A Compiler of Arithmetic Expressions for SCM¹ Grzegorz Bancerek Polish Academy of Sciences Institute of Mathematics Warsaw Piotr Rudnicki University of Alberta Department of Computing Science Edmonton **Summary.** We define a set of binary arithmetic expressions with the following operations: $+, -, \cdot, \mod$, and div and formalize the common meaning of the expressions in the set of integers. Then, we define a compile function that for a given expression results in a program for the **SCM** machine defined by Nakamura and Trybulec in [14]. We prove that the generated program when loaded into the machine and executed computes the value of the expression. The program uses additional memory and runs in time linear in length of the expression. MML Identifier: SCM_COMP. WWW: http://mizar.org/JFM/Vol5/scm_comp.html The articles [16], [10], [22], [19], [1], [21], [17], [8], [9], [2], [3], [14], [15], [20], [18], [5], [4], [11], [12], [6], [7], and [13] provide the notation and terminology for this paper. One can prove the following propositions: - (1) Let I_1 , I_2 be finite sequences of elements of the instructions of **SCM**, D be a finite sequence of elements of \mathbb{Z} , and i_1 , p_1 , d_1 be natural numbers. Then every state with instruction counter on i_1 , with $I_1 \cap I_2$ located from p_1 , and D from d_1 is a state with instruction counter on i_1 , with I_1 located from p_1 , and D from d_1 and a state with instruction counter on i_1 , with I_2 located from $p_1 + \text{len } I_1$, and D from d_1 . - (2) Let I_1 , I_2 be finite sequences of elements of the instructions of **SCM**, i_1 , p_1 , d_1 , k, i_2 be natural numbers, s be a state with instruction counter on i_1 , with $I_1 \cap I_2$ located from p_1 , and $e_{\mathbb{Z}}$ from d_1 , and u be a state of **SCM**. Suppose u = (Computation(s))(k) and $\mathbf{i}_{(i_2)} = \mathbf{IC}_u$. Then u is a state with instruction counter on i_2 , with I_2 located from $p_1 + \text{len } I_1$, and $e_{\mathbb{Z}}$ from d_1 . The binary strict non empty tree construction structure AE_{SCM} with terminals, nonterminals, and useful nonterminals is defined by the conditions (Def. 1). - (Def. 1)(i) The terminals of $AE_{SCM} = Data-Loc_{SCM}$, - (ii) the nonterminals of $AE_{SCM} = [:1, 5:]$, and - (iii) for all symbols x, y, z of AE_{SCM} holds $x \Rightarrow \langle y, z \rangle$ iff $x \in [:1, 5:]$. A binary term is an element of $TS(AE_{SCM})$. Let n_1 be a nonterminal of AE_{SCM} and let t_1 , t_2 be binary terms. Then n_1 -tree (t_1, t_2) is a binary term. Let t be a terminal of AE_{SCM}. Then the root tree of t is a binary term. Let t be a terminal of AE_{SCM}. The functor $^{@}t$ yields a data-location and is defined by: 1 ¹This work was partially supported by NSERC Grant OGP9207 while the first author visited University of Alberta, May–June 1993. (Def. 2) $$^{@}t = t$$. One can prove the following two propositions: - (3) For every nonterminal n_1 of AE_{SCM} holds $n_1 = \langle 0, 0 \rangle$ or $n_1 = \langle 0, 1 \rangle$ or $n_1 = \langle 0, 2 \rangle$ or $n_1 = \langle 0, 3 \rangle$ or $n_1 = \langle 0, 4 \rangle$. - (4)(i) $\langle 0, 0 \rangle$ is a nonterminal of AE_{SCM}, - (ii) $\langle 0, 1 \rangle$ is a nonterminal of AE_{SCM}, - (iii) $\langle 0, 2 \rangle$ is a nonterminal of AE_{SCM}, - (iv) (0, 3) is a nonterminal of AE_{SCM}, and - (v) $\langle 0, 4 \rangle$ is a nonterminal of AE_{SCM}. Let t_3 , t_4 be binary terms. The functor $t_3 + t_4$ yielding a binary term is defined as follows: (Def. 3) $$t_3 + t_4 = \langle 0, 0 \rangle - \text{tree}(t_3, t_4)$$. The functor $t_3 - t_4$ yielding a binary term is defined by: (Def. 4) $$t_3 - t_4 = \langle 0, 1 \rangle - \text{tree}(t_3, t_4)$$. The functor $t_3 \cdot t_4$ yielding a binary term is defined by: (Def. 5) $$t_3 \cdot t_4 = \langle 0, 2 \rangle - \text{tree}(t_3, t_4)$$. The functor $t_3 \div t_4$ yields a binary term and is defined by: (Def. 6) $$t_3 \div t_4 = \langle 0, 3 \rangle - \text{tree}(t_3, t_4)$$. The functor $t_3 \mod t_4$ yields a binary term and is defined as follows: (Def. 7) $$t_3 \mod t_4 = \langle 0, 4 \rangle - \text{tree}(t_3, t_4)$$. Next we state the proposition - (5) Let t_5 be a binary term. Then - (i) there exists a terminal t of AE_{SCM} such that t_5 = the root tree of t, or - (ii) there exist binary terms t_1 , t_2 such that $t_5 = t_1 + t_2$ or $t_5 = t_1 t_2$ or $t_5 = t_1 \cdot t_2$ or $t_5 = t_1 + Let o be a nonterminal of AE_{SCM} and let i, j be integers. The functor o(i, j) yielding an integer is defined by: (Def. 8)(i) $$o(i, j) = i + j \text{ if } o = \langle 0, 0 \rangle$$, - (ii) o(i, j) = i j if o = (0, 1), - (iii) $o(i, j) = i \cdot j \text{ if } o = \langle 0, 2 \rangle,$ - (iv) $o(i, j) = i \div j \text{ if } o = \langle 0, 3 \rangle$, - (v) $o(i, j) = i \mod j \text{ if } o = \langle 0, 4 \rangle.$ Let s be a state of **SCM** and let t be a terminal of AE_{SCM} . Then s(t) is an integer. Let D be a non empty set, let f be a function from \mathbb{Z} into D, and let x be an integer. Then f(x) is an element of D. Let s be a state of **SCM** and let t_5 be a binary term. The functor t_5 [@] s yielding an integer is defined by the condition (Def. 9). - (Def. 9) There exists a function f from $TS(AE_{SCM})$ into \mathbb{Z} such that - (i) t_5 [@] $s = f(t_5)$, - (ii) for every terminal t of AE_{SCM} holds f(the root tree of t) = s(t), and - (iii) for every nonterminal n_1 of AE_{SCM} and for all binary terms t_1 , t_2 and for all symbols r_1 , r_2 of AE_{SCM} such that r_1 = the root label of t_1 and r_2 = the root label of t_2 and $n_1 \Rightarrow \langle r_1, r_2 \rangle$ and for all elements x_1 , x_2 of $\mathbb Z$ such that $x_1 = f(t_1)$ and $x_2 = f(t_2)$ holds $f(n_1$ -tree (t_1, t_2)) = $n_1(x_1, x_2)$. We now state three propositions: - (6) For every state *s* of **SCM** and for every terminal *t* of AE_{SCM} holds (the root tree of *t*) [@] s = s(t). - (7) For every state s of **SCM** and for every nonterminal n_1 of AE_{SCM} and for all binary terms t_1, t_2 holds $(n_1\text{-tree}(t_1, t_2))^{@} s = n_1(t_1^{@} s, t_2^{@} s)$. - (8) Let *s* be a state of **SCM** and t_1 , t_2 be binary terms. Then $(t_1 + t_2)^{@} s = (t_1^{@} s) + (t_2^{@} s)$ and $(t_1 t_2)^{@} s = (t_1^{@} s) (t_2^{@} s)$ and $t_1 \cdot t_2^{@} s = (t_1^{@} s) \cdot (t_2^{@} s)$ and $(t_1 \div t_2)^{@} s = (t_1^{@} s) \div (t_2^{@} s)$ and $(t_1 \bmod t_2)^{@} s = (t_1^{@} s) \bmod (t_2^{@} s)$. Let n_1 be a nonterminal of AE_{SCM} and let n be a natural number. The functor Selfwork (n_1, n) yields an element of (the instructions of **SCM qua** set)* and is defined as follows: - (Def. 10)(i) Selfwork $(n_1, n) = \langle \text{AddTo}(\mathbf{d}_n, \mathbf{d}_{n+1}) \rangle$ if $n_1 = \langle 0, 0 \rangle$, - (ii) Selfwork $(n_1, n) = \langle \text{SubFrom}(\mathbf{d}_n, \mathbf{d}_{n+1}) \rangle$ if $n_1 = \langle 0, 1 \rangle$, - (iii) Selfwork $(n_1, n) = \langle \text{MultBy}(\mathbf{d}_n, \mathbf{d}_{n+1}) \rangle$ if $n_1 = \langle 0, 2 \rangle$, - (iv) Selfwork $(n_1, n) = \langle \text{Divide}(\mathbf{d}_n, \mathbf{d}_{n+1}) \rangle$ if $n_1 = \langle 0, 3 \rangle$, - (v) Selfwork $(n_1, n) = \langle \text{Divide}(\mathbf{d}_n, \mathbf{d}_{n+1}), \mathbf{d}_n := \mathbf{d}_{n+1} \rangle$ if $n_1 = \langle 0, 4 \rangle$. Let t_5 be a binary term and let a_1 be a natural number. The functor Compile(t_5, a_1) yielding a finite sequence of elements of the instructions of **SCM** is defined by the condition (Def. 11). - (Def. 11) There exists a function f from $TS(AE_{SCM})$ into ((the instructions of **SCM qua** set)*) $^{\mathbb{N}}$ - (i) Compile $(t_5, a_1) = (f(t_5)$ **qua** element of ((the instructions of **SCM qua** set)*) $^{\mathbb{N}}$) (a_1) , - (ii) for every terminal t of AE_{SCM} there exists a function g from \mathbb{N} into (the instructions of **SCM qua** set)* such that g = f (the root tree of t) and for every natural number n holds $g(n) = \langle \mathbf{d}_n := {}^{\textcircled{@}} t \rangle$, and - (iii) for every nonterminal n_1 of AE_{SCM} and for all binary terms t_3 , t_4 and for all symbols r_1 , r_2 of AE_{SCM} such that r_1 = the root label of t_3 and r_2 = the root label of t_4 and $n_1 \Rightarrow \langle r_1, r_2 \rangle$ there exist functions g, f_1 , f_2 from $\mathbb N$ into (the instructions of **SCM qua** set)* such that $g = f(n_1\text{-tree}(t_3, t_4))$ and $f_1 = f(t_3)$ and $f_2 = f(t_4)$ and for every natural number n holds $g(n) = f_1(n) \land f_2(n+1) \land Selfwork(n_1, n)$. We now state two propositions: - (9) For every terminal t of AE_{SCM} and for every natural number n holds Compile(the root tree of t, n) = $\langle \mathbf{d}_n := {}^{@}t \rangle$. - (10) Let n_1 be a nonterminal of AE_{SCM}, t_3 , t_4 be binary terms, n be a natural number, and r_1 , r_2 be symbols of AE_{SCM}. Suppose r_1 = the root label of t_3 and r_2 = the root label of t_4 and $n_1 \Rightarrow \langle r_1, r_2 \rangle$. Then Compile(n_1 -tree(t_3, t_4), n) = (Compile(t_3, n)) \cap Compile($t_4, n+1$) \cap Selfwork(t_1, t_2). Let t be a terminal of AE_{SCM}. The functor $\mathbf{d}^{-1}(t)$ yielding a natural number is defined by: (Def. 12) $$\mathbf{d}_{\mathbf{d}^{-1}(t)} = t$$. Let t_5 be a binary term. The functor $\max_{DL}(t_5)$ yields a natural number and is defined by the condition (Def. 13). - (Def. 13) There exists a function f from TS(AE_{SCM}) into \mathbb{N} such that - (i) $\max_{DL}(t_5) = f(t_5),$ - (ii) for every terminal t of AE_{SCM} holds f (the root tree of t) = $\mathbf{d}^{-1}(t)$, and - (iii) for every nonterminal n_1 of AE_{SCM} and for all binary terms t_1 , t_2 and for all symbols r_1 , r_2 of AE_{SCM} such that r_1 = the root label of t_1 and r_2 = the root label of t_2 and $n_1 \Rightarrow \langle r_1, r_2 \rangle$ and for all natural numbers x_1 , x_2 such that $x_1 = f(t_1)$ and $x_2 = f(t_2)$ holds $f(n_1$ -tree (t_1, t_2)) = $\max(x_1, x_2)$. Next we state three propositions: - (11) For every terminal t of AE_{SCM} holds \max_{DL} (the root tree of t) = $\mathbf{d}^{-1}(t)$. - (12) For every nonterminal n_1 of AE_{SCM} and for all binary terms t_1 , t_2 holds $\max_{DL}(n_1\text{-tree}(t_1,t_2)) = \max(\max_{DL}(t_1),\max_{DL}(t_2))$. - (13) Let t_5 be a binary term and s_1 , s_2 be states of **SCM**. Suppose that for every natural number d_2 such that $d_2 \le \max_{DL}(t_5)$ holds $s_1(\mathbf{d}_{(d_2)}) = s_2(\mathbf{d}_{(d_2)})$. Then $t_5 \ ^@ s_1 = t_5 \ ^@ s_2$. We now state two propositions: - (14) Let t_5 be a binary term, a_1 , n, k be natural numbers, and s be a state with instruction counter on n, with Compile(t_5 , a_1) located from n, and $\varepsilon_{\mathbb{Z}}$ from k. Suppose $a_1 > \max_{DL}(t_5)$. Then there exists a natural number i and there exists a state u of **SCM** such that - (i) u = (Computation(s))(i+1), - (ii) $i+1 = \text{len Compile}(t_5, a_1),$ - (iii) $\mathbf{IC}_{(Computation(s))(i)} = \mathbf{i}_{n+i}$, - (iv) $IC_u = i_{n+(i+1)}$, - (v) $u(\mathbf{d}_{(a_1)}) = t_5^{\ @} s$, and - (vi) for every natural number d_2 such that $d_2 < a_1$ holds $s(\mathbf{d}_{(d_2)}) = u(\mathbf{d}_{(d_2)})$. - (15) Let t_5 be a binary term, a_1 , n, k be natural numbers, and s be a state with instruction counter on n, with $(\text{Compile}(t_5, a_1)) \cap \langle \mathbf{halt_{SCM}} \rangle$ located from n, and $\varepsilon_{\mathbb{Z}}$ from k. Suppose $a_1 > \max_{DL}(t_5)$. Then s is halting and $(\text{Result}(s))(\mathbf{d}_{(a_1)}) = t_5$ $^{\textcircled{e}}$ s and the complexity of $s = \text{len Compile}(t_5, a_1)$. ## REFERENCES - Grzegorz Bancerek. The fundamental properties of natural numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/nat_1.html. - [2] Grzegorz Bancerek. König's Lemma. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/trees_2.html. - [3] Grzegorz Bancerek. Joining of decorated trees. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/Vol5/trees_4.html. - [4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/finseq_1.html. - [5] Grzegorz Bancerek and Piotr Rudnicki. Development of terminology for scm. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/Vol5/scm_1.html. - [6] Grzegorz Bancerek and Piotr Rudnicki. On defining functions on binary trees. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/Vol5/bintreel.html. - [7] Grzegorz Bancerek and Piotr Rudnicki. On defining functions on trees. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/Vol5/dtconstr.html. - [8] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct 1.html. - [9] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_ 2.html. - [10] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/zfmisc_1.html. - [11] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. *Journal of Formalized Mathematics*, 2, 1990. http://mizar.org/JFM/Vol2/finseq_2.html. - [12] Patricia L. Carlson and Grzegorz Bancerek. Context-free grammar part I. Journal of Formalized Mathematics, 4, 1992. http://mizar.org/JFM/Vol4/langl.html. - [13] Jarosław Kotowicz. The limit of a real function at infinity. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/limfuncl.html. - [14] Yatsuka Nakamura and Andrzej Trybulec. A mathematical model of CPU. Journal of Formalized Mathematics, 4, 1992. http://mizar.org/JFM/Vol4/ami_1.html. - [15] Yatsuka Nakamura and Andrzej Trybulec. On a mathematical model of programs. Journal of Formalized Mathematics, 4, 1992. http://mizar.org/JFM/Vol4/ami_2.html. - [16] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html. - [17] Andrzej Trybulec. Tuples, projections and Cartesian products. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/mcart_1.html. - [18] Andrzej Trybulec. Function domains and Frænkel operator. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/fraenkel.html. - [19] Andrzej Trybulec. Subsets of real numbers. Journal of Formalized Mathematics, Addenda, 2003. http://mizar.org/JFM/Addenda/numbers.html. - [20] Andrzej Trybulec and Yatsuka Nakamura. Some remarks on the simple concrete model of computer. *Journal of Formalized Mathematics*, 5, 1993. http://mizar.org/JFM/Vol5/ami_3.html. - [21] Michał J. Trybulec. Integers. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/int_1.html. - [22] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html. Received December 30, 1993 Published January 2, 2004