On the Compositions of Macro Instructions. Part I

Andrzej Trybulec Warsaw University Białystok Yatsuka Nakamura Shinshu University Nagano Noriko Asamoto Ochanomizu University Tokyo

MML Identifier: SCMFSA6A.

WWW: http://mizar.org/JFM/Vol8/scmfsa6a.html

The articles [15], [14], [22], [16], [2], [21], [12], [23], [5], [6], [3], [8], [1], [7], [10], [9], [11], [17], [13], [4], [20], [18], and [19] provide the notation and terminology for this paper.

1. Preliminaries

The following propositions are true:

- (1) For all functions f, g and for all sets x, y such that $g \subseteq f$ and $x \notin \text{dom } g$ holds $g \subseteq f + (x, y)$.
- (2) For all functions f, g and for every set A such that $f \upharpoonright A = g \upharpoonright A$ and f and g are equal outside A holds f = g.
- (3) For every function f and for all sets a, b, A such that $a \in A$ holds f and f + (a,b) are equal outside A.
- (4) For every function f and for all sets a, b, A holds $a \in A$ or $(f + (a,b)) \upharpoonright A = f \upharpoonright A$.
- (5) For all functions f, g and for all sets a, b, A such that $f \upharpoonright A = g \upharpoonright A$ holds $(f + \cdot (a,b)) \upharpoonright A = (g + \cdot (a,b)) \upharpoonright A$.
- (6) For all functions f, g, h such that $f \subseteq h$ and $g \subseteq h$ holds $f + g \subseteq h$.
- (7) For all sets a, b and for every function f holds $a \mapsto b \subseteq f$ iff $a \in \text{dom } f$ and f(a) = b.
- (8) For every function f and for every set A holds $dom(f \upharpoonright (dom f \setminus A)) = dom f \setminus A$.
- (9) Let f, g be functions and D be a set. Suppose $D \subseteq \text{dom } f$ and $D \subseteq \text{dom } g$. Then $f \upharpoonright D = g \upharpoonright D$ if and only if for every set x such that $x \in D$ holds f(x) = g(x).
- (10) For every function f and for every set D holds $f \upharpoonright D = f \upharpoonright (\text{dom } f \cap D)$.
- (11) Let f, g, h be functions and A be a set. Suppose f and g are equal outside A. Then f+h and g+h are equal outside A.
- (12) Let f, g, h be functions and A be a set. Suppose f and g are equal outside A. Then $h+\cdot f$ and $h+\cdot g$ are equal outside A.
- (13) For all functions f, g, h holds f + h = g + h iff f and g are equal outside dom h.

2. Macroinstructions

A macro instruction is an initial programmed finite partial state of **SCM**_{FSA}.

We use the following convention: m, n denote natural numbers, i, j, k denote instructions of \mathbf{SCM}_{ESA} , and I, J, K denote macro instructions.

Let I be a programmed finite partial state of \mathbf{SCM}_{FSA} . The functor $\mathrm{Directed}(I)$ yields a programmed finite partial state of \mathbf{SCM}_{FSA} and is defined as follows:

 $(\text{Def. 1}) \quad \text{Directed}(I) = (\text{id}_{\text{the instructions of } \textbf{SCM}_{\text{FSA}}} + \cdot (\textbf{halt}_{\textbf{SCM}_{\text{FSA}}} \mapsto \textbf{goto insloc}(\textbf{card}\,I))) \cdot I.$

The following proposition is true

(14) $\operatorname{dom Directed}(I) = \operatorname{dom} I$.

Let I be a macro instruction. Note that Directed(I) is initial.

Let us consider i. The functor Macro(i) yielding a macro instruction is defined as follows:

(Def. 2) $Macro(i) = [insloc(0) \longrightarrow i, insloc(1) \longmapsto halt_{SCM_{ESA}}].$

Let us consider i. Note that Macro(i) is non empty.

One can prove the following proposition

(15) For every macro instruction *P* and for every *n* holds $n < \operatorname{card} P$ iff $\operatorname{insloc}(n) \in \operatorname{dom} P$.

Let I be an initial finite partial state of \mathbf{SCM}_{FSA} . Note that ProgramPart(I) is initial. Next we state several propositions:

- (16) dom I misses dom Program Part(Relocated(J, card I)).
- (17) For every programmed finite partial state I of \mathbf{SCM}_{FSA} holds $\operatorname{card} \operatorname{ProgramPart}(\operatorname{Relocated}(I, m)) = \operatorname{card} I$.
- (18) $\mathbf{halt_{SCM_{FSA}}} \notin \operatorname{rng} \operatorname{Directed}(I)$.
- (19) $ProgramPart(Relocated(Directed(I), m)) = (id_{the instructions of SCM_{FSA}} + \cdot (halt_{SCM_{FSA}} \mapsto goto insloc(m + card I))) \cdot ProgramPart(Relocated(I, m)).$
- (20) For all finite partial states I, J of \mathbf{SCM}_{FSA} holds $\mathsf{ProgramPart}(I + J) = \mathsf{ProgramPart}(I) + \mathsf{ProgramPart}(J)$.
- (21) For all finite partial states I, J of \mathbf{SCM}_{FSA} holds $\mathsf{ProgramPart}(\mathsf{Relocated}(I+J,n)) = \mathsf{ProgramPart}(\mathsf{Relocated}(I,n)) + \mathsf{ProgramPart}(\mathsf{Relocated}(J,n))$.
- (22) ProgramPart(Relocated(ProgramPart(Relocated(I, m)),n)) = ProgramPart(Relocated(I, m + n)).

In the sequel s, s_1 , s_2 are states of \mathbf{SCM}_{FSA} .

Let I be a finite partial state of \mathbf{SCM}_{FSA} . The functor Initialized(I) yields a finite partial state of \mathbf{SCM}_{FSA} and is defined as follows:

(Def. 3) Initialized(I) = $I + \cdot (intloc(0) \mapsto 1) + \cdot Start-At(insloc(0))$.

One can prove the following propositions:

- (23) InsCode(i) \in {0,6,7,8} or (Exec(i,s))($\mathbf{IC}_{\mathbf{SCM}_{\mathbf{PSA}}}$) = Next(\mathbf{IC}_s).
- (24) $\mathbf{IC}_{\mathbf{SCM}_{\mathbf{FSA}}} \in \operatorname{dom Initialized}(I)$.
- (25) $\mathbf{IC}_{\text{Initialized}(I)} = \text{insloc}(0).$
- (26) $I \subseteq \text{Initialized}(I)$.
- (27) Let *N* be a set, *A* be an AMI over *N*, *s* be a state of *A*, and *I* be a programmed finite partial state of *A*. Then *s* and s+iI are equal outside the instruction locations of *A*.

- (28) Let s_1 , s_2 be states of \mathbf{SCM}_{FSA} . Suppose $\mathbf{IC}_{(s_1)} = \mathbf{IC}_{(s_2)}$ and for every integer location a holds $s_1(a) = s_2(a)$ and for every finite sequence location f holds $s_1(f) = s_2(f)$. Then s_1 and s_2 are equal outside the instruction locations of \mathbf{SCM}_{FSA} .
- (29) Let N be a set with non empty elements, S be a realistic IC-Ins-separated definite non empty non void AMI over N, and s_1 , s_2 be states of S. Suppose s_1 and s_2 are equal outside the instruction locations of S. Then $\mathbf{IC}_{(s_1)} = \mathbf{IC}_{(s_2)}$.
- (30) Suppose s_1 and s_2 are equal outside the instruction locations of **SCM**_{FSA}. Let a be an integer location. Then $s_1(a) = s_2(a)$.
- (31) Suppose s_1 and s_2 are equal outside the instruction locations of **SCM**_{FSA}. Let f be a finite sequence location. Then $s_1(f) = s_2(f)$.
- (32) Suppose s_1 and s_2 are equal outside the instruction locations of \mathbf{SCM}_{FSA} . Then $\mathrm{Exec}(i, s_1)$ and $\mathrm{Exec}(i, s_2)$ are equal outside the instruction locations of \mathbf{SCM}_{FSA} .
- (33) Initialized(I) the instruction locations of $\mathbf{SCM}_{FSA} = I$.

The scheme SCMFSAEx deals with a unary functor \mathcal{F} yielding an element of the instructions of SCM_{FSA} , a unary functor \mathcal{G} yielding an integer, a unary functor \mathcal{H} yielding a finite sequence of elements of \mathbb{Z} , and an instruction-location \mathcal{A} of SCM_{FSA} , and states that:

There exists a state S of \mathbf{SCM}_{FSA} such that $\mathbf{IC}_S = \mathcal{A}$ and for every natural number i holds $S(\operatorname{insloc}(i)) = \mathcal{F}(i)$ and $S(\operatorname{intloc}(i)) = \mathcal{G}(i)$ and $S(\operatorname{fsloc}(i)) = \mathcal{H}(i)$ for all values of the parameters.

One can prove the following propositions:

- (34) For every state s of \mathbf{SCM}_{FSA} holds $\operatorname{dom} s = \operatorname{Int-Locations} \cup \operatorname{FinSeq-Locations} \cup \{\mathbf{IC}_{\mathbf{SCM}_{FSA}}\} \cup \text{the instruction locations of } \mathbf{SCM}_{FSA}$.
- (35) Let *s* be a state of **SCM**_{FSA} and *x* be a set. Suppose $x \in \text{dom } s$. Then
 - (i) x is an integer location and a finite sequence location, or
- (ii) $x = \mathbf{IC}_{\mathbf{SCM}_{\mathsf{FSA}}}$, or
- (iii) x is an instruction-location of **SCM**_{FSA}.
- (36) Let s_1 , s_2 be states of \mathbf{SCM}_{FSA} . Then for every instruction-location l of \mathbf{SCM}_{FSA} holds $s_1(l) = s_2(l)$ if and only if $s_1 \upharpoonright$ the instruction locations of $\mathbf{SCM}_{FSA} = s_2 \upharpoonright$ the instruction locations of \mathbf{SCM}_{FSA} .
- (37) For every instruction-location i of \mathbf{SCM}_{FSA} holds $i \notin Int\text{-Locations} \cup FinSeq\text{-Locations}$ and $\mathbf{IC}_{\mathbf{SCM}_{FSA}} \notin Int\text{-Locations} \cup FinSeq\text{-Locations}$.
- (38) Let s_1 , s_2 be states of \mathbf{SCM}_{FSA} . Then for every integer location a holds $s_1(a) = s_2(a)$ and for every finite sequence location f holds $s_1(f) = s_2(f)$ if and only if $s_1 \upharpoonright (\text{Int-Locations} \cup \text{FinSeq-Locations}) = s_2 \upharpoonright (\text{Int-Locations} \cup \text{FinSeq-Locations})$.
- (39) Let s_1 , s_2 be states of \mathbf{SCM}_{FSA} . Suppose s_1 and s_2 are equal outside the instruction locations of \mathbf{SCM}_{FSA} . Then $s_1 \upharpoonright (\text{Int-Locations} \cup \text{FinSeq-Locations}) = s_2 \upharpoonright (\text{Int-Locations} \cup \text{FinSeq-Locations})$.
- (40) For all states s, s₃ of **SCM**_{FSA} and for every set A holds $(s_3+\cdot s \mid A) \mid A=s \mid A$.
- (41) Let s_1 , s_2 be states of \mathbf{SCM}_{FSA} , n be a natural number, and i be an instruction of \mathbf{SCM}_{FSA} . Suppose $\mathbf{IC}_{(s_1)} + n = \mathbf{IC}_{(s_2)}$ and $s_1 \upharpoonright (\text{Int-Locations} \cup \text{FinSeq-Locations}) = s_2 \upharpoonright (\text{Int-Locations} \cup \text{FinSeq-Locations})$. Then $\mathbf{IC}_{\text{Exec}(i,s_1)} + n = \mathbf{IC}_{\text{Exec}(\text{IncAddr}(i,n),s_2)}$ and $\text{Exec}(i,s_1) \upharpoonright (\text{Int-Locations} \cup \text{FinSeq-Locations}) = \text{Exec}(\text{IncAddr}(i,n),s_2) \upharpoonright (\text{Int-Locations} \cup \text{FinSeq-Locations})$.
- (42) For all macro instructions I, J holds I and J are equal outside the instruction locations of \mathbf{SCM}_{FSA} .

- (43) For every macro instruction *I* holds dom Initialized(*I*) = dom $I \cup \{\text{intloc}(0)\} \cup \{\text{IC}_{\text{SCM}_{\text{PSA}}}\}$.
- (44) For every macro instruction I and for every set x such that $x \in \text{dom Initialized}(I)$ holds $x \in \text{dom } I$ or x = intloc(0) or $x = \mathbf{IC_{SCM_{FSA}}}$.
- (45) For every macro instruction I holds $intloc(0) \in dom Initialized(<math>I$).
- (46) For every macro instruction I holds (Initialized(I))(intloc(0)) = 1 and $(Initialized(I))(\mathbf{IC}_{\mathbf{SCM}_{\mathrm{FSA}}}) = insloc(0)$.
- (47) For every macro instruction I holds $intloc(0) \notin dom I$ and $IC_{SCM_{FSA}} \notin dom I$.
- (48) For every macro instruction I and for every integer location a such that $a \neq \text{intloc}(0)$ holds $a \notin \text{dom Initialized}(I)$.
- (49) For every macro instruction I and for every finite sequence location f holds $f \notin \text{dom Initialized}(I)$.
- (50) For every macro instruction I and for every set x such that $x \in \text{dom } I$ holds I(x) = (Initialized(I))(x).
- (51) For all macro instructions I, J and for every state s of \mathbf{SCM}_{FSA} such that Initialized(J) $\subseteq s$ holds $s+\cdot$ Initialized(I) = $s+\cdot I$.
- (52) For all macro instructions I, J and for every state s of \mathbf{SCM}_{FSA} such that Initialized(J) $\subseteq s$ holds Initialized(I) $\subseteq s+\cdot I$.
- (53) Let I, J be macro instructions and s be a state of \mathbf{SCM}_{FSA} . Then $s+\cdot$ Initialized(I) and $s+\cdot$ Initialized(J) are equal outside the instruction locations of \mathbf{SCM}_{FSA} .

3. The composition of macroinstructions

Let I, J be macro instructions. The functor I; J yielding a macro instruction is defined by:

(Def. 4) I; J = Directed(I) + ProgramPart(Relocated(J, card I)).

We now state several propositions:

- (54) Let I, J be macro instructions and l be an instruction-location of \mathbf{SCM}_{FSA} . If $l \in \text{dom } I$ and $I(l) \neq \mathbf{halt}_{\mathbf{SCM}_{FSA}}$, then (I; J)(l) = I(l).
- (55) For all macro instructions I, J holds Directed(I) $\subseteq I$; J.
- (56) For all macro instructions I, J holds dom $I \subseteq \text{dom}(I; J)$.
- (57) For all macro instructions I, J holds $I+\cdot(I;J)=I;J$.
- (58) For all macro instructions I, J holds Initialized(I) + (I; J) = Initialized(I; J).
 - 4. THE COMPOSTION OF INSTRUCTION AND MACROINSTRUCTIONS

Let us consider i, J. The functor i; J yields a macro instruction and is defined by:

(Def. 5) i; J = Macro(i); J.

Let us consider I, j. The functor I; j yielding a macro instruction is defined by:

(Def. 6) I; j = I; Macro(j).

Let us consider i, j. The functor i; j yields a macro instruction and is defined by:

(Def. 7) i; j = Macro(i); Macro(j).

We now state a number of propositions:

- (59) i; j = Macro(i); j.
- (60) i; j = i; Macro(j).
- (61) $\operatorname{card}(I; J) = \operatorname{card} I + \operatorname{card} J$.
- (62) (I; J); K = I; (J; K).
- (63) (I; J); k = I; (J; k).
- (64) (I; j); K = I; (j; K).
- (65) (I; j); k = I; (j; k).
- (66) (i; J); K = i; (J; K).
- (67) (i; J); k = i; (J; k).
- (68) (i; j); K = i; (j; K).
- (69) (i; j); k = i; (j; k).

REFERENCES

- [1] Grzegorz Bancerek. Cardinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/card_1.html.
- [2] Grzegorz Bancerek. The fundamental properties of natural numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/nat_1.html.
- [3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/finseg_1.html.
- [4] Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/JFM/Vol8/funct_7.html.
- [5] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct 1.html.
- [6] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funct_ 2.html.
- [7] Czesław Byliński. A classical first order language. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/cqc_lang.html.
- [8] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/finseq_2.html.
- [9] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. *Journal of Formalized Mathematics*, 2, 1990. http://mizar.org/JFM/Vol2/funct_4.html.
- [10] Agata Darmochwał. Finite sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/finset_1.html.
- [11] Yatsuka Nakamura and Andrzej Trybulec. A mathematical model of CPU. Journal of Formalized Mathematics, 4, 1992. http://mizar.org/JFM/Vol4/ami_1.html.
- [12] Jan Popiołek. Some properties of functions modul and signum. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/ JFM/Vol1/absvalue.html.
- [13] Yasushi Tanaka. On the decomposition of the states of SCM. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/Vol5/ami_5.html.
- [14] Andrzej Trybulec. Enumerated sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/enumset1.html.
- [15] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [16] Andrzej Trybulec. Subsets of real numbers. Journal of Formalized Mathematics, Addenda, 2003. http://mizar.org/JFM/Addenda/numbers.html.
- [17] Andrzej Trybulec and Yatsuka Nakamura. Some remarks on the simple concrete model of computer. *Journal of Formalized Mathematics*, 5, 1993. http://mizar.org/JFM/Vo15/ami_3.html.
- [18] Andrzej Trybulec and Yatsuka Nakamura. Modifying addresses of instructions of SCM_{FSA}. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/JFM/Vol8/scmfsa_4.html.

- [19] Andrzej Trybulec and Yatsuka Nakamura. Relocability for SCM_{FSA}. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/JFM/Vol8/scmfsa_5.html.
- [20] Andrzej Trybulec, Yatsuka Nakamura, and Piotr Rudnicki. The SCM_{FSA} computer. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/JFM/Vol8/scmfsa_2.html.
- $[21] \begin{tabular}{ll} Michał J. Trybulec. Integers. {\it Journal of Formalized Mathematics}, 2, 1990. $$ $$ http://mizar.org/JFM/Vol2/int_1.html. \\ \end{tabular}$
- [22] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.
- [23] Edmund Woronowicz. Relations and their basic properties. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Voll/relat_1.html.

Received June 20, 1996

Published January 2, 2004