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Summary. We define a set of binary arithmetic expressions with the following oper-
ations:+, —, -, mod, anddiv and formalize the common meaning of the expressions in the set
of integers. Then, we define a compile function that for a given expression results in a program
for the SCM machine defined by Nakamura and Trybulec¢in [14]. We prove that the generated
program when loaded into the machine and executed computes the value of the expression.
The program uses additional memory and runs in time linear in length of the expression.

MML Identifier: scM_cowmp.

WWW: http://mizar.orqg/JFM/Vol5/scm_comp.html

The articles[[16],[[10],[[22],[[19],[[1],[[21],[[17],18],.[9],.[2], L8], [[14],[[15],.[20],[[18] L[5], 4],
[11], [12], [€], [7], and [13] provide the notation and terminology for this paper.
One can prove the following propositions:

(1) Letly, I be finite sequences of elements of the instructiori@i¥, D be a finite sequence
of elements of, andiy, p1, d1 be natural numbers. Then every state with instruction counter
oniq, with I1 ™ 1, located frompy, andD from d; is a state with instruction counter on with
I1 located frompz, andD from d; and a state with instruction counter an with I, located
from p1 + lenly, andD from d;.

(2) Letly, I2 be finite sequences of elements of the instructionS@M, i1, p1, di, K, i> be
natural numberss be a state with instruction counter gn with 11 ~ I, located frompz, and
gz fromdy, andu be a state 05CM. Supposel = (Computatiorts)) (k) andi(;,) = ICy. Then
uis a state with instruction counter o5 with |, located fromp; + lenly, ande; from ds.

The binary strict non empty tree construction structures&fwith terminals, nonterminals,
and useful nonterminals is defined by the conditions (Def. 1).

(Def. 1)()) The terminals of AEcy = Data-Logcw,
(i) the nonterminals of Akcy=[1,5], and
(iiiy  for all symbolsx, y, zof AEscm holdsx = (y,2) iff xe [:1,5].
A binary term is an element of TBEscwm).
Let n; be a nonterminal of AEcv and letts, to be binary terms. Them-tregts,to) is a binary
term.

Lett be a terminal of AEcm. Then the root tree dfis a binary term.
Lett be a terminal of AEcu. The functor@t yields a data-location and is defined by:

1This work was partially supported by NSERC Grant OGP9207 while the first author visited University
of Alberta, May—June 1993.
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(Def.2) @t —t.
One can prove the following two propositions:

(3) For every nonterminah; of AEscm holdsny = (0, 0) or ny = (0, 1) or ny = (0, 2) or
n1 = (0, 3) orng = (0, 4).

A (@) (0, 0) is a nonterminal of AEcw,
(i) (O, 1) is a nonterminal of AEcwm,

(i) (0, 2) is a nonterminal of Akcw,

(iv) {0, 3} is a nonterminal of AEcm, and
(v) {0, 4) is a nonterminal of AEcwm.

Letts, t4 be binary terms. The functés +t4 yielding a binary term is defined as follows:
(Def. 3) t3+ts4 = (0, O)-tregts,ta).
The functortz —t4 yielding a binary term is defined by:
(Def. 4) t3—tg= (0, 1)-tregts,ta).
The functorts - t4 yielding a binary term is defined by:
(Def. 5) t3-ts4 = (0, 2)-tregts,ta).
The functortz +t4 yields a binary term and is defined by:
(Def. 6) t3+tqg= (0, 3)-tregts,ta).
The functortz modt, yields a binary term and is defined as follows:
(Def. 7) tzmodts = (0, 4)-tregts,ta).
Next we state the proposition

(5) Letts be a binary term. Then

(i) there exists a terminalof AEscy such thats = the root tree of, or

(i) there exist binary termig, to such thats =t; +ty orts =ty —ty orts =ty -t orts =t; =t
or ts = t; modt;.

Let o be a nonterminal of AEcv and leti, j be integers. The functaxi, j) yielding an integer
is defined by:

(Def. 8)(i) o(i,j)=i+]if o=(0,0),
(i) ofi,j)=i—jifo=(0,1),
(i) ofi,j)=i-jif 0={0, 2},
(iv) ofi,j)=i+]jifo={0,3),
(v) ofi,j)=imodjif o= (0, 4).

Letsbe a state 06CM and lett be a terminal of Ascyw. Thens(t) is an integer.

Let D be a non empty set, Idtbe a function fronZ into D, and letx be an integer. Thefi(x)
is an element obD.

Let s be a state o8CM and letts be a binary term. The functag @ s yielding an integer is
defined by the condition (Def. 9).
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(Def. 9) There exists a functiohfrom TS(AEscw) into Z such that
() t@s=f(ts),
(i) for every terminalt of AEscm holds f(the root tree of) = s(t), and

(iii)  for every nonterminah; of AEscm and for all binary termg, t, and for all symbols 4,
r of AEscu such thary = the root label of; andr, = the root label of; andn; = (rq,r2)
and for all elements;, xp of Z such that; = f(t1) andxe = f(t2) holds f (n-tre€(ts, tz)) =

nl(Xl,Xz).

We now state three propositions:

(6) For every stats of SCM and for every terminal of AEscy holds (the root tree dfy @ s=
s(t).
(7) For every stats of SCM and for every nonterminai; of AEscm and for all binary terms
t1, to holds(ni-tregty, tz)) @s=ny (t; @51, @s).
(8) Letsbe a state 05CM andty, t, be binary terms. Theft; +t,) @s= (1 @s) + (1, @s)
and(ty —t) @s= (1,9s) — (,@s) andt; -, @s= (1, @) - (1, @s) and (t + to) @s= (1, @
s) + (t2@s) and(ty modty) @s= (t; @s)mod(t, @s).
Let n; be a nonterminal of AEcm and letn be a natural number. The functor Selfwrk n)
yields an element ofthe instructions o5CM qua sef* and is defined as follows:
(Def. 10)(i)) Selfworkn;,n) = (AddTo(dn,dn11)) if np = (0, O},
(i)  Selfwork(ny,n) = (SubFronidn, dnt1)) if Ny = (0, 1),
(i)  Selfwork(ng,n) = (MultBy(dn,dn11)) if np = (0, 2),
(iv) Selfwork(ni,n) = (Divide(dn,dn+1)) if g = (0, 3),
(v) Selfwork(ng,n) = (Divide(dn,dn+1),dn:=dns1) if N1 = (0, 4).

Letts be a binary term and let; be a natural number. The functor Compitea; ) yielding a
finite sequence of elements of the instruction§6M is defined by the condition (Def. 11).

(Def. 11) There exists a functiof from TS(AEscy) into ((the instructions o6CM qua seh* )N
such that

() Compile(ts,a;) = (f(ts) qua element of((the instructions 08CM qua sed*)V)(ay),

(ii) for every terminal t of AEscm there exists a functiong from N into
(the instructions 0oBCM qua seb* such thatg = f(the root tree ot) and for every natural
numbem holdsg(n) = (d,:=@t), and

(iii)  for every nonterminah; of AEscm and for all binary termss, t4 and for all symbols 4,
r, of AEscwm such thatr; = the root label oft; andr, = the root label ots andn; = (r1,
rp) there exist functiong, f1, f2 from N into (the instructions 06CM qua se}* such that
g = f(ni-tregts,ta)) and f1 = f(t3) and f, = f(t4) and for every natural number holds
g(n) = f1(n) ™ fo(n4 1) ~ Selfwork(ny, n).

We now state two propositions:

(9) For every terminal of AEscm and for every natural numberholds Compiléthe root tree
of t, n) = (dn:=©t).

(10) Letn; be a nonterminal of Agcw, t3, t4 be binary termsn be a natural number, and,
ro be symbols of AEcm. Suppose; = the root label oft3 andr, = the root label oft,
andny = (r1,rz). Then Compilén;-tregts,t4),n) = (Compilgtz,n)) ~ Compilgts,n+1)
Selfwork(ny, n).

Lett be a terminal of AEcu. The functord—1(t) yielding a natural number is defined by:

(Def 12) ddfl(t) =t.
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Letts be a binary term. The functor mgx(ts) yields a natural number and is defined by the
condition (Def. 13).
(Def. 13) There exists a functiohfrom TS(AEscwm) into N such that
(I) maxXpL (t5) = f(t5),
(i) for every terminalt of AEscy holds f (the root tree of) = d—%(t), and

(iif)  for every nonterminah; of AEscyu and for all binary termsy, t; and for all symbols, ro
of AEscum such that; = the root label of; andr; = the root label of, andn; = (ry1,r») and
for all natural numberss, X2 such thatx; = f(t1) andxy = f(t2) holds f (n;-treg(ts, tp)) =
max(X1,X2).

Next we state three propositions:

(11) For every terminal of AEscy holds max, (the root tree of) = d=1(t).

(12) For every nonterminaln; of AEscy and for all binary termst;, t; holds
maxpL (Ni-tregty, t2)) = maxmaxor (t1), maxpL (t2)).

(13) Letts be a binary term ang}, s, be states 06CM. Suppose that for every natural number
dy such thatl, < maxpL (ts) holdssy (dgy)) = S2(d(g,))- Thents @s; =t5@s;.

We now state two propositions:

(14) Letts be a binary termay, n, k be natural numbers, arglbe a state with instruction
counter om, with Compil€ts,a;) located fromn, andez from k. Supposey > maxpy (ts).
Then there exists a natural numbend there exists a statieof SCM such that

(i) u= (Computatiofis))(i + 1),
(i) i+1=IlenCompildts,a;),
(i) 1C (computatioris))(i) = In+i,
(iv) ICy= in+(i+1)7
(V) U(dg,)) =ts@s, and
(vi)  for every natural numbed; such thatl; < a; holdss(dg,)) = u(d(g,))-
(15) Letts be a binary termay, n, k be natural numbers, arglbe a state with instruction
counter onn, with (Compilgts,a;)) ~ (haltscm) located fromn, andez from k. Suppose

a1 > maxpL (ts). Thensis halting and(Results))(d,)) = ts @ s and the complexity o =
len Compiléts,a;).
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