The loop and Times Macroinstruction for SCM_{FSA}

Noriko Asamoto Ochanomizu University Tokyo

Summary. We implement two macroinstructions loop and Times which iterate macroinstructions of \mathbf{SCM}_{FSA} . In a loop macroinstruction it jumps to the head when the original macroinstruction stops, in a Times macroinstruction it behaves as if the original macroinstruction repeats n times.

MML Identifier: SCMFSA8C.

WWW: http://mizar.org/JFM/Vol9/scmfsa8c.html

The articles [18], [17], [7], [11], [24], [10], [12], [9], [6], [13], [19], [16], [23], [20], [21], [8], [15], [22], [4], [5], [3], [1], [2], and [14] provide the notation and terminology for this paper.

1. Preliminaries

One can check that there exists a macro instruction which is pseudo-paraclosed. One can prove the following propositions:

- (2)¹ Let s be a state of \mathbf{SCM}_{FSA} and P be an initial finite partial state of \mathbf{SCM}_{FSA} . Suppose P is pseudo-closed on s. Let k be a natural number. Suppose that for every natural number n such that $n \le k$ holds $\mathbf{IC}_{(Computation(s+\cdot(P+\cdot Start-At(insloc(0)))))(n)} \in \text{dom } P$. Then k < pseudo LifeSpan(s, P).
- (6)² For every function f and for every set x such that $x \in \text{dom } f$ holds $f + (x \mapsto f(x)) = f$.
- (7) For every instruction-location l of SCM_{FSA} holds l + 0 = l.
- (8) For every instruction *i* of SCM_{FSA} holds IncAddr(i,0) = i.
- (9) For every programmed finite partial state P of \mathbf{SCM}_{FSA} holds $\mathsf{ProgramPart}(\mathsf{Relocated}(P,0)) = P$.
- (10) For all finite partial states P, Q of \mathbf{SCM}_{FSA} such that $P \subseteq Q$ holds $\mathsf{ProgramPart}(P) \subseteq \mathsf{ProgramPart}(Q)$.
- (11) For all programmed finite partial states P, Q of \mathbf{SCM}_{FSA} and for every natural number k such that $P \subseteq Q$ holds $\mathsf{Shift}(P,k) \subseteq \mathsf{Shift}(Q,k)$.
- (12) For all finite partial states P, Q of \mathbf{SCM}_{FSA} and for every natural number k such that $P \subseteq Q$ holds $\mathsf{ProgramPart}(\mathsf{Relocated}(P,k)) \subseteq \mathsf{ProgramPart}(\mathsf{Relocated}(Q,k))$.

¹ The proposition (1) has been removed.

² The propositions (3)–(5) have been removed.

- (13) Let I, J be macro instructions and k be a natural number. Suppose $\operatorname{card} I \leq k$ and $k < \operatorname{card} I + \operatorname{card} J$. Let i be an instruction of $\operatorname{\mathbf{SCM}}_{FSA}$. If $i = J(\operatorname{insloc}(k '\operatorname{card} I))$, then $(I; J)(\operatorname{insloc}(k)) = \operatorname{IncAddr}(i, \operatorname{card} I)$.
- (14) For every state s of \mathbf{SCM}_{FSA} such that $s(\operatorname{intloc}(0)) = 1$ and $\mathbf{IC}_s = \operatorname{insloc}(0)$ holds Initialize(s) = s.
- (15) For every state s of SCM_{FSA} holds Initialize(Initialize(<math>s)) = Initialize(<math>s).
- (16) For every state s of \mathbf{SCM}_{FSA} and for every macro instruction I holds $s+\cdot(\operatorname{Initialized}(I)+\cdot\operatorname{Start-At}(\operatorname{insloc}(0))) = \operatorname{Initialize}(s)+\cdot(I+\cdot\operatorname{Start-At}(\operatorname{insloc}(0))).$
- (17) For every state s of SCM_{FSA} and for every macro instruction I holds IExec(I, s) = IExec(I, Initialize(s)).
- (18) For every state s of \mathbf{SCM}_{FSA} and for every macro instruction I such that $s(\operatorname{intloc}(0)) = 1$ holds $s + (I + \cdot \operatorname{Start-At}(\operatorname{insloc}(0))) = s + \cdot \operatorname{Initialized}(I)$.
- (19) For every macro instruction *I* holds $I+\cdot$ Start-At(insloc(0)) \subseteq Initialized(*I*).
- (20) For every instruction-location l of \mathbf{SCM}_{FSA} and for every macro instruction l holds $l \in \text{dom } I$ iff $l \in \text{dom Initialized}(I)$.
- (21) For every state s of \mathbf{SCM}_{FSA} and for every macro instruction I holds I initialized(I) is closed on s iff I is closed on I initialize(s).
- (22) For every state s of \mathbf{SCM}_{FSA} and for every macro instruction I holds Initialized(I) is halting on s iff I is halting on Initialize(s).
- (23) For every macro instruction I such that for every state s of \mathbf{SCM}_{FSA} holds I is halting on Initialize(s) holds Initialized(I) is halting.
- (24) For every macro instruction I such that for every state s of \mathbf{SCM}_{FSA} holds $\mathbf{Initialized}(I)$ is halting on s holds $\mathbf{Initialized}(I)$ is halting.
- (25) For every macro instruction I holds ProgramPart(Initialized(I)) = I.
- (26) Let *s* be a state of \mathbf{SCM}_{FSA} , *I* be a macro instruction, *l* be an instruction-location of \mathbf{SCM}_{FSA} , and *x* be a set. If $x \in \text{dom } I$, then $I(x) = (s + \cdot (I + \cdot \text{Start-At}(l)))(x)$.
- (27) For every state s of **SCM**_{FSA} such that s(intloc(0)) = 1 holds Initialize(s) \(\tau(\text{Int-Locations} \cup \text{FinSeq-Locations}) = s\(\text{[Int-Locations} \cup \text{FinSeq-Locations}).
- (28) Let s be a state of \mathbf{SCM}_{FSA} , I be a macro instruction, a be an integer location, and l be an instruction-location of \mathbf{SCM}_{FSA} . Then $(s+\cdot(I+\cdot\operatorname{Start-At}(l)))(a)=s(a)$.
- (29) For every programmed finite partial state I of \mathbf{SCM}_{FSA} and for every instruction-location l of \mathbf{SCM}_{FSA} holds $\mathbf{IC}_{\mathbf{SCM}_{FSA}} \in \text{dom}(I + \cdot \text{Start-At}(l))$.
- (30) For every programmed finite partial state I of \mathbf{SCM}_{FSA} and for every instruction-location l of \mathbf{SCM}_{FSA} holds $(I + \cdot \operatorname{Start-At}(l))(\mathbf{IC}_{\mathbf{SCM}_{FSA}}) = l$.
- (31) Let s be a state of \mathbf{SCM}_{FSA} , P be a finite partial state of \mathbf{SCM}_{FSA} , and l be an instruction-location of \mathbf{SCM}_{FSA} . Then $\mathbf{IC}_{s+\cdot(P+\cdot \text{Start-At}(l))} = l$.
- (32) For every state s of \mathbf{SCM}_{FSA} and for every instruction i of \mathbf{SCM}_{FSA} such that $\mathsf{InsCode}(i) \in \{0,6,7,8\}$ holds $\mathsf{Exec}(i,s) \upharpoonright (\mathsf{Int-Locations} \cup \mathsf{FinSeq-Locations}) = s \upharpoonright (\mathsf{Int-Locations} \cup \mathsf{FinSeq-Locations})$.
- (33) Let s_1 , s_2 be states of **SCM**_{FSA}. Suppose that
 - (i) $s_1(\operatorname{intloc}(0)) = s_2(\operatorname{intloc}(0)),$
- (ii) for every read-write integer location a holds $s_1(a) = s_2(a)$, and
- (iii) for every finite sequence location f holds $s_1(f) = s_2(f)$. Then $s_1 \upharpoonright (\text{Int-Locations} \cup \text{FinSeq-Locations}) = s_2 \upharpoonright (\text{Int-Locations} \cup \text{FinSeq-Locations})$.

- (34) For every state s of \mathbf{SCM}_{FSA} and for every programmed finite partial state P of \mathbf{SCM}_{FSA} holds $(s+P) \upharpoonright (Int\text{-Locations} \cup FinSeq\text{-Locations}) = s \upharpoonright (Int\text{-Locations} \cup FinSeq\text{-Locations})$.
- (35) For all states s, s_3 of \mathbf{SCM}_{FSA} holds $(s+\cdot s_3)$ the instruction locations of \mathbf{SCM}_{FSA} (Int-Locations \cup FinSeq-Locations).
- (36) For every state s of SCM_{FSA} holds Initialize(s) the instruction locations of $SCM_{FSA} = s$ the instruction locations of SCM_{FSA} .
- (37) Let s, s_3 be states of \mathbf{SCM}_{FSA} and I be a macro instruction. Then $(s_3 + \cdot s)$ the instruction locations of \mathbf{SCM}_{FSA} (Int-Locations \cup FinSeq-Locations) = s_3 (Int-Locations \cup FinSeq-Locations).
- (38) For every state s of \mathbf{SCM}_{FSA} holds $\mathbf{IExec}(\mathbf{Stop}_{\mathbf{SCM}_{FSA}}, s) = \mathbf{Initialize}(s) + \cdot \mathbf{Start} \mathbf{At}(\mathbf{insloc}(0))$.
- (39) For every state s of SCM_{FSA} and for every macro instruction I such that I is closed on s holds $insloc(0) \in dom I$.
- (40) For every state s of \mathbf{SCM}_{FSA} and for every paraclosed macro instruction I holds insloc $(0) \in \text{dom } I$.
- (41) For every instruction i of SCM_{FSA} holds $rngMacro(i) = \{i, halt_{SCM_{FSA}}\}$.
- (42) Let s_1 , s_2 be states of \mathbf{SCM}_{FSA} and I be a macro instruction. Suppose I is closed on s_1 and $I+\cdot Start-At(insloc(0)) \subseteq s_1$. Let n be a natural number. Suppose ProgramPart(Relocated(I,n)) $\subseteq s_2$ and $\mathbf{IC}_{(s_2)} = insloc(n)$ and $s_1 \upharpoonright (Int-Locations \cup FinSeq-Locations) = s_2 \upharpoonright (Int-Locations \cup FinSeq-Locations)$. Let i be a natural number. Then $\mathbf{IC}_{(Computation(s_1))(i)} + n = \mathbf{IC}_{(Computation(s_2))(i)}$ and $\mathbf{IncAddr}(CurInstr((Computation(s_1))(i)), n) = CurInstr((Computation(s_2))(i))$ and $(Computation(s_1))(i) \upharpoonright (Int-Locations \cup FinSeq-Locations) = (Computation(s_2))(i) \upharpoonright (Int-Locations \cup FinSeq-Locations)$.
- (43) Let s_1 , s_2 be states of \mathbf{SCM}_{FSA} and I be a macro instruction. Suppose I is closed on s_1 and $I+\cdot Start-At(insloc(0)) \subseteq s_1$ and $I+\cdot Start-At(insloc(0)) \subseteq s_2$ and $s_1 \upharpoonright (Int-Locations \cup FinSeq-Locations) = s_2 \upharpoonright (Int-Locations \cup FinSeq-Locations)$. Let i be a natural number. Then $\mathbf{IC}_{(Computation(s_1))(i)} = \mathbf{IC}_{(Computation(s_2))(i)}$ and $\mathbf{CurInstr}((Computation(s_2))(i))$ and $(Computation(s_1))(i) \upharpoonright (Int-Locations \cup FinSeq-Locations) = (Computation(s_2))(i) \upharpoonright (Int-Locations \cup FinSeq-Locations)$.
- (44) Let s_1 , s_2 be states of \mathbf{SCM}_{FSA} and I be a macro instruction. Suppose I is closed on s_1 and halting on s_1 and $I+\cdot\operatorname{Start-At}(\operatorname{insloc}(0))\subseteq s_1$ and $I+\cdot\operatorname{Start-At}(\operatorname{insloc}(0))\subseteq s_2$ and $s_1\upharpoonright(\operatorname{Int-Locations}\cup\operatorname{FinSeq-Locations})=s_2\upharpoonright(\operatorname{Int-Locations}\cup\operatorname{FinSeq-Locations})$. Then $\operatorname{LifeSpan}(s_1)=\operatorname{LifeSpan}(s_2)$.
- (45) Let s_1 , s_2 be states of **SCM**_{FSA} and I be a macro instruction. Suppose that
 - (i) $s_1(\operatorname{intloc}(0)) = 1$,
- (ii) I is closed on s_1 and halting on s_1 ,
- (iii) for every read-write integer location a holds $s_1(a) = s_2(a)$, and
- (iv) for every finite sequence location f holds $s_1(f) = s_2(f)$. Then $\text{IExec}(I, s_1) \upharpoonright (\text{Int-Locations} \cup \text{FinSeq-Locations}) = \text{IExec}(I, s_2) \upharpoonright (\text{Int-Locations} \cup \text{FinSeq-Locations})$.
- (46) Let s_1 , s_2 be states of \mathbf{SCM}_{FSA} and I be a macro instruction. Suppose $s_1(\text{intloc}(0)) = 1$ and I is closed on s_1 and halting on s_1 and $s_1 \upharpoonright (\text{Int-Locations} \cup \text{FinSeq-Locations}) = s_2 \upharpoonright (\text{Int-Locations} \cup \text{FinSeq-Locations})$. Then $\text{IExec}(I, s_1) \upharpoonright (\text{Int-Locations} \cup \text{FinSeq-Locations}) = \text{IExec}(I, s_2) \upharpoonright (\text{Int-Locations} \cup \text{FinSeq-Locations})$.

Let I be a macro instruction. One can check that Initialized(I) is initial. Next we state a number of propositions:

(47) Let s be a state of \mathbf{SCM}_{FSA} and I be a macro instruction. Then Initialized(I) is pseudoclosed on s if and only if I is pseudoclosed on Initialize(s).

- (48) For every state s of \mathbf{SCM}_{FSA} and for every macro instruction I such that I is pseudo-closed on Initialize(s) holds pseudo LifeSpan(s, Initialized(I)) = pseudo LifeSpan(Initialize(s), I).
- (49) For every state s of \mathbf{SCM}_{FSA} and for every macro instruction I such that I initialized(I) is pseudo-closed on s holds pseudo LifeSpan(s,Initialized(I)) = pseudo <math>LifeSpan(Initialize(s),I).
- (50) Let *s* be a state of \mathbf{SCM}_{FSA} and *I* be an initial finite partial state of \mathbf{SCM}_{FSA} . Suppose *I* is pseudo-closed on *s*. Then *I* is pseudo-closed on $s+\cdot(I+\cdot\operatorname{Start-At}(\operatorname{insloc}(0)))$ and pseudo LifeSpan($s+\cdot(I+\cdot\operatorname{Start-At}(\operatorname{insloc}(0))),I)$.
- (51) Let s_1 , s_2 be states of \mathbf{SCM}_{FSA} and I be a macro instruction. Suppose $I+\cdot\operatorname{Start-At}(\operatorname{insloc}(0))\subseteq s_1$ and I is pseudo-closed on s_1 . Let n be a natural number. Suppose ProgramPart(Relocated(I,n)) $\subseteq s_2$ and $\mathbf{IC}_{(s_2)}=\operatorname{insloc}(n)$ and $s_1\upharpoonright(\operatorname{Int-Locations}\cup\operatorname{FinSeq-Locations})=s_2\upharpoonright(\operatorname{Int-Locations}\cup\operatorname{FinSeq-Locations})$. Then
 - i) for every natural number i such that $i < \text{pseudo} \text{LifeSpan}(s_1, I) \text{ holds IncAddr}(\text{CurInstr}((\text{Computation}(s_1))(i)), n) \text{ CurInstr}((\text{Computation}(s_2))(i)), \text{ and } i$
 - (ii) for every natural number i such that $i \le \text{pseudo} \text{LifeSpan}(s_1, I) \text{ holds } \mathbf{IC}_{(\text{Computation}(s_1))(i)} + n = \mathbf{IC}_{(\text{Computation}(s_2))(i)}$ and $(\text{Computation}(s_1))(i) \upharpoonright (\text{Int-Locations} \cup \text{FinSeq-Locations}) = (\text{Computation}(s_2))(i) \upharpoonright (\text{Int-Locations} \cup \text{FinSeq-Locations}).$
- (52) Let s_1 , s_2 be states of **SCM**_{FSA} and I be a macro instruction. Suppose $s_1 \upharpoonright (\text{Int-Locations} \cup \text{FinSeq-Locations}) = s_2 \upharpoonright (\text{Int-Locations} \cup \text{FinSeq-Locations})$. If I is pseudo-closed on s_1 , then I is pseudo-closed on s_2 .
- (53) Let s be a state of \mathbf{SCM}_{FSA} and I be a macro instruction. Suppose s(intloc(0)) = 1. Then I is pseudo-closed on s if and only if I is pseudo-closed on Initialize(s).
- (54) Let a be an integer location and I, J be macro instructions. Then $\operatorname{insloc}(0) \in \operatorname{dom}(\operatorname{if} a = 0 \operatorname{then} I \operatorname{else} J)$ and $\operatorname{insloc}(1) \in \operatorname{dom}(\operatorname{if} a = 0 \operatorname{then} I \operatorname{else} J)$ and $\operatorname{insloc}(0) \in \operatorname{dom}(\operatorname{if} a > 0 \operatorname{then} I \operatorname{else} J)$.
- (55) Let a be an integer location and I, J be macro instructions. Then (if a = 0 then I else J)(insloc(0)) = if a = 0 goto insloc(card J + 3) and (if a = 0 then I else J)(insloc(1)) = goto insloc(2) and (if a > 0 then I else J)(insloc(0)) = if a > 0 goto insloc(card J + 3) and (if a > 0 then I else J)(insloc(1)) = goto insloc(2).
- (56) Let a be an integer location, I, J be macro instructions, and n be a natural number. If $n < \operatorname{card} I + \operatorname{card} J + 3$, then $\operatorname{insloc}(n) \in \operatorname{dom}(\operatorname{if} a = 0 \operatorname{then} I \operatorname{else} J)$ and $(\operatorname{if} a = 0 \operatorname{then} I \operatorname{else} J)(\operatorname{insloc}(n)) \neq \operatorname{halt}_{\operatorname{SCM}_{\operatorname{FSA}}}$.
- (57) Let a be an integer location, I, J be macro instructions, and n be a natural number. If $n < \operatorname{card} I + \operatorname{card} J + 3$, then $\operatorname{insloc}(n) \in \operatorname{dom}(\operatorname{if} a > 0 \operatorname{then} I \operatorname{else} J)$ and $(\operatorname{if} a > 0 \operatorname{then} I \operatorname{else} J)(\operatorname{insloc}(n)) \neq \operatorname{halt}_{\operatorname{SCM}_{\operatorname{FSA}}}$.
- (58) Let s be a state of \mathbf{SCM}_{FSA} and I be a macro instruction. Suppose Directed(I) is pseudoclosed on s. Then
 - (i) I; Stop_{SCM_{ESA}} is closed on s,
- (ii) I; Stop_{SCM_{FSA}} is halting on s,
- $(iii) \quad \text{LifeSpan}(s + \cdot ((I; \text{Stop}_{\text{SCM}_{\text{ESA}}}) + \cdot \text{Start-At}(\text{insloc}(0)))) = \text{pseudo} \text{LifeSpan}(s, \text{Directed}(I)),$
- (iv) for every natural number n such that n < pseudo LifeSpan(s, Directed(I)) holds $\mathbf{IC}_{(\text{Computation}(s+\cdot(I+\cdot \text{Start-At}(\text{insloc}(0)))))(n)} = \mathbf{IC}_{(\text{Computation}(s+\cdot(I; \text{Stop}_{\text{SCM}_{\text{FSA}}})+\cdot \text{Start-At}(\text{insloc}(0))))(n))}$ and
- (v) for every natural number n such that $n \leq \text{pseudo} \text{LifeSpan}(s, \text{Directed}(I))$ holds $(\text{Computation}(s+\cdot(I+\cdot \text{Start-At}(\text{insloc}(0)))))(n) \upharpoonright D = (\text{Computation}(s+\cdot(I; \text{Stop}_{\text{SCM}_{\text{FSA}}})+\cdot \text{Start-At}(\text{insloc}(0))))(n) \upharpoonright D = (\text{Computation}(s+\cdot(I; \text{Stop}_{\text{SCM}_{\text{FSA}}})+\cdot \text{Start-At}(\text{insloc}(0)))(n) \upharpoonright D = (\text{Computation}(s+\cdot(I; \text{Stop}_{\text{SCM}_{\text{FSA}}})+\cdot \text{Start-At}(\text{insloc}(0)))(n) \upharpoonright D = (\text{Computation}(s+\cdot(I; \text{Stop}_{\text{SCM}_{\text{FSA}}})+\cdot \text{Start-At}(\text{insloc}(0)))(n) \upharpoonright D = (\text{Co$

- (59) Let s be a state of \mathbf{SCM}_{FSA} and I be a macro instruction. If $\mathsf{Directed}(I)$ is pseudo-closed on s, then $\mathsf{Result}(s + \cdot ((I; \mathsf{Stop}_{\mathsf{SCM}_{FSA}}) + \cdot \mathsf{Start} \mathsf{At}(\mathsf{insloc}(0)))) \upharpoonright D = (\mathsf{Computation}(s + \cdot (I + \cdot \mathsf{Start} \mathsf{At}(\mathsf{insloc}(0)))))(\mathsf{pseudo} \mathsf{LifeSpan}(s, \mathsf{Directed}(I))) \upharpoonright D$, where $D = \mathsf{Int} \mathsf{Locations} \cup \mathsf{FinSeq} \mathsf{Locations}$.
- (60) Let s be a state of \mathbf{SCM}_{FSA} and I be a macro instruction. If $s(\mathsf{intloc}(0)) = 1$ and $\mathsf{Directed}(I)$ is pseudo-closed on s, then $\mathsf{IExec}(I; \mathsf{Stop}_{\mathsf{SCM}_{FSA}}, s) \upharpoonright D = (\mathsf{Computation}(s + \cdot (I + \cdot \mathsf{Start-At}(\mathsf{insloc}(0))))))$ (pseudo LifeS) where $D = \mathsf{Int-Locations} \cup \mathsf{FinSeq-Locations}$.
- (61) For all macro instructions I, J and for every integer location a holds (**if** a = 0 **then** I **else** J)(insloc(card I + card J + 3)) = **halt**_{SCMFSA}.
- (62) For all macro instructions I, J and for every integer location a holds (**if** a > 0 **then** I **else** J)(insloc(card I + card J + 3)) = **halt**_{SCM_{ESA}}.
- (63) For all macro instructions I, J and for every integer location a holds (**if** a = 0 **then** I **else** J)(insloc(card J + 2)) = goto insloc(card J + 2).
- (64) For all macro instructions I, J and for every integer location a holds (**if** a > 0 **then** I **else** J)(insloc(card J + 2)) = goto insloc(card J + 2).
- (65) For every macro instruction J and for every integer location a holds (**if** a = 0 **then** Goto(insloc(2)) **else** J)(insloc(card J + 3)) = goto insloc(card J + 5).
- (66) Let s be a state of \mathbf{SCM}_{FSA} , I, J be macro instructions, and a be a read-write integer location. Suppose s(a) = 0 and $\mathsf{Directed}(I)$ is pseudo-closed on s. Then **if** a = 0 **then** I **else** J is halting on s and **if** a = 0 **then** I **else** J is closed on s and $\mathsf{LifeSpan}(s+\cdot((\mathbf{if}\ a = 0\ \mathbf{then}\ I\ \mathbf{else}\ J)+\cdot\mathsf{Start-At}(\mathsf{insloc}(0)))) = \mathsf{LifeSpan}(s+\cdot((I;\mathsf{Stop}_{\mathsf{SCM}_{FSA}})+\cdot\mathsf{Start-At}(\mathsf{insloc}(0))))+1.$
- (67) Let s be a state of \mathbf{SCM}_{FSA} , I, J be macro instructions, and a be a read-write integer location. Suppose $s(\operatorname{intloc}(0)) = 1$ and s(a) = 0 and $\operatorname{Directed}(I)$ is pseudoclosed on s. Then $\operatorname{IExec}(\operatorname{if} a = 0 \operatorname{then} I \operatorname{else} J, s) \upharpoonright (\operatorname{Int-Locations} \cup \operatorname{FinSeq-Locations}) = \operatorname{IExec}(I; \operatorname{Stop}_{\operatorname{SCM}_{FSA}}, s) \upharpoonright (\operatorname{Int-Locations} \cup \operatorname{FinSeq-Locations}).$
- (68) Let s be a state of $\mathbf{SCM}_{\mathrm{FSA}}$, I, J be macro instructions, and a be a read-write integer location. Suppose s(a) > 0 and $\mathrm{Directed}(I)$ is pseudo-closed on s. Then $\mathrm{if}\ a > 0$ then I else J is halting on s and $\mathrm{if}\ a > 0$ then I else J is closed on s and $\mathrm{LifeSpan}(s+\cdot((\mathrm{if}\ a > 0$ then I else $J)+\cdot\mathrm{Start-At}(\mathrm{insloc}(0)))) = \mathrm{LifeSpan}(s+\cdot((I;\mathrm{Stop}_{\mathrm{SCM}_{\mathrm{FSA}}})+\cdot\mathrm{Start-At}(\mathrm{insloc}(0))))+1.$
- (69) Let s be a state of \mathbf{SCM}_{FSA} , I, J be macro instructions, and a be a read-write integer location. Suppose $s(\operatorname{intloc}(0)) = 1$ and s(a) > 0 and $\operatorname{Directed}(I)$ is pseudoclosed on s. Then $\operatorname{IExec}(\operatorname{if} a > 0 \operatorname{then} I \operatorname{else} J, s) \upharpoonright (\operatorname{Int-Locations} \cup \operatorname{FinSeq-Locations}) = \operatorname{IExec}(I; \operatorname{Stop}_{\operatorname{SCM}_{FSA}}, s) \upharpoonright (\operatorname{Int-Locations} \cup \operatorname{FinSeq-Locations}).$
- (70) Let s be a state of $\mathbf{SCM}_{\mathrm{FSA}}$, I, J be macro instructions, and a be a read-write integer location. Suppose $s(a) \neq 0$ and $\mathrm{Directed}(J)$ is pseudo-closed on s. Then **if** a=0 **then** I **else** J is halting on s and **if** a=0 **then** I **else** J is closed on s and $\mathrm{LifeSpan}(s+\cdot((\mathbf{if}\ a=0\ \mathbf{then}\ I\ \mathbf{else}\ J)+\cdot\mathrm{Start-At}(\mathrm{insloc}(0))))=\mathrm{LifeSpan}(s+\cdot((J;\mathrm{Stop}_{\mathrm{SCM}_{\mathrm{FSA}}})+\cdot\mathrm{Start-At}(\mathrm{insloc}(0))))+3.$
- (71) Let s be a state of $\mathbf{SCM}_{\mathrm{FSA}}$, I, J be macro instructions, and a be a read-write integer location. Suppose $s(\mathrm{intloc}(0)) = 1$ and $s(a) \neq 0$ and $\mathrm{Directed}(J)$ is pseudoclosed on s. Then $\mathrm{IExec}(\mathbf{if}\ a = 0\ \mathbf{then}\ I\ \mathbf{else}\ J, s) \upharpoonright (\mathrm{Int-Locations} \cup \mathrm{FinSeq-Locations}) = \mathrm{IExec}(J; \mathrm{Stop}_{\mathrm{SCM}_{\mathrm{FSA}}}, s) \upharpoonright (\mathrm{Int-Locations} \cup \mathrm{FinSeq-Locations}).$
- (72) Let s be a state of $\mathbf{SCM}_{\mathrm{FSA}}$, I, J be macro instructions, and a be a read-write integer location. Suppose $s(a) \leq 0$ and $\mathrm{Directed}(J)$ is pseudo-closed on s. Then **if** a > 0 **then** I **else** J is halting on s and **if** a > 0 **then** I **else** J is closed on s and $\mathrm{LifeSpan}(s+\cdot((\mathbf{if}\ a>0\ \mathbf{then}\ I\ \mathbf{else}\ J)+\cdot\mathrm{Start-At}(\mathrm{insloc}(0)))) = \mathrm{LifeSpan}(s+\cdot((J;\mathrm{Stop}_{\mathrm{SCM}_{\mathrm{FSA}}})+\cdot\mathrm{Start-At}(\mathrm{insloc}(0))))+3.$

- (73) Let s be a state of $\mathbf{SCM}_{\mathrm{FSA}}$, I, J be macro instructions, and a be a read-write integer location. Suppose $s(\mathrm{intloc}(0)) = 1$ and $s(a) \leq 0$ and $\mathrm{Directed}(J)$ is pseudoclosed on s. Then $\mathrm{IExec}(\mathbf{if}\,a > 0 \,\mathbf{then}\,I \,\mathbf{else}\,J, s) \upharpoonright (\mathrm{Int-Locations} \cup \mathrm{FinSeq-Locations}) = \mathrm{IExec}(J; \,\mathrm{Stop}_{\mathrm{SCM}_{\mathrm{FSA}}}, s) \upharpoonright (\mathrm{Int-Locations} \cup \mathrm{FinSeq-Locations}).$
- (74) Let s be a state of \mathbf{SCM}_{FSA} , I, J be macro instructions, and a be a read-write integer location. Suppose $\mathsf{Directed}(I)$ is $\mathsf{pseudo-closed}$ on s and $\mathsf{Directed}(J)$ is $\mathsf{pseudo-closed}$ on s. Then **if** a = 0 **then** I **else** J is closed on s and **if** a = 0 **then** I **else** J is halting on s.
- (75) Let s be a state of **SCM**_{FSA}, I, J be macro instructions, and a be a read-write integer location. Suppose Directed(I) is pseudo-closed on s and Directed(J) is pseudo-closed on s. Then if a > 0 then I else J is closed on s and if a > 0 then I else J is halting on s.
- (76) Let I be a macro instruction and a be an integer location. If I does not destroy a, then Directed(I) does not destroy a.
- (77) Let i be an instruction of \mathbf{SCM}_{FSA} and a be an integer location. If i does not destroy a, then Macro(i) does not destroy a.
- (78) For every integer location a holds **halt**_{SCM_{ESA} does not refer a.}
- (79) For all integer locations a, b, c such that $a \neq b$ holds AddTo(c,b) does not refer a.
- (80) Let i be an instruction of \mathbf{SCM}_{FSA} and a be an integer location. If i does not refer a, then $\mathsf{Macro}(i)$ does not refer a.
- (81) Let *I*, *J* be macro instructions and *a* be an integer location. Suppose *I* does not destroy *a* and *J* does not destroy *a*. Then *I*; *J* does not destroy *a*.
- (82) Let J be a macro instruction, i be an instruction of SCM_{FSA} , and a be an integer location. Suppose i does not destroy a and J does not destroy a. Then i; J does not destroy a.
- (83) Let I be a macro instruction, j be an instruction of \mathbf{SCM}_{FSA} , and a be an integer location. Suppose I does not destroy a and j does not destroy a. Then I; j does not destroy a.
- (84) Let i, j be instructions of \mathbf{SCM}_{FSA} and a be an integer location. Suppose i does not destroy a and j does not destroy a. Then i; j does not destroy a.
- (85) For every integer location a holds $Stop_{SCM_{FSA}}$ does not destroy a.
- (86) For every integer location a and for every instruction-location l of \mathbf{SCM}_{FSA} holds $\mathsf{Goto}(l)$ does not destroy a.
- (87) Let s be a state of \mathbf{SCM}_{FSA} and I be a macro instruction. Suppose I is halting on Initialize(s). Then
 - Initialize(s). Then

 (i) for every read-write integer location a holds (IExec(I, s))(a) = (Computation(Initialize(s)+ \cdot (I+ \cdot Start-At(insloc(0)))
- (ii) for every finite sequence location f holds $(\text{IExec}(I,s))(f) = (\text{Computation}(\text{Initialize}(s) + \cdot (I + \cdot \text{Start-At}(\text{insloc}(0)))))$
- (88) Let *s* be a state of \mathbf{SCM}_{FSA} , *I* be a parahalting macro instruction, and *a* be a read-write integer location. Then $(\mathbf{IExec}(I,s))(a) = (\mathbf{Computation}(\mathbf{Initialize}(s) + \cdot (I + \cdot \mathbf{Start} \mathbf{At}(\mathbf{insloc}(0)))))(\mathbf{LifeSpan}(\mathbf{Initialize}(s) + \cdot (I + \cdot \mathbf{Start} \mathbf{At}(\mathbf{insloc}(0))))))$
- (89) Let s be a state of \mathbf{SCM}_{FSA} , I be a macro instruction, a be an integer location, and k be a natural number. Suppose I is closed on Initialize(s) and halting on Initialize(s) and I does not destroy a. Then $(IExec(I,s))(a) = (Computation(Initialize(s)+\cdot(I+\cdot Start-At(insloc(0)))))(k)(a)$.
- (90) Let s be a state of \mathbf{SCM}_{FSA} , I be a parahalting macro instruction, a be an integer location, and k be a natural number. If I does not destroy a, then $(\mathrm{IExec}(I,s))(a) = (\mathrm{Computation}(\mathrm{Initialize}(s) + \cdot (I + \cdot \mathrm{Start-At}(\mathrm{insloc}(0)))))(k)(a)$.

- (91) Let s be a state of **SCM**_{FSA}, I be a parahalting macro instruction, and a be an integer location. If I does not destroy a, then (IExec(I,s))(a) = (Initialize(s))(a).
- (92) Let s be a state of \mathbf{SCM}_{FSA} and I be a keeping 0 macro instruction. Suppose I is halting on Initialize(s). Then (IExec(I,s))(intloc(0)) = 1 and for every natural number k holds $(Computation(Initialize(s)+\cdot(I+\cdot Start-At(insloc(0)))))(k)(intloc(0)) = 1$.
- (93) Let s be a state of \mathbf{SCM}_{FSA} , I be a macro instruction, and a be an integer location. Suppose I does not destroy a. Let k be a natural number. If $\mathbf{IC}_{(Computation(s+\cdot(I+\cdot Start-At(insloc(0)))))(k)} \in \text{dom } I$, then $(Computation(s+\cdot(I+\cdot Start-At(insloc(0)))))(k+1)(a) = (Computation(s+\cdot(I+\cdot Start-At(insloc(0))))(k+1)(a) = (Computation(s+\cdot(I+\cdot Start-At(insloc(0)))(a) = (Computation(s$
- (94) Let s be a state of \mathbf{SCM}_{FSA} , I be a macro instruction, and a be an integer location. Suppose I does not destroy a. Let m be a natural number. Suppose that for every natural number n such that n < m holds $\mathbf{IC}_{(Computation(s+\cdot(I+\cdot Start-At(insloc(0)))))(n)} \in \text{dom } I$. Let n be a natural number. If $n \le m$, then $(Computation(s+\cdot(I+\cdot Start-At(insloc(0)))))(n)(a) = s(a)$.
- (95) Let s be a state of \mathbf{SCM}_{FSA} , I be a good macro instruction, and m be a natural number. Suppose that for every natural number n such that n < m holds $\mathbf{IC}_{(Computation(s+\cdot(I+\cdot Start-At(insloc(0)))))(n)} \in \text{dom } I$. Let n be a natural number. If $n \le m$, then $(Computation(s+\cdot(I+\cdot Start-At(insloc(0)))))(n)(intloc(0)) = s(intloc(0))$.
- (96) Let s be a state of \mathbf{SCM}_{FSA} and I be a good macro instruction. Suppose I is halting on Initialize(s) and closed on Initialize(s). Then $(\mathrm{IExec}(I,s))(\mathrm{intloc}(0)) = 1$ and for every natural number k holds $(\mathrm{Computation}(\mathrm{Initialize}(s) + \cdot (I + \cdot \mathrm{Start-At}(\mathrm{insloc}(0)))))(k)(\mathrm{intloc}(0)) = 1$.
- (97) Let s be a state of \mathbf{SCM}_{FSA} and I be a good macro instruction. Suppose I is closed on s. Let k be a natural number. Then $(\text{Computation}(s+\cdot(I+\cdot\text{Start-At}(\text{insloc}(0)))))(k)(\text{intloc}(0)) = s(\text{intloc}(0))$.
- (98) Let s be a state of \mathbf{SCM}_{FSA} , I be a keeping 0 parahalting macro instruction, and a be a read-write integer location. Suppose I does not destroy a. Then (Computation(Initialize(s)+·((I; SubFrom(a, intloc(0)))+·Start-At(insloc(0))))(LifeSpan(Initialize(s)+·((I; SubFrom(a) 1.
- (99) For every instruction i of \mathbf{SCM}_{FSA} such that i does not destroy intloc(0) holds $\mathrm{Macro}(i)$ is good.
- (100) Let s_1 , s_2 be states of **SCM**_{FSA} and I be a macro instruction. Suppose I is closed on s_1 and halting on s_1 and $s_1 \upharpoonright D = s_2 \upharpoonright D$. Let k be a natural number. Then
 - (i) (Computation($s_1 + \cdot (I + \cdot \text{Start-At}(\text{insloc}(0))))(k)$ and (Computation($s_2 + \cdot (I + \cdot \text{Start-At}(\text{insloc}(0))))(k)$ are equal outside the instruction locations of **SCM**_{ESA}, and
 - (ii) CurInstr((Computation($s_1 + \cdot (I + \cdot \text{Start-At}(\text{insloc}(0)))))(k)) = \text{CurInstr}((\text{Computation}(s_2 + \cdot (I + \cdot \text{Start-At}(\text{insloc}(0)))))(k))) = \text{CurInstr}((\text{Computation}(s_2 + \cdot (I + \cdot \text{Start-At}(\text{insloc}(0)))))(k)) = \text{CurInstr}((\text{Computation}(s_2 + \cdot (I + \cdot \text{Start-At}(\text{insloc}(0)))))(k)) = \text{CurInstr}((\text{Computation}(s_2 + \cdot (I + \cdot \text{Start-At}(\text{insloc}(0))))(k)))(k)) = \text{CurInstr}((\text{Computation}(s_2 + \cdot (I + \cdot \text{Start-At}(\text{insloc}(0))))(k)) = \text{CurInstr}((\text{Computation}(s_2 + \cdot (I + \cdot \text{Start-At}(\text{insloc}(0))))(k)) = \text{CurInstr}((\text{Computation}(s_2 + \cdot (I + \cdot \text{Start-At}(\text{insloc}(0))))(k)) = \text{CurInstr}((\text{Computation}(s_2 + \cdot (I + \cdot \text{Start-At}(\text{insloc}(0)))(k))(k)) = \text{CurInstr}((\text{Computation}(s_2 + \cdot (I + \cdot \text{Start-At}(\text{insloc}(0)))(k))(k)) = \text{CurInstr}((\text{Computation}(s_2 + \cdot (I + \cdot \text{Start-At}(\text{insloc}(0)))(k))(k)) = \text{CurInstr}((\text{Computation}(s_2 + \cdot (I + \cdot \text{Start-At}(\text{insloc}(0)))(k))$
- (101) Let s_1 , s_2 be states of \mathbf{SCM}_{FSA} and I be a macro instruction. Suppose I is closed on s_1 and halting on s_1 and $s_1 \upharpoonright D = s_2 \upharpoonright D$. Then LifeSpan $(s_1 + \cdot (I + \cdot \text{Start-At}(\text{insloc}(0)))) = \text{LifeSpan}(s_2 + \cdot (I + \cdot \text{Start-At}(\text{insloc}(0))))$ and Result $(s_1 + \cdot (I + \cdot \text{Start-At}(\text{insloc}(0))))$ and Result $(s_2 + \cdot (I + \cdot \text{Start-At}(\text{insloc}(0))))$ are equal outside the instruction locations of \mathbf{SCM}_{FSA} , where $D = \text{Int-Locations} \cup \text{FinSeq-Locations}$.
- $(103)^3$ Let s_1 , s_2 be states of **SCM**_{FSA} and I be a macro instruction. Suppose that
 - (i) I is closed on s_1 and halting on s_1 ,

where $D = \text{Int-Locations} \cup \text{FinSeq-Locations}$.

- (ii) $I + \cdot \text{Start-At}(\text{insloc}(0)) \subseteq s_1$,
- (iii) $I + \cdot \text{Start-At}(\text{insloc}(0)) \subseteq s_2$, and
- (iv) there exists a natural number k such that $(Computation(s_1))(k)$ and s_2 are equal outside the instruction locations of \mathbf{SCM}_{FSA} .
 - Then $Result(s_1)$ and $Result(s_2)$ are equal outside the instruction locations of **SCM**_{FSA}.

³ The proposition (102) has been removed.

2. The loop Macroinstruction

Let I be a macro instruction and let k be a natural number. One can check that IncAddr(I,k) is initial and programmed.

Let *I* be a macro instruction. The functor loop *I* yielding a halt-free macro instruction is defined by:

(Def. 4)⁴ loop $I = (id_{the instructions of SCM_{FSA}} + \cdot (halt_{SCM_{FSA}} \mapsto goto insloc(0))) \cdot I$.

One can prove the following two propositions:

- (104) For every macro instruction I holds loop I = Directed(I, insloc(0)).
- (105) Let I be a macro instruction and a be an integer location. If I does not destroy a, then loop I does not destroy a.

Let I be a good macro instruction. Note that loop I is good. We now state several propositions:

- (106) For every macro instruction I holds dom loop I = dom I.
- (107) For every macro instruction I holds $halt_{SCM_{FSA}} \notin rng loop I$.
- (108) For every macro instruction I and for every set x such that $I(x) \neq \mathbf{halt_{SCM_{FSA}}}$ holds (loop I)(x) = I(x).
- (109) Let s be a state of \mathbf{SCM}_{FSA} and I be a macro instruction. Suppose I is closed on s and halting on s. Let m be a natural number. Suppose $m \le \text{LifeSpan}(s + \cdot (I + \cdot \text{Start-At}(\text{insloc}(0))))$. Then $(\text{Computation}(s + \cdot (I + \cdot \text{Start-At}(\text{insloc}(0)))))(m)$ and $(\text{Computation}(s + \cdot (\text{loop } I + \cdot \text{Start-At}(\text{insloc}(0)))))(m)$ are equal outside the instruction locations of \mathbf{SCM}_{FSA} .
- (110) Let s be a state of \mathbf{SCM}_{FSA} and I be a macro instruction. Suppose I is closed on s and halting on s. Let m be a natural number. If $m < \text{LifeSpan}(s + \cdot (I + \cdot \text{Start-At}(\text{insloc}(0))))$, then $\text{CurInstr}((\text{Computation}(s + \cdot (I + \cdot \text{Start-At}(\text{insloc}(0)))))(m)) = \text{CurInstr}((\text{Computation}(s + \cdot (\text{loop}I + \cdot \text{Start-At}(\text{insloc}(0)))))(m))) = \text{CurInstr}((\text{Computation}(s + \cdot (\text{loop}I + \cdot \text{Start-At}(\text{insloc}(0)))))(m))) = \text{CurInstr}((\text{Computation}(s + \cdot (\text{loop}I + \cdot \text{Start-At}(\text{insloc}(0)))))(m))) = \text{CurInstr}((\text{Computation}(s + \cdot (\text{loop}I + \cdot \text{Start-At}(\text{insloc}(0)))))(m))))$
- (111) Let s be a state of \mathbf{SCM}_{FSA} and I be a macro instruction. Suppose I is closed on s and halting on s. Let m be a natural number. If $m \le \text{LifeSpan}(s + \cdot (I + \cdot \text{Start-At}(\text{insloc}(0))))$, then $\text{CurInstr}((\text{Computation}(s + \cdot (\text{loop}I + \cdot \text{Start-At}(\text{insloc}(0)))))(m)) \ne \mathbf{halt}_{\mathbf{SCM}_{FSA}}$.
- (112) Let s be a state of \mathbf{SCM}_{FSA} and I be a macro instruction. If I is closed on s and halting on s, then $\mathrm{CurInstr}((\mathrm{Computation}(s+\cdot(\mathrm{loop}\,I+\cdot\,\mathrm{Start-At}(\mathrm{insloc}(0)))))(\mathrm{LifeSpan}(s+\cdot(I+\cdot\,\mathrm{Start-At}(\mathrm{insloc}(0))))))=$ goto $\mathrm{insloc}(0)$.
- (113) Let s be a state of \mathbf{SCM}_{FSA} and I be a paraclosed macro instruction. Suppose $I+\cdot \mathrm{Start}\text{-}\mathrm{At}(\mathrm{insloc}(0))\subseteq s$ and s is halting. Let m be a natural number. Suppose $m\leq \mathrm{LifeSpan}(s)$. Then $(\mathrm{Computation}(s))(m)$ and $(\mathrm{Computation}(s+\cdot \mathrm{loop} I))(m)$ are equal outside the instruction locations of \mathbf{SCM}_{FSA} .
- (114) Let s be a state of \mathbf{SCM}_{FSA} and I be a parahalting macro instruction. Suppose $\mathrm{Initialized}(I) \subseteq s$. Let k be a natural number. If $k \leq \mathrm{LifeSpan}(s)$, then $\mathrm{CurInstr}((\mathrm{Computation}(s+\cdot\mathrm{loop}I))(k)) \neq \mathbf{halt}_{\mathbf{SCM}_{FSA}}$.

3. THE Times MACROINSTRUCTION

Let a be an integer location and let I be a macro instruction. The functor Times(a,I) yields a macro instruction and is defined as follows:

(Def. 5) Times $(a, I) = \mathbf{if} \ a > 0$ then loop $\mathbf{if} \ a = 0$ then Goto(insloc(2)) else $(I; \operatorname{SubFrom}(a, \operatorname{intloc}(0)))$ else $(\operatorname{Stop}_{\operatorname{SCM}_{\operatorname{PSA}}})$.

⁴ The definitions (Def. 1)–(Def. 3) have been removed.

Next we state a number of propositions:

- (115) For every good macro instruction I and for every read-write integer location a holds if a = 0 then Goto(insloc(2)) else (I; SubFrom(a, intloc(0))) is good.
- (116) For all macro instructions I, J and for every integer location a holds (**if** a = 0 **then** Goto(insloc(2)) **else** (I; SubFrom(a, intloc(0)))(insloc(card(I; SubFrom(a, intloc(0))) + 3)) = goto insloc(card(I; SubFrom(a, intloc(0))) + 5).
- (117) Let s be a state of **SCM**_{FSA}, I be a good parahalting macro instruction, and a be a readwrite integer location. Suppose I does not destroy a and s(intloc(0)) = 1 and s(a) > 0. Then loop if a = 0 then Goto(insloc(2)) else (I; SubFrom(a,intloc(0))) is pseudo-closed on s.
- (118) Let s be a state of **SCM**_{FSA}, I be a good parahalting macro instruction, and a be a readwrite integer location. Suppose I does not destroy a and s(a) > 0. Then Initialized(loop **if** a = 0 **then** Goto(insloc(2)) **else** (I; SubFrom(a,intloc(0)))) is pseudo-closed on s.
- (119) Let s be a state of \mathbf{SCM}_{FSA} , I be a good parahalting macro instruction, and a be a readwrite integer location. Suppose I does not destroy a and $s(\operatorname{intloc}(0)) = 1$. Then $\operatorname{Times}(a, I)$ is closed on s and $\operatorname{Times}(a, I)$ is halting on s.
- (120) Let I be a good parahalting macro instruction and a be a read-write integer location. If I does not destroy a, then Initialized(Times(a,I)) is halting.
- (121) Let I, J be macro instructions and a, c be integer locations. Suppose I does not destroy c and J does not destroy c. Then **if** a = 0 **then** I **else** J does not destroy c and **if** a > 0 **then** I **else** J does not destroy c.
- (122) Let s be a state of \mathbf{SCM}_{FSA} , I be a good parahalting macro instruction, and a be a read-write integer location. Suppose I does not destroy a and $s(\operatorname{intloc}(0)) = 1$ and s(a) > 0. Then there exists a state s_2 of \mathbf{SCM}_{FSA} and there exists a natural number k such that $s_2 = s + \cdot (\operatorname{loop} \mathbf{if} \ a = 0 \ \mathbf{then} \ \operatorname{Goto}(\operatorname{insloc}(2)) \ \mathbf{else} \ (I; \operatorname{SubFrom}(a,\operatorname{intloc}(0))) + \cdot \operatorname{Start-At}(\operatorname{insloc}(0)))$ and $k = \operatorname{LifeSpan}(s + \cdot ((\mathbf{if} \ a = 0 \ \mathbf{then} \ \operatorname{Goto}(\operatorname{insloc}(2)) \ \mathbf{else} \ (I; \operatorname{SubFrom}(a,\operatorname{intloc}(0)))) + \cdot \operatorname{Start-At}(\operatorname{insloc}(0))) + 1$ and $(\operatorname{Computation}(s_2))(k)(a) = s(a) 1$ and $(\operatorname{Computation}(s_2))(k)(\operatorname{intloc}(0)) = 1$ and for every read-write integer location b such that $b \neq a$ holds $(\operatorname{Computation}(s_2))(k)(b) = (\operatorname{IExec}(I,s))(b)$ and for every finite sequence location f holds $(\operatorname{Computation}(s_2))(k)(f) = (\operatorname{IExec}(I,s))(f)$ and $(\operatorname{IC}_{(\operatorname{Computation}(s_2))(k)})(f) = \operatorname{insloc}(0)$ and for every natural number f such that $f \leq k$ holds $(\operatorname{IC}_{(\operatorname{Computation}(s_2))(n)})(f) \in \operatorname{dom loop}(f) = 0 \ \operatorname{Itens}(f) = 0 \ \operatorname{Itens}$
- (123) Let s be a state of \mathbf{SCM}_{FSA} , I be a good parahalting macro instruction, and a be a read-write integer location. If $s(\operatorname{intloc}(0)) = 1$ and $s(a) \leq 0$, then $\operatorname{IExec}(\operatorname{Times}(a,I),s)$ [(Int-Locations \cup FinSeq-Locations) = s[(Int-Locations \cup FinSeq-Locations).
- (124) Let s be a state of SCM_{FSA} , I be a good parahalting macro instruction, and a be a read-write integer location. Suppose I does not destroy a and s(a) > 0. Then (IExec(I; SubFrom(a, intloc(0)), s))(a) = s(a) 1 and $IExec(Times(a, I), s) \upharpoonright (Int-Locations \cup FinSeq-Locations) = IExec(Times(a, I), IExec(I; SubFrom(a, intloc(0)), s)) \upharpoonright (Int-Locations \cup FinSeq-Locations)$.

4. AN EXAMPLE

We now state the proposition

(125) Let s be a state of **SCM**_{FSA} and a, b, c be read-write integer locations. If $a \neq b$ and $a \neq c$ and $b \neq c$ and s(a) > 0, then (IExec(Times(a, Macro(AddTo(b, c))), s))(b) = $s(b) + s(c) \cdot s(a)$.

REFERENCES

- Noriko Asamoto. Conditional branch macro instructions of SCM_{FSA}. Part I. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/JFM/Vol8/scmfsa8a.html.
- [2] Noriko Asamoto. Conditional branch macro instructions of SCM_{FSA}. Part II. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/JFM/Vol8/scmfsa8b.html.
- [3] Noriko Asamoto. Constant assignment macro instructions of SCM_{FSA}. Part II. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/JFM/Vol8/scmfsa7b.html.
- [4] Noriko Asamoto, Yatsuka Nakamura, Piotr Rudnicki, and Andrzej Trybulec. On the composition of macro instructions. Part II. *Journal of Formalized Mathematics*, 8, 1996. http://mizar.org/JFM/Vol8/scmfsa6b.html.
- [5] Noriko Asamoto, Yatsuka Nakamura, Piotr Rudnicki, and Andrzej Trybulec. On the composition of macro instructions. Part III. *Journal of Formalized Mathematics*, 8, 1996. http://mizar.org/JFM/Vol8/scmfsa6c.html.
- [6] Grzegorz Bancerek. Cardinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/card_1.html.
- [7] Grzegorz Bancerek. The fundamental properties of natural numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/nat_1.html.
- [8] Grzegorz Bancerek and Piotr Rudnicki. Development of terminology for scm. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/Vol5/scm_1.html.
- [9] Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/JFM/Vol8/funct_7.html.
- [10] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funct_1.html.
- [11] Czesław Byliński. A classical first order language. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/cqc_lang.html.
- [12] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. *Journal of Formalized Mathematics*, 2, 1990. http://mizar.org/JFM/Vol2/funct_4.html.
- [13] Yatsuka Nakamura and Andrzej Trybulec. A mathematical model of CPU. Journal of Formalized Mathematics, 4, 1992. http://mizar.org/JFM/Vol4/ami_1.html.
- [14] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/Vol5/binarith.html.
- [15] Piotr Rudnicki and Andrzej Trybulec. Memory handling for SCM_{FSA}. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/JFM/Vol8/sf_mastr.html.
- [16] Yasushi Tanaka. On the decomposition of the states of SCM. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/Vol5/ami_5.html.
- $[17] \ \ Andrzej\ Trybulec.\ Enumerated\ sets.\ \textit{Journal of Formalized Mathematics}, 1, 1989.\ \texttt{http://mizar.org/JFM/Vol1/enumset1.html}.$
- [18] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [19] Andrzej Trybulec and Yatsuka Nakamura. Some remarks on the simple concrete model of computer. *Journal of Formalized Mathematics*, 5, 1993. http://mizar.org/JFM/Vo15/ami_3.html.
- [20] Andrzej Trybulec and Yatsuka Nakamura. Modifying addresses of instructions of SCM_{FSA}. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/JFM/Vol8/scmfsa_4.html.
- [21] Andrzej Trybulec and Yatsuka Nakamura. Relocability for SCM_{FSA}. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/JFM/Vol8/scmfsa_5.html.
- [22] Andrzej Trybulec, Yatsuka Nakamura, and Noriko Asamoto. On the compositions of macro instructions. Part I. *Journal of Formalized Mathematics*, 8, 1996. http://mizar.org/JFM/Vol8/scmfsa6a.html.
- [23] Andrzej Trybulec, Yatsuka Nakamura, and Piotr Rudnicki. The SCM_{FSA} computer. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/JFM/Vol8/scmfsa_2.html.
- [24] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relat_1.html.

Received October 29, 1997

Published January 2, 2004