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Summary. We develop a higher level terminology for t8&€M machine defined by
Nakamura and Trybulec in][5]. Among numerous technical definitions and lemmas we define
a complexity measure of a halting stateSEM and a loader foSCM for arbitrary finite
sequence of instructions. In order to test the introduced terminology we discuss properties of
eight shortest halting programs, one for each instruction.

MML Identifier: scM_1.
WWW: http://mizar.org/JFM/Vol5/scm_1.html

The articles|[6], [[11], [[8], [[1], [[10], [[¥], [12], [13], [[4], 2], [[5], and[[O] provide the notation and

terminology for this paper.
Leti be an integer. Thefi) is a finite sequence of elementsZf

The following propositions are true:

(1) For every state of SCM holdsIC s = s(0) and Curlnstfs) = s(s(0)).

(2) Forevery stateof SCM and for every natural numbkiholds Curlnstf(Computatioifs)) (k)) =
S(IC (computatioris)) (k) @nd Curinstf(Computatioits)) (k)) = s((Computatiofis))(k)(0)).

(83) For every states of SCM such that there exists a natural numbdersuch that
S(lc(Computatioms))(k)) = haltscp holdssis halting.

(4) For every state of SCM and for every natural numbé&rsuch thas(IC (computatios)) (k) =
haltscm holds Results) = (Computatiof(s)) (k).

(7H For all natural numbens, mholdsIC scu # in andIC scm # dn andip # dp.

Let | be a finite sequence of elements of the instructionrS@M, let D be a finite sequence of
elements of, and leti1, p1, d1 be natural numbers. A state 8CM is called a state with instruction
counter orig, with | located fromp;, andD from d; if it satisfies the conditions (Def. 1).

(Def. l) (I) ICi; = i(il)a
(i)  for every natural numbek such thak < lenl holds itip,.«) = I (k+1), and
(iiiy  for every natural numbek such thak < lenD holds it(dg, k) = D(k+1).

The following propositions are true:

1This work was partially supported by NSERC Grant OGP9207 while the first author visited University

of Alberta, May—June 1993.
1 The propositions (5) and (6) have been removed.
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(8) Letxq, X2, X3, X4 be sets angh be a finite sequence. = (x1) ™ (x2) ™ (X3) ™ (Xa), then
lenp=4andp(1) = x; andp(2) = xp andp(3) = xz andp(4) = Xa.

(9) Letxq, X2, X3, X4, X5 be sets angh be a finite sequence. Suppgse- (x1) ™ (X2) ™ (xg) °
(Xa) " (xs). Then lenp =5 andp(1) = x; and p(2) = x2 and p(3) = x3 and p(4) = x4 and
p(5) = Xs.

(10) Letxs, X2, X3, X4, X5, Xg be sets angh be a finite sequence. Suppgse: (X1) ™ (X2) ™ (X3) °
(Xa) ™ (Xs) ~ (Xg). Then lenp = 6 andp(1) = x; andp(2) = xz andp(3) = xz andp(4) = x4
andp(5) = xs andp(6) = xe.

(11) Letxq, X2, X3, X4, X5, Xg, X7 b€ Sets angh be a finite sequence. Suppgse: (x1) ~ (X2) °
(x3) ™ (xa) " (X5) " (Xg) " (X7). Then lenp =7 andp(1) = x; andp(2) = x; and p(3) = x3
andp(4) = x4 andp(5) = xs andp(6) = xg andp(7) = x.

(12) Letxs, X2, X3, X4, X5, X6, X7, Xg be sets an be a finite sequence. Suppose- (x3) ~
(X2) ™ (X3) ™ (Xa) ™ (Xs) ™ (X6) ™ (X7) ™ (xg). Then lenp = 8 andp(1) = x; andp(2) = x and
p(3) = xz andp(4) = x4 andp(5) = Xs andp(6) = xg and p(7) = x; andp(8) = xs.

(13) Letxy, X2, X3, X4, X5, X6, X7, Xg, X9 be sets anc be a finite sequence. Suppope=
(x1) ™ (x2) ~ (¥a) " {Xa) ™ (X6) " (X6) ~ {x7) " (Xe) " (Xs). Then lerp =9 andp(1) = x; and
p(2) = x2 and p(3) = x3 and p(4) = x4 and p(5) = x5 and p(6) = X and p(7) = X7 and
p(8) = xg andp(9) = Xo.

(14) Letly, lp, 13, 14, 15, lg, 17, Ig, lg be instructions oSCM, iy, i3, ia, i5 be integersj; be a
natural number, angbe a state with instruction counter on with {I1) = (I2) ~ (I3) = {l4) ~
(Is)~(ls) " (I7)~ (Is) " (lo) located from 0, andiz) ~ (i3) ~ (ia) ~ (is) from 0. ThenCs=ij;,)
ands(ig) = 11 ands(i1) = Iz ands(i2) = I3 ands(is) = I4 ands(is) = Is ands(is) = ls and
s(ie) = I7 ands(i7) = g ands(ig) = lg ands(dp) = iz ands(d1) = iz ands(d2) = is and
S(dg) = i5.

(15) Letly, I2 be instructions 06CM, iy, i3 be integersiy be a natural number, arsbe a state
with instruction counter oy, with (I1) ~ (l,) located from 0, andiz) ~ (iz) from 0. Then
ICs=iy ands(ip) = 11 ands(i1) = I ands(do) = i2 ands(d;) =3

Let N be a set with non empty elements, &lbe a halting IC-Ins-separated definite non empty
non void AMI overN, and lets be a state 0&. Let us assume thatis halting. The complexity of
is a natural number and is defined by the conditions (Def. 2).

(Def. 2)(i) Curlnstf(Computatiofis))(the complexity ofs)) = halts, and

(i) for every natural numbek such that Curlns{{Computatioifs))(k)) = halts holds the
complexity ofs < k.

We introduce LifeSpafs) as a synonym of the complexity ef
We now state a number of propositions:

(16) Letsbe a state 06CM andk be a natural number. The(IC (computations))(k)) 7 haltscm

and s(IC computatiors)) (k+1)) = haltscwm if and only if the complexity ofs = k+ 1 ands is
halting.

(17) Let s be a state ofSCM and k be a natural number.  HC computatiors) (k) 7
IC (computatiots)) (k+1) and S(lc(Computat|or(15))(k+l)) = haltscm, then the complexity of =
k+1.

(18) Letk, n be natural numberss be a state ofSCM, anda, b be data-locations. Sup-
pose IC computatiors))(k) = in and s(in) = a:=b. Then IC computatiots)) (k+1) = in+1 and
(Computationfs))(k+ 1)(a) = (Computatiorfs))(k)(b) and for every data-locatiod such
thatd # a holds(Computatiors) ) (k+ 1)(d) = (Computations)) (k) (d).
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(19) Let k, n be natural numberss be a state ofSCM, and a, b be data-locations.
SupposelC computations))(k) = in and s(in) = AddTo(a,b). Then IC computatios)) (k+1) =
in+1 and (Computationis))(k+ 1)(a) = (Computatiors))(k)(a) + (Computatiors)) (k) (b)
and for every data-locatiod such thatd # a holds (Computatiofs))(k + 1)(d) =
(Computatioifs))(k)(d).

(20) Let k, n be natural numberss be a state ofSCM, and a, b be data-locations.
SupposeC computatiors)) (k) = in and S(in) = SubFrona, b). Then IC (computatiots)) (k+1) =
int1 and (Computationis))(k + 1)(a) = (Computatiors))(k)(a) — (Computatioris)) (k) (b)
and for every data-locatiod such thatd # a holds (Computatioffs))(k + 1)(d) =
(Computatioigs)) (k) (d).

(21) Let k, n be natural numberss be a state ofSCM, and a, b be data-locations.
SupposelC computatiots)) (k) = in and s(in) = MultBy(a,b). Then IC computatiors))(k+1) =
inr1 and (Computationfs))(k + 1)(a) = (Computatiotts))(k)(a) - (Computations))(k)(b)
and for every data-locatioml such thatd # a holds (Computatiofs))(k + 1)(d) =
(Computatiots)) (k) (d).

(22) Letk, n be natural numbers be a state o65CM, anda, b be data-locations. Suppose
IC (computatios))(k) = Iin @nds(in) = Divide(a, b) anda # b. Then

(1) I1C (computations))(k+1) = in+1,
(i)  (Computations))(k+ 1)(a) = (Computatioifs))(k)(a) = (Computations)) (k) (b),
(i) (Computatioris))(k+ 1)(b) = (Computations)) (k) (a) mod(Computatiofs)) (k)(b), and

(iv) for every data-locatioml such thad # a andd # b holds (Computatioits) ) (k+1)(d) =
(Computatioigs)) (k) (d).

(23) Letk, nbe natural numbers,be a state 06CM, andi; be an instruction-location SCM.

SupposeC computatiors))(k) = in @nds(in) = gotoii. ThenIC computations))(k+1) = i1 and for
every data-locatiod holds(Computatioits))(k+ 1)(d) = (Computatiois)) (k) (d).

(24) Letk, n be natural numberss be a state oSCM, a be a data-location, and be an
instruction-location ofSCM. SupposdC computatiors))(k) = in ands(in) = if a= 0 gotois.
Then

@ i (CompUtaﬂO'@S))(k) (a) =0, thenIC (Computatiofs)) (k+1) — i1,
(i) if (Computatiotts))(k)(a) # O, thenlC computatiorts)) (k+ 1) = in+1, and
(iii)  for every data-locatiord holds(Computatiorfs))(k+ 1)(d) = (Computatioits))(k)(d).

(25) Letk, n be natural numberss be a state ofSCM, a be a data-location, anid be an
instruction-location ofSCM. SupposdC computatiorts))(k) = in ands(in) = if a > 0 gotois.
Then

@ if (Computatioros))(k) (a) >0, thenIC(Computation(ls))(k+l) =11,
(i) if (Computatios))(k)(a) < 0, thenIC computatiorts))(k+1) = in+1, and
(iii)  for every data-locatiord holds(Computatiorfs))(k+ 1)(d) = (Computatioits)) (k) (d).

(26) (haltscm)1 = 0 and for all data-locations, b holds(a:=b), = 1 and for all data-locations
a, b holds (AddTo(a,b)); = 2 and for all data-locations, b holds (SubFronfa,b)); = 3
and for all data-locationa, b holds(MultBy(a,b)); = 4 and for all data-locations, b holds
(Divide(a,b))1 = 5 and for every instruction-locatianof SCM holds (gotoi); = 6 and for
every data-locatiom and for every instruction-locationof SCM holds (if a=0gotoi); =
7 and for every data-locatiom and for every instruction-locatiom of SCM holds
(if a> 0gotoi); =8.

(27) LetN be a non empty set with non empty elemer8de an IC-Ins-separated definite
halting non empty non void AMI oveN, s be a state 0§, andm be a natural number. Then
is halting if and only if(Computatioiis))(m) is halting.
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(28) Let s, s be states ofSCM and k, ¢ be natural numbers. Suppose =
(Computationis;)) (k) and the complexity ok, = ¢ ands; is halting and 0< c. Then the
complexity ofs; = k+c.

(29) For all statess;, s, of SCM and for every natural numbek such thats, =
(Computatioifs; ) ) (k) ands; is halting holds Resuls,) = Results; ).

(30) Letly, Iy, I3, 14, 15, lg, 17, 1g, lg be instructions oSCM, iy, i3, ig, i5 be integersj; be a
natural number, anslbe a state 0BCM. Suppose thdCs =i,y ands(ip) = I3 ands(iz) =12
ands(iz) = I3 ands(iz) = 14 ands(ia) = Is ands(is) = lIg ands(is) = I7 ands(i7) = Ig and
s(ig) = lg ands(dp) = i» ands(d1) = iz ands(dy) = is ands(ds) = is. Thensis a state with
instruction counter oy, with (I1) ~ (12) ~ (I3) ~ (14) ~ (Is) ~ {lg) ~ (I7) ~ (Ig) ~ {lg) located
from 0, and(iz) " (i3) ~ (i4) ~ (is) from O.

(31) Letsbe a state with instruction counter on 0, witialtscy) located from 0, andy, from
0. Thensis halting and the complexity &f= 0 and Resu(s) = s.

(32) Letiy, i3 be integers and be a state with instruction counter on 0, wiftlp:=d;) ~
(haltscw) located from 0, andi,) ~ (iz) from 0. Then
(i) sis halting,
(i) the complexity ofs=1,
(i)  (Resuls))(do) = i3, and
(iv) for every data-location such thad # dp holds(Resul{s))(d) = s(d).
(33) Letip, i3 be integers and be a state with instruction counter on 0, withddTo(do,d1)) ~
(haltscm) located from 0, andiz) ~ (i) from 0. Then
(i) sis halting,
(i) the complexity ofs=1,
(i) (Results))(dp) =i2+i3, and
(iv) for every data-locatio such thatl # dp holds(Resul{s))(d) = s(d).
(34) Let iy, iz be integers ands be a state with instruction counter on 0, with
(SubFrontdg,d;1)) ~ (haltscm) located from 0, andiz) ™ (i3) from 0. Then
(i) sis halting,
(i) the complexity ofs=1,
(i) (Results))(dg) =i2—i3, and
(iv) for every data-locatio such thatl # dp holds(Results))(d) = s(d).
(35) Letiy, i3 be integers andbe a state with instruction counter on 0, witflultBy (do,d1)) ~
(haltscy) located from 0, andi,) ~ (iz) from 0. Then
(i) sis halting,
(i) the complexity ofs=1,
(i)  (Resulfs))(dg) =i»-i3, and
(iv) for every data-location such that # dp holds(Resul{s))(d) = s(d).
(36) Letiy, i3 be integers andbe a state with instruction counter on 0, w{bivide(do,d1)) °
(haltscy) located from 0, andi,) ~ (iz) from 0. Then
(i) sis halting,
(i) the complexity ofs=1,
(i) (Results))(do) =iz i3,
(iv) (Results))(d;) =iz modis, and
(v) for every data-locatiod such thatl # do andd # d; holds(Results))(d) = s(d).
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(37) Letiy, i3 be integers and be a state with instruction counter on 0, withoto (i1)) °
(haltscy) located from 0, andiy) ~ (is) from 0. Thens is halting and the complexity of
s=1 and for every data-locatiahholds(Resul{s))(d) = s(d).

(38) Letiy, iz be integers andbe a state with instruction counter on 0, wjthd o = 0 goto iy) ~
(haltscwm) located from 0, andiz) ~ (i) from 0. Thersis halting and the complexity &= 1
and for every data-locatiothholds(Resul{s))(d) = s(d).

(39) Letiy, iz beintegers andbe a state with instruction counter on 0, withd o > 0 goto iz) °
(haltscwm) located from 0, andiz) ~ (is) from 0. Thersis halting and the complexity af= 1
and for every data-locatiosh holds (Resul{s))(d) = s(d).
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