Conditional Branch Macro Instructions of SCM_{FSA}. Part I

Noriko Asamoto Ochanomizu University Tokyo

MML Identifier: SCMFSA8A.

WWW: http://mizar.org/JFM/Vol8/scmfsa8a.html

The articles [14], [5], [10], [20], [9], [11], [8], [4], [6], [12], [15], [13], [19], [16], [17], [7], [18], [2], [3], and [1] provide the notation and terminology for this paper.

One can prove the following propositions:

- (2)¹ For all functions f, g and for every set D such that dom g misses D holds $(f+\cdot g)\upharpoonright D = f\upharpoonright D$, where $D = \text{Int-Locations} \cup \text{FinSeq-Locations}$.
- (3) For every state s of \mathbf{SCM}_{FSA} holds $dom(s|the instruction locations of <math>\mathbf{SCM}_{FSA}) = the$ instruction locations of \mathbf{SCM}_{FSA} .
- (4) For every state s of \mathbf{SCM}_{FSA} such that s is halting and for every natural number k such that $\mathsf{LifeSpan}(s) \leq k$ holds $\mathsf{CurInstr}((\mathsf{Computation}(s))(k)) = \mathbf{halt}_{\mathbf{SCM}_{FSA}}$.
- (5) For every state s of \mathbf{SCM}_{FSA} such that s is halting and for every natural number k such that $\mathrm{LifeSpan}(s) \leq k$ holds $\mathbf{IC}_{(\mathrm{Computation}(s))(k)} = \mathbf{IC}_{(\mathrm{Computation}(s))(\mathrm{LifeSpan}(s))}$.
- (6) Let s_1 , s_2 be states of \mathbf{SCM}_{FSA} . Then s_1 and s_2 are equal outside the instruction locations of \mathbf{SCM}_{FSA} if and only if $\mathbf{IC}_{(s_1)} = \mathbf{IC}_{(s_2)}$ and $s_1 \upharpoonright (\text{Int-Locations} \cup \text{FinSeq-Locations}) = s_2 \upharpoonright (\text{Int-Locations} \cup \text{FinSeq-Locations})$.
- (7) For every state s of \mathbf{SCM}_{FSA} and for every macro instruction I holds $\mathbf{IC}_{IExec(I,s)} = \mathbf{IC}_{Result(s+\cdot Initialized(I))}$.
- (8) For every state s of **SCM**_{FSA} and for every macro instruction I holds Initialize(s)+·Initialized(I) = s+·Initialized(I).
- (9) For every macro instruction I and for every instruction-location l of \mathbf{SCM}_{FSA} holds $I \subseteq I + \cdot \mathbf{Start} \mathbf{At}(l)$.
- (10) For every state s of \mathbf{SCM}_{FSA} and for every instruction-location l of \mathbf{SCM}_{FSA} holds $s \upharpoonright (Int\text{-Locations} \cup FinSeq\text{-Locations}) = (s + \cdot Start\text{-At}(l)) \upharpoonright (Int\text{-Locations} \cup FinSeq\text{-Locations}).$
- (11) Let s be a state of \mathbf{SCM}_{FSA} , I be a macro instruction, and l be an instruction-location of \mathbf{SCM}_{FSA} . Then $s \upharpoonright (Int\text{-Locations} \cup FinSeq\text{-Locations}) = (s + \cdot (I + \cdot Start\text{-At}(l))) \upharpoonright (Int\text{-Locations} \cup FinSeq\text{-Locations})$.
- (12) Let s be a state of \mathbf{SCM}_{FSA} and l be an instruction-location of \mathbf{SCM}_{FSA} . Then dom(s) the instruction locations of \mathbf{SCM}_{FSA}) misses $dom \, Start-At(l)$.

1

¹ The proposition (1) has been removed.

- (13) For every state s of \mathbf{SCM}_{FSA} and for every macro instruction I holds $s+\cdot \text{Initialized}(I) = \text{Initialize}(s)+\cdot (I+\cdot \text{Start-At}(\text{insloc}(0))).$
- (14) Let s be a state of \mathbf{SCM}_{FSA} , I_1 , I_2 be macro instructions, and l be an instruction-location of \mathbf{SCM}_{FSA} . Then $s+\cdot(I_1+\cdot\operatorname{Start-At}(l))$ and $s+\cdot(I_2+\cdot\operatorname{Start-At}(l))$ are equal outside the instruction locations of \mathbf{SCM}_{FSA} .
- (15) $dom(Stop_{SCM_{FSA}}) = \{insloc(0)\}.$
- $(16) \quad insloc(0) \in dom(Stop_{SCM_{FSA}}) \text{ and } Stop_{SCM_{FSA}}(insloc(0)) = \textbf{halt}_{SCM_{FSA}}.$
- (17) $\operatorname{card}(\operatorname{Stop}_{\operatorname{SCM}_{\operatorname{FS}\Delta}}) = 1.$

Let P be a programmed finite partial state of \mathbf{SCM}_{FSA} and let l be an instruction-location of \mathbf{SCM}_{FSA} . The functor $\mathrm{Directed}(P, l)$ yields a programmed finite partial state of \mathbf{SCM}_{FSA} and is defined by:

(Def. 1) Directed(P, l) = (id_{the instructions of SCM_{FSA} +·(halt_{SCM_{FSA}} \mapsto goto l)) · P.}

One can prove the following proposition

(18) For every programmed finite partial state I of \mathbf{SCM}_{FSA} holds $\mathrm{Directed}(I) = \mathrm{Directed}(I, \mathrm{insloc}(\mathrm{card}\,I))$.

Let P be a programmed finite partial state of \mathbf{SCM}_{FSA} and let l be an instruction-location of \mathbf{SCM}_{FSA} . One can check that $\mathsf{Directed}(P, l)$ is halt-free.

Let P be a programmed finite partial state of \mathbf{SCM}_{FSA} . Note that $\mathsf{Directed}(P)$ is halt-free. One can prove the following propositions:

- (19) For every programmed finite partial state P of SCM_{FSA} and for every instruction-location l of SCM_{FSA} holds dom Directed(P, l) = dom P.
- (20) Let P be a programmed finite partial state of \mathbf{SCM}_{FSA} and l be an instruction-location of \mathbf{SCM}_{FSA} . Then $\mathsf{Directed}(P, l) = P + \cdot (\mathbf{halt}_{\mathbf{SCM}_{FSA}} \vdash \to \mathsf{goto}\ l) \cdot P$.
- (21) Let *P* be a programmed finite partial state of \mathbf{SCM}_{FSA} , *l* be an instruction-location of \mathbf{SCM}_{FSA} , and *x* be a set such that $x \in \text{dom } P$. Then
 - (i) if $P(x) = \mathbf{halt}_{\mathbf{SCM}_{FSA}}$, then $(\mathsf{Directed}(P, l))(x) = \mathsf{goto}\ l$, and
- (ii) if $P(x) \neq \mathbf{halt}_{\mathbf{SCM}_{\mathsf{ESA}}}$, then $(\mathsf{Directed}(P, l))(x) = P(x)$.
- (22) Let i be an instruction of SCM_{FSA} , a be an integer location, and n be a natural number. If i does not destroy a, then IncAddr(i, n) does not destroy a.
- (23) Let P be a programmed finite partial state of \mathbf{SCM}_{FSA} , n be a natural number, and a be an integer location. If P does not destroy a, then $\mathsf{ProgramPart}(\mathsf{Relocated}(P,n))$ does not destroy a.
- (24) For every good programmed finite partial state P of \mathbf{SCM}_{FSA} and for every natural number n holds $\mathsf{ProgramPart}(\mathsf{Relocated}(P, n))$ is good.
- (25) Let I, J be programmed finite partial states of \mathbf{SCM}_{FSA} and a be an integer location. Suppose I does not destroy a and J does not destroy a. Then I+J does not destroy a.
- (26) For all good programmed finite partial states I, J of SCM_{FSA} holds I+J is good.
- (27) Let I be a programmed finite partial state of \mathbf{SCM}_{FSA} , l be an instruction-location of \mathbf{SCM}_{FSA} , and a be an integer location. If I does not destroy a, then $\mathsf{Directed}(I,l)$ does not destroy a.

Let I be a good programmed finite partial state of \mathbf{SCM}_{FSA} and let l be an instruction-location of \mathbf{SCM}_{FSA} . Observe that Directed(I, l) is good.

Let I be a good macro instruction. One can verify that Directed(I) is good.

Let I be a macro instruction and let I be an instruction-location of \mathbf{SCM}_{FSA} . Note that Directed (I, I) is initial.

Let *I*, *J* be good macro instructions. Observe that *I*; *J* is good.

Let l be an instruction-location of \mathbf{SCM}_{FSA} . The functor Goto(l) yields a halt-free good macro instruction and is defined as follows:

(Def. 2) $Goto(l) = insloc(0) \mapsto goto l$.

Let s be a state of \mathbf{SCM}_{FSA} and let P be an initial finite partial state of \mathbf{SCM}_{FSA} . We say that P is pseudo-closed on s if and only if the condition (Def. 3) is satisfied.

(Def. 3) There exists a natural number k such that $\mathbf{IC}_{(Computation(s+\cdot(P+\cdot Start-At(insloc(0)))))(k)} = insloc(card ProgramPart(P))$ and for every natural number n such that n < k holds $\mathbf{IC}_{(Computation(s+\cdot(P+\cdot Start-At(insloc(0)))))(n)} \in \text{dom } P$.

Let P be an initial finite partial state of \mathbf{SCM}_{FSA} . We say that P is pseudo-paraclosed if and only if:

(Def. 4) For every state s of SCM_{FSA} holds P is pseudo-closed on s.

Let us note that there exists a macro instruction which is pseudo-paraclosed.

Let s be a state of \mathbf{SCM}_{FSA} and let P be an initial finite partial state of \mathbf{SCM}_{FSA} . Let us assume that P is pseudo-closed on s. The functor pseudo — LifeSpan(s, P) yields a natural number and is defined by:

(Def. 5) $\mathbf{IC}_{(Computation(s+\cdot(P+\cdot Start-At(insloc(0)))))(pseudo-LifeSpan(s,P))} = insloc(cardProgramPart(P))$ and for every natural number n such that $\mathbf{IC}_{(Computation(s+\cdot(P+\cdot Start-At(insloc(0)))))(n)} \notin dom P$ holds pseudo - LifeSpan $(s,P) \le n$.

One can prove the following propositions:

- (28) For all macro instructions I, J and for every set x such that $x \in \text{dom } I$ holds (I; J)(x) = (Directed(I))(x).
- (29) For every instruction-location l of SCM_{FSA} holds card Goto(l) = 1.
- (30) Let *P* be a programmed finite partial state of \mathbf{SCM}_{FSA} and *x* be a set such that $x \in \text{dom } P$. Then
 - (i) if $P(x) = \mathbf{halt}_{\mathbf{SCM}_{FSA}}$, then $(\mathsf{Directed}(P))(x) = \mathsf{goto} \; \mathsf{insloc}(\mathsf{card}\,P)$, and
- (ii) if $P(x) \neq \mathbf{halt_{SCM_{FSA}}}$, then $(\mathrm{Directed}(P))(x) = P(x)$.
- (31) Let s be a state of \mathbf{SCM}_{FSA} and P be an initial finite partial state of \mathbf{SCM}_{FSA} . Suppose P is pseudo-closed on s. Let n be a natural number. If $n < \mathrm{pseudo} \mathrm{LifeSpan}(s,P)$, then $\mathbf{IC}_{(\mathrm{Computation}(s+\cdot(P+\cdot\mathrm{Start-At}(\mathrm{insloc}(0)))))(n)} \in \mathrm{dom}\,P$ and $\mathrm{CurInstr}((\mathrm{Computation}(s+\cdot(P+\cdot\mathrm{Start-At}(\mathrm{insloc}(0)))))(n)) \neq \mathbf{halt}_{\mathbf{SCM}_{FSA}}$.
- (32) Let s be a state of \mathbf{SCM}_{FSA} and I, J be macro instructions. Suppose I is pseudoclosed on s. Let k be a natural number. Suppose $k \leq \operatorname{pseudo} \operatorname{LifeSpan}(s, I)$. Then $(\operatorname{Computation}(s+\cdot(I+\cdot\operatorname{Start-At}(\operatorname{insloc}(0)))))(k)$ and $(\operatorname{Computation}(s+\cdot(I;J)+\cdot\operatorname{Start-At}(\operatorname{insloc}(0))))(k)$ are equal outside the instruction locations of \mathbf{SCM}_{FSA} .
- (33) For every programmed finite partial state I of \mathbf{SCM}_{FSA} and for every instruction-location l of \mathbf{SCM}_{FSA} holds card Directed (I, l) = card I.
- (34) For every macro instruction I holds card Directed(I) = card I.

- (35) Let s be a state of \mathbf{SCM}_{FSA} and I be a macro instruction. Suppose I is closed on s and halting on s. Let k be a natural number. Suppose $k \le \text{LifeSpan}(s + \cdot (I + \cdot \text{Start-At}(\text{insloc}(0))))$. Then $(\text{Computation}(s + \cdot (I + \cdot \text{Start-At}(\text{insloc}(0)))))(k)$ and $(\text{Computation}(s + \cdot (\text{Directed}(I) + \cdot \text{Start-At}(\text{insloc}(0)))))(k)$ are equal outside the instruction locations of \mathbf{SCM}_{FSA} and $\text{CurInstr}((\text{Computation}(s + \cdot (\text{Directed}(I) + \cdot \text{Start-At}(\text{insloc}(0)))))(k)$ halt \mathbf{SCM}_{FSA} .
- (36) Let s be a state of \mathbf{SCM}_{FSA} and I be a macro instruction. Suppose I is closed on s and halting on s. Then $\mathbf{IC}_{(Computation(s+\cdot(Directed(I)+\cdot Start-At(insloc(0)))))(LifeSpan(s+\cdot(I+\cdot Start-At(insloc(0)))))+1) = insloc(card <math>I$) and $(Computation(s+\cdot(I+\cdot Start-At(insloc(0)))))(LifeSpan(s+\cdot(I+\cdot Start-At(insloc(0)))))+1)$ (Computation($s+\cdot(Directed(I)+\cdot Start-At(insloc(0)))))(LifeSpan(<math>s+\cdot(I+\cdot Start-At(insloc(0))))+1)$) (Int-Locations \cup FinSeq-Locations).
- (37) Let s be a state of \mathbf{SCM}_{FSA} and I be a macro instruction. If I is closed on s and halting on s, then Directed(I) is pseudo-closed on s.
- (38) Let *s* be a state of \mathbf{SCM}_{FSA} and *I* be a macro instruction. If *I* is closed on *s* and halting on *s*, then pseudo LifeSpan(*s*, Directed(*I*)) = LifeSpan(s + (I + Start-At(insloc(0)))) + 1.
- (39) Let *I* be a programmed finite partial state of \mathbf{SCM}_{FSA} and *l* be an instruction-location of \mathbf{SCM}_{FSA} . If *I* is halt-free, then Directed(*I*, *l*) = *I*.
- (40) For every macro instruction I such that I is halt-free holds Directed(I) = I.
- (41) For all macro instructions I, J holds Directed(I); J = I; J.
- (42) Let s be a state of SCM_{FSA} and I, J be macro instructions. Suppose I is closed on s and halting on s. Then
 - (i) for every natural number k such that $k \leq \text{LifeSpan}(s + \cdot (I + \cdot \text{Start-At}(\text{insloc}(0))))$ holds $\mathbf{IC}_{(\text{Computation}(s + \cdot (\text{Directed}(I) + \cdot \text{Start-At}(\text{insloc}(0)))))(k)} = \mathbf{IC}_{(\text{Computation}(s + \cdot ((I; J) + \cdot \text{Start-At}(\text{insloc}(0)))))(k))} = \text{CurInstr}((\text{Computation}(s + \cdot ((I; J) + \cdot \text{Start-At}(\text{insloc}(0)))))(k)))) = \text{CurInstr}((\text{Computation}(s + \cdot ((I; J) + \cdot \text{Start-At}(\text{insloc}(0)))))(k))))))$
 - (ii) $(Computation(s+\cdot(Directed(I)+\cdot Start-At(insloc(0)))))(LifeSpan(s+\cdot(I+\cdot Start-At(insloc(0))))+1)$ $(Int-Locations \cup FinSeq-Locations) = (Computation(s+\cdot((I; J)+\cdot Start-At(insloc(0)))))(LifeSpan(s+\cdot(I+\cdot Start-At(Insloc(0)))))$ $(Int-Locations \cup FinSeq-Locations)$, and
- (iii) $\mathbf{IC}_{(Computation(s+\cdot(Directed(I)+\cdot Start-At(insloc(0)))))(LifeSpan(s+\cdot(I+\cdot Start-At(insloc(0))))+1)} = \mathbf{IC}_{(Computation(s+\cdot((I;J)+\cdot Start-At(insloc(0)))))+1)}$ (43) Let s be a state of \mathbf{SCM}_{FSA} and I, J be macro instructions. Suppose I is closed on
- 43) Let s be a state of SCM_{FSA} and I, J be macro instructions. Suppose I is closed on Initialize(s) and halting on Initialize(s). Then
- (i) for every natural number k such that $k \leq \text{LifeSpan}(s+\cdot \text{Initialized}(I))$ holds $\mathbf{IC}_{(\text{Computation}(s+\cdot \text{Initialized}(Directed(I))))(k)} = \mathbf{IC}_{(\text{Computation}(s+\cdot \text{Initialized}(I;J)))(k)}$ and $\text{CurInstr}((\text{Computation}(s+\cdot \text{Initialized}(I;J)))(k))$,
- (ii) $(Computation(s+\cdot Initialized(Directed(I))))(LifeSpan(s+\cdot Initialized(I))+1)\upharpoonright (Int-Locations \cup FinSeq-Locations)$ $(Computation(s+\cdot Initialized(I; J)))(LifeSpan(s+\cdot Initialized(I))+1)\upharpoonright (Int-Locations \cup FinSeq-Locations),$ and
- (iii) $\mathbf{IC}_{(Computation(s+\cdot Initialized(Directed(I))))(LifeSpan(s+\cdot Initialized(I))+1)} = \mathbf{IC}_{(Computation(s+\cdot Initialized(I; J)))(LifeSpan(s+\cdot Initialized(I))+1)}$
- (44) Let s be a state of \mathbf{SCM}_{FSA} and I be a macro instruction. Suppose I is closed on $\mathsf{Initialize}(s)$ and $\mathsf{halting}$ on $\mathsf{Initialize}(s)$. Let k be a natural number. Suppose $k \leq \mathsf{LifeSpan}(s+\cdot\mathsf{Initialized}(I))$. Then $(\mathsf{Computation}(s+\cdot\mathsf{Initialized}(I)))(k)$ and $(\mathsf{Computation}(s+\cdot\mathsf{Initialized}(\mathsf{Directed}(I))))(k)$ are equal outside the instruction locations of SCM_{FSA} and $\mathsf{CurInstr}((\mathsf{Computation}(s+\cdot\mathsf{Initialized}(\mathsf{Directed}(I))))(k)) \neq \mathsf{halt}_{\mathsf{SCM}_{FSA}}$.
- (45) Let s be a state of \mathbf{SCM}_{FSA} and I be a macro instruction. Suppose I is closed on Initialize(s) and halting on Initialize(s). Then $\mathbf{IC}_{(Computation(s+\cdot Initialized(Directed(<math>I$))))(LifeSpan($s+\cdot Initialized(I))$)| (Int-Locations \cup FinSeq-Locations) (Computation($s+\cdot Initialized(Directed(<math>I$))))(LifeSpan($s+\cdot Initialized(I))$)| (Int-Locations \cup FinSeq-Locations).
- (46) Let I be a macro instruction and s be a state of \mathbf{SCM}_{FSA} . Suppose I is closed on s and halting on s. Then I; $\mathsf{Stop}_{\mathsf{SCM}_{FSA}}$ is closed on s and I; $\mathsf{Stop}_{\mathsf{SCM}_{FSA}}$ is halting on s.

- (47) For every instruction-location l of \mathbf{SCM}_{FSA} holds $\operatorname{insloc}(0) \in \operatorname{dom} \operatorname{Goto}(l)$ and $(\operatorname{Goto}(l))(\operatorname{insloc}(0)) = \operatorname{goto} l$.
- (48) Let N be a set with non empty elements, S be a definite non empty non void AMI over N, I be a programmed finite partial state of S, and x be a set. If $x \in \text{dom } I$, then I(x) is an instruction of S.
- (49) Let I be a programmed finite partial state of \mathbf{SCM}_{FSA} , x be a set, and k be a natural number. If $x \in \text{domProgramPart}(\text{Relocated}(I,k))$, then (ProgramPart(Relocated(I,k)))(x) = (Relocated(I,k))(x).
- (50) For every programmed finite partial state I of \mathbf{SCM}_{FSA} and for every natural number k holds $\mathsf{ProgramPart}(\mathsf{Relocated}(\mathsf{Directed}(I),k)) = \mathsf{Directed}(\mathsf{ProgramPart}(\mathsf{Relocated}(I,k)),\mathsf{insloc}(\mathsf{card}\,I+k)).$
- (51) Let I, J be programmed finite partial states of \mathbf{SCM}_{FSA} and l be an instruction-location of \mathbf{SCM}_{FSA} . Then $\mathsf{Directed}(I+J,l) = \mathsf{Directed}(I,l) + \mathsf{Directed}(J,l)$.
- (52) For all macro instructions I, J holds Directed(I; J) = I; Directed(J).
- (53) Let I be a macro instruction and s be a state of \mathbf{SCM}_{FSA} . If I is closed on $\mathsf{Initialize}(s)$ and halting on $\mathsf{Initialize}(s)$, then $\mathbf{IC}_{(\mathsf{Computation}(s+\cdot\mathsf{Initialized}(I;\mathsf{Stop}_{\mathsf{SCM}_{FSA}})))(\mathsf{LifeSpan}(s+\cdot\mathsf{Initialized}(I))+1) = \mathsf{insloc}(\mathsf{card}\,I)$.
- (54) Let I be a macro instruction and s be a state of \mathbf{SCM}_{FSA} . Suppose I is closed on Initialize(s) and halting on Initialize(s). Then $(\mathsf{Computation}(s+\cdot\mathsf{Initialized}(I)))(\mathsf{LifeSpan}(s+\cdot\mathsf{Initialized}(I)))(\mathsf{Int-Locations}\cup\mathsf{FinSeq-Locations})$. (Computation($s+\cdot\mathsf{Initialized}(I;\mathsf{Stop}_{\mathsf{SCM}_{FSA}})))(\mathsf{LifeSpan}(s+\cdot\mathsf{Initialized}(I))+1)$)(Int-Locations $\cup\mathsf{FinSeq-Locations})$.
- (55) Let I be a macro instruction and s be a state of \mathbf{SCM}_{FSA} . If I is closed on Initialize(s) and halting on Initialize(s), then $s+\cdot$ Initialized(I; $\mathsf{Stop}_{\mathsf{SCM}_{FSA}}$) is halting.
- (56) Let I be a macro instruction and s be a state of SCM_{FSA} . If I is closed on Initialize(s) and halting on Initialize(s), then $LifeSpan(s+\cdot Initialized(I; Stop_{SCM_{FSA}})) = LifeSpan(<math>s+\cdot Initialized(I)) + 1$.
- (57) Let s be a state of \mathbf{SCM}_{FSA} and I be a macro instruction. If I is closed on Initialize(s) and halting on Initialize(s), then $\mathrm{IExec}(I; \mathrm{Stop}_{\mathrm{SCM}_{FSA}}, s) = \mathrm{IExec}(I, s) + \cdot \mathrm{Start-At}(\mathrm{insloc}(\mathrm{card}\,I))$.
- (58) Let I, J be macro instructions and s be a state of SCM_{FSA} . Suppose I is closed on s and halting on s. Then I; Goto(insloc(card <math>J+1)); J; $Stop_{SCM_{FSA}}$ is closed on s and I; Goto(insloc(card <math>J+1)); J; $Stop_{SCM_{FSA}}$ is halting on s.
- (59) Let I, J be macro instructions and s be a state of \mathbf{SCM}_{FSA} . If I is closed on s and halting on s, then $s+\cdot((I; \operatorname{Goto}(\operatorname{insloc}(\operatorname{card} J+1)); J; \operatorname{Stop}_{\operatorname{SCM}_{FSA}})+\cdot\operatorname{Start-At}(\operatorname{insloc}(0)))$ is halting.
- (60) Let I, J be macro instructions and s be a state of \mathbf{SCM}_{FSA} . If I is closed on Initialize(s) and halting on Initialize(s), then $s+Initialized(I; Goto(insloc(card <math>J+1)); J; Stop_{SCM_{FSA}})$ is halting.
- (61) Let I, J be macro instructions and s be a state of \mathbf{SCM}_{FSA} . If I is closed on Initialize(s) and halting on Initialize(s), then $\mathbf{IC}_{\mathrm{IExec}(I;\ \mathrm{Goto}(\mathrm{insloc}(\mathrm{card}J+1));\ J;\ \mathrm{Stop}_{\mathrm{SCM}_{FSA}},s)} = \mathrm{insloc}(\mathrm{card}I + \mathrm{card}J + 1)$.
- (62) Let I, J be macro instructions and s be a state of SCM_{FSA} . Suppose I is closed on Initialize(s) and halting on Initialize(s). Then $IExec(I; Goto(insloc(card <math>J + 1)); J; Stop_{SCM_{FSA}}, s) = IExec(I, s) + Start-At(insloc(card <math>I + card J + 1))$.

REFERENCES

- Noriko Asamoto. Constant assignment macro instructions of SCM_{FSA}. Part II. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/JFM/Vol8/scmfsa7b.html.
- [2] Noriko Asamoto, Yatsuka Nakamura, Piotr Rudnicki, and Andrzej Trybulec. On the composition of macro instructions. Part II. *Journal of Formalized Mathematics*, 8, 1996. http://mizar.org/JFM/Vol8/scmfsa6b.html.
- [3] Noriko Asamoto, Yatsuka Nakamura, Piotr Rudnicki, and Andrzej Trybulec. On the composition of macro instructions. Part III. *Journal of Formalized Mathematics*, 8, 1996. http://mizar.org/JFM/Vol8/scmfsa6c.html.
- [4] Grzegorz Bancerek. Cardinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/card_1.html.
- [5] Grzegorz Bancerek. The fundamental properties of natural numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/nat_1.html.
- [6] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/finseq_1.html.
- [7] Grzegorz Bancerek and Piotr Rudnicki. Development of terminology for scm. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/Vol5/scm_1.html.
- [8] Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/JFM/Vol8/funct_7.html.
- [9] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_1.html.
- [10] Czesław Byliński. A classical first order language. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/cqc_lang.html.
- [11] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. *Journal of Formalized Mathematics*, 2, 1990. http://mizar.org/JFM/Vol2/funct_4.html.
- [12] Yatsuka Nakamura and Andrzej Trybulec. A mathematical model of CPU. Journal of Formalized Mathematics, 4, 1992. http://mizar.org/JFM/Vol4/ami_1.html.
- [13] Yasushi Tanaka. On the decomposition of the states of SCM. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/Vol5/ami_5.html.
- [14] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [15] Andrzej Trybulec and Yatsuka Nakamura. Some remarks on the simple concrete model of computer. *Journal of Formalized Mathematics*, 5, 1993. http://mizar.org/JFM/Vo15/ami_3.html.
- [16] Andrzej Trybulec and Yatsuka Nakamura. Modifying addresses of instructions of SCM_{FSA}. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/JFM/Vol8/scmfsa_4.html.
- [17] Andrzej Trybulec and Yatsuka Nakamura. Relocability for SCM_{FSA}. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/JFM/Vol8/scmfsa_5.html.
- [18] Andrzej Trybulec, Yatsuka Nakamura, and Noriko Asamoto. On the compositions of macro instructions. Part I. *Journal of Formalized Mathematics*, 8, 1996. http://mizar.org/JFM/Vol8/scmfsa6a.html.
- [19] Andrzej Trybulec, Yatsuka Nakamura, and Piotr Rudnicki. The SCM_{FSA} computer. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/JFM/Vol8/scmfsa_2.html.
- [20] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relat_1.html.

Received August 27, 1996

Published January 2, 2004