed ons. ThenI is pseudo-closed ons+·(I+·Start-At(insloc(0))) and
pseudo−LifeSpan(s, I) = pseudo−LifeSpan(s+·(I+·Start-At(insloc(0))), I).

(51) Let s1, s2 be states of SCMFSA and I be a macro instruction. Suppose
I+·Start-At(insloc(0)) ⊆ s1 and I is pseudo-closed ons1. Let n be a natu-
ral number. Suppose ProgramPart(Relocated(I ,n)) ⊆ s2 and IC (s2) = insloc(n) and
s1�(Int-Locations∪FinSeq-Locations) = s2�(Int-Locations∪FinSeq-Locations). Then

(i) for every natural numberi such thati < pseudo−LifeSpan(s1, I) holds IncAddr(CurInstr((Computation(s1))(i)),n)=
CurInstr((Computation(s2))(i)), and

(ii) for every natural numberi such thati≤pseudo−LifeSpan(s1, I) holdsIC (Computation(s1))(i)+
n = IC (Computation(s2))(i) and (Computation(s1))(i)�(Int-Locations∪FinSeq-Locations) =
(Computation(s2))(i)�(Int-Locations∪FinSeq-Locations).

(52) Let s1, s2 be states of SCMFSA and I be a macro instruction. Suppose
s1�(Int-Locations∪FinSeq-Locations) = s2�(Int-Locations∪FinSeq-Locations). If I is
pseudo-closed ons1, thenI is pseudo-closed ons2.

(53) Letsbe a state ofSCMFSA andI be a macro instruction. Supposes(intloc(0)) = 1. ThenI
is pseudo-closed ons if and only if I is pseudo-closed on Initialize(s).

(54) Leta be an integer location andI , J be macro instructions. Then insloc(0) ∈ dom(if a =
0 then I elseJ) and insloc(1) ∈ dom(if a = 0 then I elseJ) and insloc(0) ∈ dom(if a >
0 then I elseJ) and insloc(1) ∈ dom(if a > 0 then I elseJ).

(55) Let a be an integer location andI , J be macro instructions. Then(if a =
0 then I elseJ)(insloc(0))= if a= 0 goto insloc(cardJ+3) and(if a= 0 then I elseJ)(insloc(1))=
goto insloc(2) and(if a > 0 then I elseJ)(insloc(0)) = if a > 0 goto insloc(cardJ+3) and
(if a > 0 then I elseJ)(insloc(1)) = goto insloc(2).

(56) Let a be an integer location,I , J be macro instructions, andn be a natural num-
ber. If n < cardI + cardJ + 3, then insloc(n) ∈ dom(if a = 0 then I elseJ) and (if a =
0 then I elseJ)(insloc(n)) 6= haltSCMFSA.

(57) Let a be an integer location,I , J be macro instructions, andn be a natural num-
ber. If n < cardI + cardJ + 3, then insloc(n) ∈ dom(if a > 0 then I elseJ) and (if a >
0 then I elseJ)(insloc(n)) 6= haltSCMFSA.

(58) Lets be a state ofSCMFSA andI be a macro instruction. Suppose Directed(I) is pseudo-
closed ons. Then

(i) I ; StopSCMFSA
is closed ons,

(ii) I ; StopSCMFSA
is halting ons,

(iii) LifeSpan(s+·((I ; StopSCMFSA
)+·Start-At(insloc(0))))= pseudo−LifeSpan(s,Directed(I)),

(iv) for every natural numbern such thatn < pseudo−LifeSpan(s,Directed(I)) holds
IC (Computation(s+·(I+·Start-At(insloc(0)))))(n) = IC (Computation(s+·((I ; StopSCMFSA

)+·Start-At(insloc(0)))))(n),

and

(v) for every natural numbern such thatn ≤ pseudo−LifeSpan(s,Directed(I)) holds
(Computation(s+·(I+·Start-At(insloc(0)))))(n)�D =(Computation(s+·((I ; StopSCMFSA

)+·Start-At(insloc(0)))))(n)�D,

whereD = Int-Locations∪FinSeq-Locations.

THE loop AND times . . . 5

(59) Let s be a state ofSCMFSA and I be a macro instruction. If Directed(I)
is pseudo-closed ons, then Result(s+·((I ; StopSCMFSA

)+·Start-At(insloc(0))))�D =
(Computation(s+·(I+·Start-At(insloc(0)))))(pseudo−LifeSpan(s,Directed(I)))�D, where
D = Int-Locations∪FinSeq-Locations.

(60) Letsbe a state ofSCMFSA andI be a macro instruction. Ifs(intloc(0)) = 1 and Directed(I)
is pseudo-closed ons, then IExec(I ; StopSCMFSA

,s)�D =(Computation(s+·(I+·Start-At(insloc(0)))))(pseudo−LifeSpan(s,Directed(I)))�D,
whereD = Int-Locations∪FinSeq-Locations.

(61) For all macro instructionsI , J and for every integer locationa holds (if a =
0 then I elseJ)(insloc(cardI +cardJ+3)) = haltSCMFSA.

(62) For all macro instructionsI , J and for every integer locationa holds (if a >
0 then I elseJ)(insloc(cardI +cardJ+3)) = haltSCMFSA.

(63) For all macro instructionsI , J and for every integer locationa holds (if a =
0 then I elseJ)(insloc(cardJ+2)) = goto insloc(cardI +cardJ+3).

(64) For all macro instructionsI , J and for every integer locationa holds (if a >
0 then I elseJ)(insloc(cardJ+2)) = goto insloc(cardI +cardJ+3).

(65) For every macro instructionJ and for every integer locationa holds (if a =
0 then Goto(insloc(2)) elseJ)(insloc(cardJ+3)) = goto insloc(cardJ+5).

(66) Let s be a state of SCMFSA, I , J be macro instructions, anda be a
read-write integer location. Supposes(a) = 0 and Directed(I) is pseudo-closed
on s. Then if a = 0 then I elseJ is halting on s and if a = 0 then I elseJ
is closed on s and LifeSpan(s+·((if a = 0 then I elseJ)+·Start-At(insloc(0)))) =
LifeSpan(s+·((I ; StopSCMFSA

)+·Start-At(insloc(0))))+1.

(67) Let s be a state ofSCMFSA, I , J be macro instructions, anda be a read-write
integer location. Supposes(intloc(0)) = 1 and s(a) = 0 and Directed(I) is pseudo-
closed ons. Then IExec(if a = 0 then I elseJ,s)�(Int-Locations∪FinSeq-Locations) =
IExec(I ; StopSCMFSA

,s)�(Int-Locations∪FinSeq-Locations).

(68) Let s be a state of SCMFSA, I , J be macro instructions, anda be a
read-write integer location. Supposes(a) > 0 and Directed(I) is pseudo-closed
on s. Then if a > 0 then I elseJ is halting on s and if a > 0 then I elseJ
is closed on s and LifeSpan(s+·((if a > 0 then I elseJ)+·Start-At(insloc(0)))) =
LifeSpan(s+·((I ; StopSCMFSA

)+·Start-At(insloc(0))))+1.

(69) Let s be a state ofSCMFSA, I , J be macro instructions, anda be a read-write
integer location. Supposes(intloc(0)) = 1 and s(a) > 0 and Directed(I) is pseudo-
closed ons. Then IExec(if a > 0 then I elseJ,s)�(Int-Locations∪FinSeq-Locations) =
IExec(I ; StopSCMFSA

,s)�(Int-Locations∪FinSeq-Locations).

(70) Let s be a state of SCMFSA, I , J be macro instructions, anda be a
read-write integer location. Supposes(a) 6= 0 and Directed(J) is pseudo-closed
on s. Then if a = 0 then I elseJ is halting on s and if a = 0 then I elseJ
is closed on s and LifeSpan(s+·((if a = 0 then I elseJ)+·Start-At(insloc(0)))) =
LifeSpan(s+·((J; StopSCMFSA

)+·Start-At(insloc(0))))+3.

(71) Let s be a state ofSCMFSA, I , J be macro instructions, anda be a read-write
integer location. Supposes(intloc(0)) = 1 and s(a) 6= 0 and Directed(J) is pseudo-
closed ons. Then IExec(if a = 0 then I elseJ,s)�(Int-Locations∪FinSeq-Locations) =
IExec(J; StopSCMFSA

,s)�(Int-Locations∪FinSeq-Locations).

(72) Let s be a state of SCMFSA, I , J be macro instructions, anda be a
read-write integer location. Supposes(a) ≤ 0 and Directed(J) is pseudo-closed
on s. Then if a > 0 then I elseJ is halting on s and if a > 0 then I elseJ
is closed on s and LifeSpan(s+·((if a > 0 then I elseJ)+·Start-At(insloc(0)))) =
LifeSpan(s+·((J; StopSCMFSA

)+·Start-At(insloc(0))))+3.

THE loop AND times . . . 6

(73) Let s be a state ofSCMFSA, I , J be macro instructions, anda be a read-write
integer location. Supposes(intloc(0)) = 1 and s(a) ≤ 0 and Directed(J) is pseudo-
closed ons. Then IExec(if a > 0 then I elseJ,s)�(Int-Locations∪FinSeq-Locations) =
IExec(J; StopSCMFSA

,s)�(Int-Locations∪FinSeq-Locations).

(74) Let s be a state ofSCMFSA, I , J be macro instructions, anda be a read-write integer
location. Suppose Directed(I) is pseudo-closed ons and Directed(J) is pseudo-closed ons.
Thenif a = 0 then I elseJ is closed ons andif a = 0 then I elseJ is halting ons.

(75) Let s be a state ofSCMFSA, I , J be macro instructions, anda be a read-write integer
location. Suppose Directed(I) is pseudo-closed ons and Directed(J) is pseudo-closed ons.
Thenif a > 0 then I elseJ is closed ons andif a > 0 then I elseJ is halting ons.

(76) Let I be a macro instruction anda be an integer location. IfI does not destroya, then
Directed(I) does not destroya.

(77) Leti be an instruction ofSCMFSA anda be an integer location. Ifi does not destroya, then
Macro(i) does not destroya.

(78) For every integer locationa holdshaltSCMFSA does not refera.

(79) For all integer locationsa, b, c such thata 6= b holds AddTo(c,b) does not refera.

(80) Let i be an instruction ofSCMFSA anda be an integer location. Ifi does not refera, then
Macro(i) does not refera.

(81) Let I , J be macro instructions anda be an integer location. SupposeI does not destroya
andJ does not destroya. ThenI ; J does not destroya.

(82) LetJ be a macro instruction,i be an instruction ofSCMFSA, anda be an integer location.
Supposei does not destroya andJ does not destroya. Theni; J does not destroya.

(83) Let I be a macro instruction,j be an instruction ofSCMFSA, anda be an integer location.
SupposeI does not destroya and j does not destroya. ThenI ; j does not destroya.

(84) Leti, j be instructions ofSCMFSA anda be an integer location. Supposei does not destroy
a and j does not destroya. Theni; j does not destroya.

(85) For every integer locationa holds StopSCMFSA
does not destroya.

(86) For every integer locationa and for every instruction-locationl of SCMFSA holds Goto(l)
does not destroya.

(87) Let s be a state ofSCMFSA and I be a macro instruction. SupposeI is halting on
Initialize(s). Then

(i) for every read-write integer locationaholds(IExec(I ,s))(a)= (Computation(Initialize(s)+·(I+·Start-At(insloc(0)))))(LifeSpan(Initialize(s)+·(I+·Start-At(insloc(0)))))(a),
and

(ii) for every finite sequence locationf holds(IExec(I ,s))(f)= (Computation(Initialize(s)+·(I+·Start-At(insloc(0)))))(LifeSpan(Initialize(s)+·(I+·Start-At(insloc(0)))))(f).

(88) Letsbe a state ofSCMFSA, I be a parahalting macro instruction, anda be a read-write inte-
ger location. Then(IExec(I ,s))(a)= (Computation(Initialize(s)+·(I+·Start-At(insloc(0)))))(LifeSpan(Initialize(s)+·(I+·Start-At(insloc(0)))))(a).

(89) Let s be a state of SCMFSA, I be a macro instruction, a be an inte-
ger location, andk be a natural number. SupposeI is closed on Initialize(s)
and halting on Initialize(s) and I does not destroya. Then (IExec(I ,s))(a) =
(Computation(Initialize(s)+·(I+·Start-At(insloc(0)))))(k)(a).

(90) Let s be a state ofSCMFSA, I be a parahalting macro instruction,a be an integer
location, andk be a natural number. IfI does not destroya, then (IExec(I ,s))(a) =
(Computation(Initialize(s)+·(I+·Start-At(insloc(0)))))(k)(a).

THE loop AND times . . . 7

(91) Let s be a state ofSCMFSA, I be a parahalting macro instruction, anda be an integer
location. If I does not destroya, then(IExec(I ,s))(a) = (Initialize(s))(a).

(92) Let s be a state ofSCMFSA and I be a keeping 0 macro instruction. SupposeI is halt-
ing on Initialize(s). Then(IExec(I ,s))(intloc(0)) = 1 and for every natural numberk holds
(Computation(Initialize(s)+·(I+·Start-At(insloc(0)))))(k)(intloc(0)) = 1.

(93) Letsbe a state ofSCMFSA, I be a macro instruction, anda be an integer location. Suppose
I does not destroya. Let k be a natural number. IfIC (Computation(s+·(I+·Start-At(insloc(0)))))(k) ∈
domI , then(Computation(s+·(I+·Start-At(insloc(0)))))(k+1)(a)= (Computation(s+·(I+·Start-At(insloc(0)))))(k)(a).

(94) Letsbe a state ofSCMFSA, I be a macro instruction, anda be an integer location. Suppose
I does not destroya. Letmbe a natural number. Suppose that for every natural numbern such
thatn < m holdsIC (Computation(s+·(I+·Start-At(insloc(0)))))(n) ∈ domI . Let n be a natural number.
If n≤m, then(Computation(s+·(I+·Start-At(insloc(0)))))(n)(a) = s(a).

(95) Let s be a state ofSCMFSA, I be a good macro instruction, andm be a nat-
ural number. Suppose that for every natural numbern such that n < m holds
IC (Computation(s+·(I+·Start-At(insloc(0)))))(n) ∈ domI . Let n be a natural number. Ifn≤ m, then
(Computation(s+·(I+·Start-At(insloc(0)))))(n)(intloc(0)) = s(intloc(0)).

(96) Let s be a state ofSCMFSA and I be a good macro instruction. SupposeI is halting on
Initialize(s) and closed on Initialize(s). Then(IExec(I ,s))(intloc(0)) = 1 and for every natu-
ral numberk holds(Computation(Initialize(s)+·(I+·Start-At(insloc(0)))))(k)(intloc(0)) =
1.

(97) Letsbe a state ofSCMFSA andI be a good macro instruction. SupposeI is closed ons. Let
k be a natural number. Then(Computation(s+·(I+·Start-At(insloc(0)))))(k)(intloc(0)) =
s(intloc(0)).

(98) Let s be a state ofSCMFSA, I be a keeping 0 parahalting macro instruction,
and a be a read-write integer location. SupposeI does not destroya. Then
(Computation(Initialize(s)+·((I ; SubFrom(a, intloc(0)))+·Start-At(insloc(0)))))(LifeSpan(Initialize(s)+·((I ; SubFrom(a, intloc(0)))+·Start-At(insloc(0)))))(a)=
s(a)−1.

(99) For every instructioni of SCMFSA such thati does not destroy intloc(0) holds Macro(i) is
good.

(100) Lets1, s2 be states ofSCMFSA andI be a macro instruction. SupposeI is closed ons1 and
halting ons1 ands1�D = s2�D. Let k be a natural number. Then

(i) (Computation(s1+·(I+·Start-At(insloc(0)))))(k) and(Computation(s2+·(I+·Start-At(insloc(0)))))(k)
are equal outside the instruction locations ofSCMFSA, and

(ii) CurInstr((Computation(s1+·(I+·Start-At(insloc(0)))))(k))= CurInstr((Computation(s2+·(I+·Start-At(insloc(0)))))(k)),

whereD = Int-Locations∪FinSeq-Locations.

(101) Let s1, s2 be states ofSCMFSA and I be a macro instruction. SupposeI is closed
on s1 and halting ons1 ands1�D = s2�D. Then LifeSpan(s1+·(I+·Start-At(insloc(0)))) =
LifeSpan(s2+·(I+·Start-At(insloc(0)))) and Result(s1+·(I+·Start-At(insloc(0)))) and Result(s2+·(I+·Start-At(insloc(0))))
are equal outside the instruction locations ofSCMFSA, whereD = Int-Locations∪FinSeq-Locations.

(103)3 Let s1, s2 be states ofSCMFSA andI be a macro instruction. Suppose that

(i) I is closed ons1 and halting ons1,

(ii) I+·Start-At(insloc(0))⊆ s1,

(iii) I+·Start-At(insloc(0))⊆ s2, and

(iv) there exists a natural numberk such that(Computation(s1))(k) ands2 are equal outside
the instruction locations ofSCMFSA.

Then Result(s1) and Result(s2) are equal outside the instruction locations ofSCMFSA.

3 The proposition (102) has been removed.

THE loop AND times . . . 8

2. THE loop MACROINSTRUCTION

Let I be a macro instruction and letk be a natural number. One can check that IncAddr(I ,k) is initial
and programmed.

Let I be a macro instruction. The functor loopI yielding a halt-free macro instruction is defined
by:

(Def. 4)4 loopI = (idthe instructions ofSCMFSA+·(haltSCMFSA 7−→
. goto insloc(0))) · I .

One can prove the following two propositions:

(104) For every macro instructionI holds loopI = Directed(I , insloc(0)).

(105) LetI be a macro instruction anda be an integer location. IfI does not destroya, then loopI
does not destroya.

Let I be a good macro instruction. Note that loopI is good.
We now state several propositions:

(106) For every macro instructionI holds domloopI = domI .

(107) For every macro instructionI holdshaltSCMFSA /∈ rng loopI .

(108) For every macro instructionI and for every setx such thatI(x) 6= haltSCMFSA holds
(loopI)(x) = I(x).

(109) Letsbe a state ofSCMFSA andI be a macro instruction. SupposeI is closed onsand halt-
ing ons. Let m be a natural number. Supposem≤ LifeSpan(s+·(I+·Start-At(insloc(0)))).
Then(Computation(s+·(I+·Start-At(insloc(0)))))(m) and(Computation(s+·(loopI+·Start-At(insloc(0)))))(m)
are equal outside the instruction locations ofSCMFSA.

(110) Lets be a state ofSCMFSA and I be a macro instruction. SupposeI is closed ons and
halting ons. Let mbe a natural number. Ifm< LifeSpan(s+·(I+·Start-At(insloc(0)))), then
CurInstr((Computation(s+·(I+·Start-At(insloc(0)))))(m))= CurInstr((Computation(s+·(loopI+·Start-At(insloc(0)))))(m)).

(111) Lets be a state ofSCMFSA and I be a macro instruction. SupposeI is closed ons and
halting ons. Let mbe a natural number. Ifm≤ LifeSpan(s+·(I+·Start-At(insloc(0)))), then
CurInstr((Computation(s+·(loopI+·Start-At(insloc(0)))))(m)) 6= haltSCMFSA.

(112) Letsbe a state ofSCMFSA andI be a macro instruction. IfI is closed onsand halting ons,
then CurInstr((Computation(s+·(loopI+·Start-At(insloc(0)))))(LifeSpan(s+·(I+·Start-At(insloc(0))))))=
goto insloc(0).

(113) Let s be a state ofSCMFSA and I be a paraclosed macro instruction. Suppose
I+·Start-At(insloc(0)) ⊆ s and s is halting. Letm be a natural number. Supposem≤
LifeSpan(s). Then(Computation(s))(m) and(Computation(s+· loopI))(m) are equal outside
the instruction locations ofSCMFSA.

(114) Let s be a state ofSCMFSA and I be a parahalting macro instruction. Sup-
pose Initialized(I) ⊆ s. Let k be a natural number. Ifk ≤ LifeSpan(s), then
CurInstr((Computation(s+· loopI))(k)) 6= haltSCMFSA.

3. THE Times MACROINSTRUCTION

Let a be an integer location and letI be a macro instruction. The functor Times(a, I) yields a macro
instruction and is defined as follows:

(Def. 5) Times(a, I)= if a> 0 then loopif a= 0 then Goto(insloc(2)) else(I ; SubFrom(a, intloc(0))) else(StopSCMFSA
).

4 The definitions (Def. 1)–(Def. 3) have been removed.

THE loop AND times . . . 9

Next we state a number of propositions:

(115) For every good macro instructionI and for every read-write integer locationa holdsif a =
0 then Goto(insloc(2)) else(I ; SubFrom(a, intloc(0))) is good.

(116) For all macro instructionsI , J and for every integer locationa holds (if a =
0 then Goto(insloc(2)) else(I ; SubFrom(a, intloc(0))))(insloc(card(I ; SubFrom(a, intloc(0)))+
3)) = goto insloc(card(I ; SubFrom(a, intloc(0)))+5).

(117) Lets be a state ofSCMFSA, I be a good parahalting macro instruction, anda be a read-
write integer location. SupposeI does not destroya ands(intloc(0)) = 1 ands(a) > 0. Then
loopif a = 0 then Goto(insloc(2)) else(I ; SubFrom(a, intloc(0))) is pseudo-closed ons.

(118) Lets be a state ofSCMFSA, I be a good parahalting macro instruction, anda be a read-
write integer location. SupposeI does not destroya ands(a) > 0. Then Initialized(loopif a=
0 then Goto(insloc(2)) else(I ; SubFrom(a, intloc(0)))) is pseudo-closed ons.

(119) Lets be a state ofSCMFSA, I be a good parahalting macro instruction, anda be a read-
write integer location. SupposeI does not destroya ands(intloc(0)) = 1. Then Times(a, I) is
closed ons and Times(a, I) is halting ons.

(120) LetI be a good parahalting macro instruction anda be a read-write integer location. IfI
does not destroya, then Initialized(Times(a, I)) is halting.

(121) LetI , J be macro instructions anda, cbe integer locations. SupposeI does not destroycand
J does not destroyc. Thenif a = 0 then I elseJ does not destroyc andif a > 0 then I elseJ
does not destroyc.

(122) Letsbe a state ofSCMFSA, I be a good parahalting macro instruction, anda be a read-write
integer location. SupposeI does not destroya ands(intloc(0)) = 1 ands(a) > 0. Then there
exists a states2 of SCMFSA and there exists a natural numberk such that

s2 = s+·(loopif a= 0 then Goto(insloc(2)) else(I ; SubFrom(a, intloc(0)))+·Start-At(insloc(0)))
andk= LifeSpan(s+·((if a= 0 then Goto(insloc(2)) else(I ; SubFrom(a, intloc(0))))+·Start-At(insloc(0))))+
1 and (Computation(s2))(k)(a) = s(a)− 1 and (Computation(s2))(k)(intloc(0)) = 1 and
for every read-write integer locationb such thatb 6= a holds (Computation(s2))(k)(b) =
(IExec(I ,s))(b) and for every finite sequence locationf holds (Computation(s2))(k)(f) =
(IExec(I ,s))(f) andIC (Computation(s2))(k) = insloc(0) and for every natural numbern such that
n≤ k holdsIC (Computation(s2))(n) ∈domloopif a= 0 then Goto(insloc(2)) else(I ; SubFrom(a, intloc(0))).

(123) Let s be a state ofSCMFSA, I be a good parahalting macro instruction, and
a be a read-write integer location. Ifs(intloc(0)) = 1 and s(a) ≤ 0, then
IExec(Times(a, I),s)�(Int-Locations∪FinSeq-Locations)= s�(Int-Locations∪FinSeq-Locations).

(124) Let s be a state ofSCMFSA, I be a good parahalting macro instruction, anda
be a read-write integer location. SupposeI does not destroya and s(a) > 0. Then
(IExec(I ; SubFrom(a, intloc(0)),s))(a)= s(a)−1 and IExec(Times(a, I),s)�(Int-Locations∪FinSeq-Locations)=
IExec(Times(a, I), IExec(I ; SubFrom(a, intloc(0)),s))�(Int-Locations∪FinSeq-Locations).

4. AN EXAMPLE

We now state the proposition

(125) Letsbe a state ofSCMFSA anda, b, c be read-write integer locations. Ifa 6= b anda 6= c and
b 6= c ands(a)≥ 0, then(IExec(Times(a,Macro(AddTo(b,c))),s))(b) = s(b)+s(c) ·s(a).

THE loop AND times . . . 10

REFERENCES

[1] Noriko Asamoto. Conditional branch macro instructions ofSCMFSA. Part I. Journal of Formalized Mathematics, 8, 1996. http:
//mizar.org/JFM/Vol8/scmfsa8a.html.

[2] Noriko Asamoto. Conditional branch macro instructions ofSCMFSA. Part II. Journal of Formalized Mathematics, 8, 1996. http:
//mizar.org/JFM/Vol8/scmfsa8b.html.

[3] Noriko Asamoto. Constant assignment macro instructions ofSCMFSA. Part II. Journal of Formalized Mathematics, 8, 1996. http:
//mizar.org/JFM/Vol8/scmfsa7b.html.

[4] Noriko Asamoto, Yatsuka Nakamura, Piotr Rudnicki, and Andrzej Trybulec. On the composition of macro instructions. Part II.Journal
of Formalized Mathematics, 8, 1996.http://mizar.org/JFM/Vol8/scmfsa6b.html.

[5] Noriko Asamoto, Yatsuka Nakamura, Piotr Rudnicki, and Andrzej Trybulec. On the composition of macro instructions. Part III.Journal
of Formalized Mathematics, 8, 1996.http://mizar.org/JFM/Vol8/scmfsa6c.html.

[6] Grzegorz Bancerek. Cardinal numbers.Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/card_1.html.

[7] Grzegorz Bancerek. The fundamental properties of natural numbers.Journal of Formalized Mathematics, 1, 1989. http://mizar.
org/JFM/Vol1/nat_1.html.

[8] Grzegorz Bancerek and Piotr Rudnicki. Development of terminology forscm. Journal of Formalized Mathematics, 5, 1993. http:
//mizar.org/JFM/Vol5/scm_1.html.

[9] Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions.Journal of Formalized Mathematics, 8, 1996.http:
//mizar.org/JFM/Vol8/funct_7.html.

[10] Czesław Bylínski. Functions and their basic properties.Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/
funct_1.html.

[11] Czesław Bylínski. A classical first order language.Journal of Formalized Mathematics, 2, 1990.http://mizar.org/JFM/Vol2/cqc_
lang.html.

[12] Czesław Bylínski. The modification of a function by a function and the iteration of the composition of a function.Journal of Formalized
Mathematics, 2, 1990.http://mizar.org/JFM/Vol2/funct_4.html.

[13] Yatsuka Nakamura and Andrzej Trybulec. A mathematical model of CPU.Journal of Formalized Mathematics, 4, 1992. http:
//mizar.org/JFM/Vol4/ami_1.html.

[14] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics.Journal of Formalized Mathematics, 5, 1993.http://mizar.org/JFM/
Vol5/binarith.html.

[15] Piotr Rudnicki and Andrzej Trybulec. Memory handling forSCMFSA. Journal of Formalized Mathematics, 8, 1996.http://mizar.
org/JFM/Vol8/sf_mastr.html.

[16] Yasushi Tanaka. On the decomposition of the states of SCM.Journal of Formalized Mathematics, 5, 1993.http://mizar.org/JFM/
Vol5/ami_5.html.

[17] Andrzej Trybulec. Enumerated sets.Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/enumset1.html.

[18] Andrzej Trybulec. Tarski Grothendieck set theory.Journal of Formalized Mathematics, Axiomatics, 1989.http://mizar.org/JFM/
Axiomatics/tarski.html.

[19] Andrzej Trybulec and Yatsuka Nakamura. Some remarks on the simple concrete model of computer.Journal of Formalized Mathematics,
5, 1993.http://mizar.org/JFM/Vol5/ami_3.html.

[20] Andrzej Trybulec and Yatsuka Nakamura. Modifying addresses of instructions ofSCMFSA. Journal of Formalized Mathematics, 8,
1996.http://mizar.org/JFM/Vol8/scmfsa_4.html.

[21] Andrzej Trybulec and Yatsuka Nakamura. Relocability forSCMFSA. Journal of Formalized Mathematics, 8, 1996. http://mizar.
org/JFM/Vol8/scmfsa_5.html.

[22] Andrzej Trybulec, Yatsuka Nakamura, and Noriko Asamoto. On the compositions of macro instructions. Part I.Journal of Formalized
Mathematics, 8, 1996.http://mizar.org/JFM/Vol8/scmfsa6a.html.

[23] Andrzej Trybulec, Yatsuka Nakamura, and Piotr Rudnicki. TheSCMFSA computer. Journal of Formalized Mathematics, 8, 1996.
http://mizar.org/JFM/Vol8/scmfsa_2.html.

[24] Edmund Woronowicz. Relations and their basic properties.Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/
Vol1/relat_1.html.

Received October 29, 1997

Published January 2, 2004

http://mizar.org/JFM/Vol8/scmfsa8a.html
http://mizar.org/JFM/Vol8/scmfsa8a.html
http://mizar.org/JFM/Vol8/scmfsa8b.html
http://mizar.org/JFM/Vol8/scmfsa8b.html
http://mizar.org/JFM/Vol8/scmfsa7b.html
http://mizar.org/JFM/Vol8/scmfsa7b.html
http://mizar.org/JFM/Vol8/scmfsa6b.html
http://mizar.org/JFM/Vol8/scmfsa6c.html
http://mizar.org/JFM/Vol1/card_1.html
http://mizar.org/JFM/Vol1/nat_1.html
http://mizar.org/JFM/Vol1/nat_1.html
http://mizar.org/JFM/Vol5/scm_1.html
http://mizar.org/JFM/Vol5/scm_1.html
http://mizar.org/JFM/Vol8/funct_7.html
http://mizar.org/JFM/Vol8/funct_7.html
http://mizar.org/JFM/Vol1/funct_1.html
http://mizar.org/JFM/Vol1/funct_1.html
http://mizar.org/JFM/Vol2/cqc_lang.html
http://mizar.org/JFM/Vol2/cqc_lang.html
http://mizar.org/JFM/Vol2/funct_4.html
http://mizar.org/JFM/Vol4/ami_1.html
http://mizar.org/JFM/Vol4/ami_1.html
http://mizar.org/JFM/Vol5/binarith.html
http://mizar.org/JFM/Vol5/binarith.html
http://mizar.org/JFM/Vol8/sf_mastr.html
http://mizar.org/JFM/Vol8/sf_mastr.html
http://mizar.org/JFM/Vol5/ami_5.html
http://mizar.org/JFM/Vol5/ami_5.html
http://mizar.org/JFM/Vol1/enumset1.html
http://mizar.org/JFM/Axiomatics/tarski.html
http://mizar.org/JFM/Axiomatics/tarski.html
http://mizar.org/JFM/Vol5/ami_3.html
http://mizar.org/JFM/Vol8/scmfsa_4.html
http://mizar.org/JFM/Vol8/scmfsa_5.html
http://mizar.org/JFM/Vol8/scmfsa_5.html
http://mizar.org/JFM/Vol8/scmfsa6a.html
http://mizar.org/JFM/Vol8/scmfsa_2.html
http://mizar.org/JFM/Vol1/relat_1.html
http://mizar.org/JFM/Vol1/relat_1.html

	the loop and times … By noriko asamoto

