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Summary. We develop a higher level terminology for theSCM machine defined by
Nakamura and Trybulec in [5]. Among numerous technical definitions and lemmas we define
a complexity measure of a halting state ofSCM and a loader forSCM for arbitrary finite
sequence of instructions. In order to test the introduced terminology we discuss properties of
eight shortest halting programs, one for each instruction.
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The articles [6], [11], [8], [1], [10], [7], [12], [3], [4], [2], [5], and [9] provide the notation and
terminology for this paper.

Let i be an integer. Then〈i〉 is a finite sequence of elements ofZ.
The following propositions are true:

(1) For every states of SCM holdsIC s = s(0) and CurInstr(s) = s(s(0)).

(2) For every statesof SCM and for every natural numberk holds CurInstr((Computation(s))(k))=
s(IC (Computation(s))(k)) and CurInstr((Computation(s))(k)) = s((Computation(s))(k)(0)).

(3) For every states of SCM such that there exists a natural numberk such that
s(IC (Computation(s))(k)) = haltSCM holdss is halting.

(4) For every statesof SCM and for every natural numberk such thats(IC (Computation(s))(k)) =
haltSCM holds Result(s) = (Computation(s))(k).

(7)1 For all natural numbersn, mholdsICSCM 6= in andICSCM 6= dn andin 6= dm.

Let I be a finite sequence of elements of the instructions ofSCM, let D be a finite sequence of
elements ofZ, and leti1, p1, d1 be natural numbers. A state ofSCM is called a state with instruction
counter oni1, with I located fromp1, andD from d1 if it satisfies the conditions (Def. 1).

(Def. 1)(i) IC it = i(i1),

(ii) for every natural numberk such thatk < lenI holds it(ip1+k) = I(k+1), and

(iii) for every natural numberk such thatk < lenD holds it(dd1+k) = D(k+1).

The following propositions are true:

1This work was partially supported by NSERC Grant OGP9207 while the first author visited University
of Alberta, May–June 1993.

1 The propositions (5) and (6) have been removed.
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(8) Let x1, x2, x3, x4 be sets andp be a finite sequence. Ifp = 〈x1〉a 〈x2〉a 〈x3〉a 〈x4〉, then
lenp = 4 andp(1) = x1 andp(2) = x2 andp(3) = x3 andp(4) = x4.

(9) Let x1, x2, x3, x4, x5 be sets andp be a finite sequence. Supposep = 〈x1〉a 〈x2〉a 〈x3〉a

〈x4〉a 〈x5〉. Then lenp = 5 andp(1) = x1 and p(2) = x2 and p(3) = x3 and p(4) = x4 and
p(5) = x5.

(10) Letx1, x2, x3, x4, x5, x6 be sets andp be a finite sequence. Supposep= 〈x1〉a 〈x2〉a 〈x3〉a

〈x4〉a 〈x5〉a 〈x6〉. Then lenp = 6 andp(1) = x1 andp(2) = x2 andp(3) = x3 andp(4) = x4

andp(5) = x5 andp(6) = x6.

(11) Letx1, x2, x3, x4, x5, x6, x7 be sets andp be a finite sequence. Supposep = 〈x1〉a 〈x2〉a

〈x3〉a 〈x4〉a 〈x5〉a 〈x6〉a 〈x7〉. Then lenp = 7 andp(1) = x1 and p(2) = x2 and p(3) = x3

andp(4) = x4 andp(5) = x5 andp(6) = x6 andp(7) = x7.

(12) Let x1, x2, x3, x4, x5, x6, x7, x8 be sets andp be a finite sequence. Supposep = 〈x1〉a

〈x2〉a 〈x3〉a 〈x4〉a 〈x5〉a 〈x6〉a 〈x7〉a 〈x8〉. Then lenp = 8 andp(1) = x1 andp(2) = x2 and
p(3) = x3 andp(4) = x4 andp(5) = x5 andp(6) = x6 andp(7) = x7 andp(8) = x8.

(13) Let x1, x2, x3, x4, x5, x6, x7, x8, x9 be sets andp be a finite sequence. Supposep =
〈x1〉a 〈x2〉a 〈x3〉a 〈x4〉a 〈x5〉a 〈x6〉a 〈x7〉a 〈x8〉a 〈x9〉. Then lenp = 9 andp(1) = x1 and
p(2) = x2 and p(3) = x3 and p(4) = x4 and p(5) = x5 and p(6) = x6 and p(7) = x7 and
p(8) = x8 andp(9) = x9.

(14) Let I1, I2, I3, I4, I5, I6, I7, I8, I9 be instructions ofSCM, i2, i3, i4, i5 be integers,i1 be a
natural number, ands be a state with instruction counter oni1, with 〈I1〉a 〈I2〉a 〈I3〉a 〈I4〉a

〈I5〉a 〈I6〉a 〈I7〉a 〈I8〉a 〈I9〉 located from 0, and〈i2〉a 〈i3〉a 〈i4〉a 〈i5〉 from 0. ThenICs = i(i1)
ands(i0) = I1 ands(i1) = I2 ands(i2) = I3 ands(i3) = I4 ands(i4) = I5 ands(i5) = I6 and
s(i6) = I7 and s(i7) = I8 and s(i8) = I9 and s(d0) = i2 and s(d1) = i3 and s(d2) = i4 and
s(d3) = i5.

(15) LetI1, I2 be instructions ofSCM, i2, i3 be integers,i1 be a natural number, andsbe a state
with instruction counter oni1, with 〈I1〉a 〈I2〉 located from 0, and〈i2〉a 〈i3〉 from 0. Then
IC s = i(i1) ands(i0) = I1 ands(i1) = I2 ands(d0) = i2 ands(d1) = i3.

Let N be a set with non empty elements, letSbe a halting IC-Ins-separated definite non empty
non void AMI overN, and lets be a state ofS. Let us assume thats is halting. The complexity ofs
is a natural number and is defined by the conditions (Def. 2).

(Def. 2)(i) CurInstr((Computation(s))(the complexity ofs)) = haltS, and

(ii) for every natural numberk such that CurInstr((Computation(s))(k)) = haltS holds the
complexity ofs≤ k.

We introduce LifeSpan(s) as a synonym of the complexity ofs.
We now state a number of propositions:

(16) Lets be a state ofSCM andk be a natural number. Thens(IC (Computation(s))(k)) 6= haltSCM
ands(IC (Computation(s))(k+1)) = haltSCM if and only if the complexity ofs = k+ 1 ands is
halting.

(17) Let s be a state ofSCM and k be a natural number. IfIC (Computation(s))(k) 6=
IC (Computation(s))(k+1) and s(IC (Computation(s))(k+1)) = haltSCM, then the complexity ofs =
k+1.

(18) Let k, n be natural numbers,s be a state ofSCM, and a, b be data-locations. Sup-
pose IC (Computation(s))(k) = in and s(in) = a:=b. Then IC (Computation(s))(k+1) = in+1 and
(Computation(s))(k+ 1)(a) = (Computation(s))(k)(b) and for every data-locationd such
thatd 6= a holds(Computation(s))(k+1)(d) = (Computation(s))(k)(d).
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(19) Let k, n be natural numbers,s be a state ofSCM, and a, b be data-locations.
SupposeIC (Computation(s))(k) = in and s(in) = AddTo(a,b). Then IC (Computation(s))(k+1) =
in+1 and (Computation(s))(k+ 1)(a) = (Computation(s))(k)(a) + (Computation(s))(k)(b)
and for every data-locationd such that d 6= a holds (Computation(s))(k + 1)(d) =
(Computation(s))(k)(d).

(20) Let k, n be natural numbers,s be a state ofSCM, and a, b be data-locations.
SupposeIC (Computation(s))(k) = in and s(in) = SubFrom(a,b). Then IC (Computation(s))(k+1) =
in+1 and (Computation(s))(k+ 1)(a) = (Computation(s))(k)(a)− (Computation(s))(k)(b)
and for every data-locationd such that d 6= a holds (Computation(s))(k + 1)(d) =
(Computation(s))(k)(d).

(21) Let k, n be natural numbers,s be a state ofSCM, and a, b be data-locations.
SupposeIC (Computation(s))(k) = in and s(in) = MultBy(a,b). Then IC (Computation(s))(k+1) =
in+1 and (Computation(s))(k + 1)(a) = (Computation(s))(k)(a) · (Computation(s))(k)(b)
and for every data-locationd such that d 6= a holds (Computation(s))(k + 1)(d) =
(Computation(s))(k)(d).

(22) Let k, n be natural numbers,s be a state ofSCM, anda, b be data-locations. Suppose
IC (Computation(s))(k) = in ands(in) = Divide(a,b) anda 6= b. Then

(i) IC (Computation(s))(k+1) = in+1,

(ii) (Computation(s))(k+1)(a) = (Computation(s))(k)(a)÷ (Computation(s))(k)(b),

(iii) (Computation(s))(k+1)(b) = (Computation(s))(k)(a)mod(Computation(s))(k)(b), and

(iv) for every data-locationd such thatd 6= a andd 6= b holds(Computation(s))(k+1)(d) =
(Computation(s))(k)(d).

(23) Letk, n be natural numbers,sbe a state ofSCM, andi1 be an instruction-location ofSCM.
SupposeIC (Computation(s))(k) = in ands(in) = goto i1. ThenIC (Computation(s))(k+1) = i1 and for
every data-locationd holds(Computation(s))(k+1)(d) = (Computation(s))(k)(d).

(24) Let k, n be natural numbers,s be a state ofSCM, a be a data-location, andi1 be an
instruction-location ofSCM. SupposeIC (Computation(s))(k) = in ands(in) = if a = 0 goto i1.
Then

(i) if (Computation(s))(k)(a) = 0, thenIC (Computation(s))(k+1) = i1,

(ii) if (Computation(s))(k)(a) 6= 0, thenIC (Computation(s))(k+1) = in+1, and

(iii) for every data-locationd holds(Computation(s))(k+1)(d) = (Computation(s))(k)(d).

(25) Let k, n be natural numbers,s be a state ofSCM, a be a data-location, andi1 be an
instruction-location ofSCM. SupposeIC (Computation(s))(k) = in ands(in) = if a > 0 goto i1.
Then

(i) if (Computation(s))(k)(a) > 0, thenIC (Computation(s))(k+1) = i1,

(ii) if (Computation(s))(k)(a)≤ 0, thenIC (Computation(s))(k+1) = in+1, and

(iii) for every data-locationd holds(Computation(s))(k+1)(d) = (Computation(s))(k)(d).

(26) (haltSCM)1 = 0 and for all data-locationsa, b holds(a:=b)1 = 1 and for all data-locations
a, b holds (AddTo(a,b))1 = 2 and for all data-locationsa, b holds (SubFrom(a,b))1 = 3
and for all data-locationsa, b holds(MultBy(a,b))1 = 4 and for all data-locationsa, b holds
(Divide(a,b))1 = 5 and for every instruction-locationi of SCM holds(goto i)1 = 6 and for
every data-locationa and for every instruction-locationi of SCM holds(if a = 0 goto i)1 =
7 and for every data-locationa and for every instruction-locationi of SCM holds
(if a > 0 goto i)1 = 8.

(27) Let N be a non empty set with non empty elements,S be an IC-Ins-separated definite
halting non empty non void AMI overN, sbe a state ofS, andmbe a natural number. Thens
is halting if and only if(Computation(s))(m) is halting.
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(28) Let s1, s2 be states ofSCM and k, c be natural numbers. Supposes2 =
(Computation(s1))(k) and the complexity ofs2 = c ands2 is halting and 0< c. Then the
complexity ofs1 = k+c.

(29) For all statess1, s2 of SCM and for every natural numberk such that s2 =
(Computation(s1))(k) ands2 is halting holds Result(s2) = Result(s1).

(30) Let I1, I2, I3, I4, I5, I6, I7, I8, I9 be instructions ofSCM, i2, i3, i4, i5 be integers,i1 be a
natural number, andsbe a state ofSCM. Suppose thatICs = i(i1) ands(i0) = I1 ands(i1) = I2
ands(i2) = I3 ands(i3) = I4 ands(i4) = I5 ands(i5) = I6 ands(i6) = I7 ands(i7) = I8 and
s(i8) = I9 ands(d0) = i2 ands(d1) = i3 ands(d2) = i4 ands(d3) = i5. Thens is a state with
instruction counter oni1, with 〈I1〉a 〈I2〉a 〈I3〉a 〈I4〉a 〈I5〉a 〈I6〉a 〈I7〉a 〈I8〉a 〈I9〉 located
from 0, and〈i2〉a 〈i3〉a 〈i4〉a 〈i5〉 from 0.

(31) Lets be a state with instruction counter on 0, with〈haltSCM〉 located from 0, andεZ from
0. Thens is halting and the complexity ofs= 0 and Result(s) = s.

(32) Let i2, i3 be integers ands be a state with instruction counter on 0, with〈d0:=d1〉 a

〈haltSCM〉 located from 0, and〈i2〉a 〈i3〉 from 0. Then

(i) s is halting,

(ii) the complexity ofs= 1,

(iii) (Result(s))(d0) = i3, and

(iv) for every data-locationd such thatd 6= d0 holds(Result(s))(d) = s(d).

(33) Let i2, i3 be integers andsbe a state with instruction counter on 0, with〈AddTo(d0,d1)〉a

〈haltSCM〉 located from 0, and〈i2〉a 〈i3〉 from 0. Then

(i) s is halting,

(ii) the complexity ofs= 1,

(iii) (Result(s))(d0) = i2 + i3, and

(iv) for every data-locationd such thatd 6= d0 holds(Result(s))(d) = s(d).

(34) Let i2, i3 be integers ands be a state with instruction counter on 0, with
〈SubFrom(d0,d1)〉a 〈haltSCM〉 located from 0, and〈i2〉a 〈i3〉 from 0. Then

(i) s is halting,

(ii) the complexity ofs= 1,

(iii) (Result(s))(d0) = i2− i3, and

(iv) for every data-locationd such thatd 6= d0 holds(Result(s))(d) = s(d).

(35) Leti2, i3 be integers andsbe a state with instruction counter on 0, with〈MultBy(d0,d1)〉a

〈haltSCM〉 located from 0, and〈i2〉a 〈i3〉 from 0. Then

(i) s is halting,

(ii) the complexity ofs= 1,

(iii) (Result(s))(d0) = i2 · i3, and

(iv) for every data-locationd such thatd 6= d0 holds(Result(s))(d) = s(d).

(36) Let i2, i3 be integers andsbe a state with instruction counter on 0, with〈Divide(d0,d1)〉a

〈haltSCM〉 located from 0, and〈i2〉a 〈i3〉 from 0. Then

(i) s is halting,

(ii) the complexity ofs= 1,

(iii) (Result(s))(d0) = i2÷ i3,

(iv) (Result(s))(d1) = i2 modi3, and

(v) for every data-locationd such thatd 6= d0 andd 6= d1 holds(Result(s))(d) = s(d).
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(37) Let i2, i3 be integers ands be a state with instruction counter on 0, with〈goto(i1)〉 a

〈haltSCM〉 located from 0, and〈i2〉a 〈i3〉 from 0. Thens is halting and the complexity of
s= 1 and for every data-locationd holds(Result(s))(d) = s(d).

(38) Leti2, i3 be integers andsbe a state with instruction counter on 0, with〈if d0 = 0 goto i1〉a

〈haltSCM〉 located from 0, and〈i2〉a 〈i3〉 from 0. Thens is halting and the complexity ofs= 1
and for every data-locationd holds(Result(s))(d) = s(d).

(39) Leti2, i3 be integers andsbe a state with instruction counter on 0, with〈if d0 > 0 goto i1〉a

〈haltSCM〉 located from 0, and〈i2〉a 〈i3〉 from 0. Thens is halting and the complexity ofs= 1
and for every data-locationd holds(Result(s))(d) = s(d).
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