Development of Terminology for SCM¹

Grzegorz Bancerek Polish Academy of Sciences Institute of Mathematics Warsaw Piotr Rudnicki
University of Alberta
Department of Computing Science
Edmonton

Summary. We develop a higher level terminology for the **SCM** machine defined by Nakamura and Trybulec in [5]. Among numerous technical definitions and lemmas we define a complexity measure of a halting state of **SCM** and a loader for **SCM** for arbitrary finite sequence of instructions. In order to test the introduced terminology we discuss properties of eight shortest halting programs, one for each instruction.

MML Identifier: SCM 1.

WWW: http://mizar.org/JFM/Vol5/scm_1.html

The articles [6], [11], [8], [1], [10], [7], [12], [3], [4], [2], [5], and [9] provide the notation and terminology for this paper.

Let *i* be an integer. Then $\langle i \rangle$ is a finite sequence of elements of \mathbb{Z} .

The following propositions are true:

- (1) For every state s of **SCM** holds $\mathbf{IC}_s = s(0)$ and CurInstr(s) = s(s(0)).
- (2) For every state s of **SCM** and for every natural number k holds $CurInstr((Computation(s))(k)) = s(\mathbf{IC}_{(Computation(s))(k)})$ and CurInstr((Computation(s))(k)) = s((Computation(s))(k)(0)).
- (3) For every state s of **SCM** such that there exists a natural number k such that $s(\mathbf{IC}_{(Computation(s))(k)}) = \mathbf{halt}_{\mathbf{SCM}}$ holds s is halting.
- (4) For every state s of **SCM** and for every natural number k such that $s(\mathbf{IC}_{(Computation(s))(k)}) = \mathbf{halt}_{SCM}$ holds Result(s) = (Computation(s))(k).
- (7)¹ For all natural numbers n, m holds $\mathbf{IC}_{\mathbf{SCM}} \neq \mathbf{i}_n$ and $\mathbf{IC}_{\mathbf{SCM}} \neq \mathbf{d}_n$ and $\mathbf{i}_n \neq \mathbf{d}_m$.

Let I be a finite sequence of elements of the instructions of **SCM**, let D be a finite sequence of elements of \mathbb{Z} , and let i_1 , p_1 , d_1 be natural numbers. A state of **SCM** is called a state with instruction counter on i_1 , with I located from p_1 , and D from d_1 if it satisfies the conditions (Def. 1).

(Def. 1)(i) $IC_{it} = i_{(i_1)}$,

- (ii) for every natural number k such that $k < \text{len } I \text{ holds it}(\mathbf{i}_{p_1+k}) = I(k+1)$, and
- (iii) for every natural number k such that k < len D holds it $(\mathbf{d}_{d_1+k}) = D(k+1)$.

The following propositions are true:

¹This work was partially supported by NSERC Grant OGP9207 while the first author visited University of Alberta, May–June 1993.

¹ The propositions (5) and (6) have been removed.

- (8) Let x_1, x_2, x_3, x_4 be sets and p be a finite sequence. If $p = \langle x_1 \rangle \cap \langle x_2 \rangle \cap \langle x_3 \rangle \cap \langle x_4 \rangle$, then len p = 4 and $p(1) = x_1$ and $p(2) = x_2$ and $p(3) = x_3$ and $p(4) = x_4$.
- (9) Let x_1, x_2, x_3, x_4, x_5 be sets and p be a finite sequence. Suppose $p = \langle x_1 \rangle \cap \langle x_2 \rangle \cap \langle x_3 \rangle \cap \langle x_4 \rangle \cap \langle x_5 \rangle$. Then len p = 5 and $p(1) = x_1$ and $p(2) = x_2$ and $p(3) = x_3$ and $p(4) = x_4$ and $p(5) = x_5$.
- (10) Let $x_1, x_2, x_3, x_4, x_5, x_6$ be sets and p be a finite sequence. Suppose $p = \langle x_1 \rangle \cap \langle x_2 \rangle \cap \langle x_3 \rangle \cap \langle x_4 \rangle \cap \langle x_5 \rangle \cap \langle x_6 \rangle$. Then len p = 6 and $p(1) = x_1$ and $p(2) = x_2$ and $p(3) = x_3$ and $p(4) = x_4$ and $p(5) = x_5$ and $p(6) = x_6$.
- (11) Let x_1 , x_2 , x_3 , x_4 , x_5 , x_6 , x_7 be sets and p be a finite sequence. Suppose $p = \langle x_1 \rangle \cap \langle x_2 \rangle \cap \langle x_3 \rangle \cap \langle x_4 \rangle \cap \langle x_5 \rangle \cap \langle x_6 \rangle \cap \langle x_7 \rangle$. Then len p = 7 and $p(1) = x_1$ and $p(2) = x_2$ and $p(3) = x_3$ and $p(4) = x_4$ and $p(5) = x_5$ and $p(6) = x_6$ and $p(7) = x_7$.
- (12) Let x_1 , x_2 , x_3 , x_4 , x_5 , x_6 , x_7 , x_8 be sets and p be a finite sequence. Suppose $p = \langle x_1 \rangle \cap \langle x_2 \rangle \cap \langle x_3 \rangle \cap \langle x_4 \rangle \cap \langle x_5 \rangle \cap \langle x_6 \rangle \cap \langle x_7 \rangle \cap \langle x_8 \rangle$. Then len p = 8 and $p(1) = x_1$ and $p(2) = x_2$ and $p(3) = x_3$ and $p(4) = x_4$ and $p(5) = x_5$ and $p(6) = x_6$ and $p(7) = x_7$ and $p(8) = x_8$.
- (13) Let x_1 , x_2 , x_3 , x_4 , x_5 , x_6 , x_7 , x_8 , x_9 be sets and p be a finite sequence. Suppose $p = \langle x_1 \rangle \cap \langle x_2 \rangle \cap \langle x_3 \rangle \cap \langle x_4 \rangle \cap \langle x_5 \rangle \cap \langle x_6 \rangle \cap \langle x_7 \rangle \cap \langle x_8 \rangle \cap \langle x_9 \rangle$. Then len p = 9 and $p(1) = x_1$ and $p(2) = x_2$ and $p(3) = x_3$ and $p(4) = x_4$ and $p(5) = x_5$ and $p(6) = x_6$ and $p(7) = x_7$ and $p(8) = x_8$ and $p(9) = x_9$.
- (14) Let I_1 , I_2 , I_3 , I_4 , I_5 , I_6 , I_7 , I_8 , I_9 be instructions of **SCM**, i_2 , i_3 , i_4 , i_5 be integers, i_1 be a natural number, and s be a state with instruction counter on i_1 , with $\langle I_1 \rangle \cap \langle I_2 \rangle \cap \langle I_3 \rangle \cap \langle I_4 \rangle \cap \langle I_5 \rangle \cap \langle I_6 \rangle \cap \langle I_7 \rangle \cap \langle I_8 \rangle \cap \langle I_9 \rangle$ located from 0, and $\langle i_2 \rangle \cap \langle i_3 \rangle \cap \langle i_4 \rangle \cap \langle i_5 \rangle$ from 0. Then $\mathbf{IC}_s = \mathbf{i}_{(i_1)}$ and $s(\mathbf{i}_0) = I_1$ and $s(\mathbf{i}_1) = I_2$ and $s(\mathbf{i}_2) = I_3$ and $s(\mathbf{i}_3) = I_4$ and $s(\mathbf{i}_4) = I_5$ and $s(\mathbf{i}_5) = I_6$ and $s(\mathbf{i}_6) = I_7$ and $s(\mathbf{i}_7) = I_8$ and $s(\mathbf{i}_8) = I_9$ and $s(\mathbf{d}_0) = i_2$ and $s(\mathbf{d}_1) = i_3$ and $s(\mathbf{d}_2) = i_4$ and $s(\mathbf{d}_3) = i_5$.
- (15) Let I_1 , I_2 be instructions of **SCM**, i_2 , i_3 be integers, i_1 be a natural number, and s be a state with instruction counter on i_1 , with $\langle I_1 \rangle \cap \langle I_2 \rangle$ located from 0, and $\langle i_2 \rangle \cap \langle i_3 \rangle$ from 0. Then $\mathbf{IC}_s = \mathbf{i}_{(i_1)}$ and $s(\mathbf{i}_0) = I_1$ and $s(\mathbf{i}_1) = I_2$ and $s(\mathbf{d}_0) = i_2$ and $s(\mathbf{d}_1) = i_3$.

Let N be a set with non empty elements, let S be a halting IC-Ins-separated definite non empty non void AMI over N, and let s be a state of S. Let us assume that s is halting. The complexity of s is a natural number and is defined by the conditions (Def. 2).

- (Def. 2)(i) CurInstr((Computation(s))(the complexity of s)) = \mathbf{halt}_S , and
 - (ii) for every natural number k such that $CurInstr((Computation(s))(k)) = \mathbf{halt}_S$ holds the complexity of $s \le k$.

We introduce LifeSpan(s) as a synonym of the complexity of s. We now state a number of propositions:

- (16) Let s be a state of **SCM** and k be a natural number. Then $s(\mathbf{IC}_{(Computation(s))(k)}) \neq \mathbf{halt}_{\mathbf{SCM}}$ and $s(\mathbf{IC}_{(Computation(s))(k+1)}) = \mathbf{halt}_{\mathbf{SCM}}$ if and only if the complexity of s = k+1 and s is halting.
- (17) Let s be a state of **SCM** and k be a natural number. If $\mathbf{IC}_{(Computation(s))(k)} \neq \mathbf{IC}_{(Computation(s))(k+1)}$ and $s(\mathbf{IC}_{(Computation(s))(k+1)}) = \mathbf{halt}_{\mathbf{SCM}}$, then the complexity of s = k+1.
- (18) Let k, n be natural numbers, s be a state of **SCM**, and a, b be data-locations. Suppose $\mathbf{IC}_{(\operatorname{Computation}(s))(k)} = \mathbf{i}_n$ and $s(\mathbf{i}_n) = a := b$. Then $\mathbf{IC}_{(\operatorname{Computation}(s))(k+1)} = \mathbf{i}_{n+1}$ and $(\operatorname{Computation}(s))(k+1)(a) = (\operatorname{Computation}(s))(k)(b)$ and for every data-location d such that $d \neq a$ holds $(\operatorname{Computation}(s))(k+1)(d) = (\operatorname{Computation}(s))(k)(d)$.

- (19) Let k, n be natural numbers, s be a state of **SCM**, and a, b be data-locations. Suppose $\mathbf{IC}_{(Computation(s))(k)} = \mathbf{i}_n$ and $s(\mathbf{i}_n) = \mathrm{AddTo}(a,b)$. Then $\mathbf{IC}_{(Computation(s))(k+1)} = \mathbf{i}_{n+1}$ and (Computation(s))(k+1)(a) = (Computation(s))(k)(a) + (Computation(s))(k)(b) and for every data-location d such that $d \neq a$ holds (Computation(s))(k+1)(d) = (Computation(s))(k)(d).
- (20) Let k, n be natural numbers, s be a state of **SCM**, and a, b be data-locations. Suppose $\mathbf{IC}_{(Computation(s))(k)} = \mathbf{i}_n$ and $s(\mathbf{i}_n) = \operatorname{SubFrom}(a,b)$. Then $\mathbf{IC}_{(Computation(s))(k+1)} = \mathbf{i}_{n+1}$ and (Computation(s))(k+1)(a) = (Computation(s))(k)(a) (Computation(s))(k)(b) and for every data-location d such that $d \neq a$ holds (Computation(s))(k+1)(d) = (Computation(s))(k)(d).
- (21) Let k, n be natural numbers, s be a state of **SCM**, and a, b be data-locations. Suppose $\mathbf{IC}_{(\operatorname{Computation}(s))(k)} = \mathbf{i}_n$ and $s(\mathbf{i}_n) = \operatorname{MultBy}(a,b)$. Then $\mathbf{IC}_{(\operatorname{Computation}(s))(k+1)} = \mathbf{i}_{n+1}$ and $(\operatorname{Computation}(s))(k+1)(a) = (\operatorname{Computation}(s))(k)(a) \cdot (\operatorname{Computation}(s))(k)(b)$ and for every data-location d such that $d \neq a$ holds $(\operatorname{Computation}(s))(k+1)(d) = (\operatorname{Computation}(s))(k)(d)$.
- (22) Let k, n be natural numbers, s be a state of **SCM**, and a, b be data-locations. Suppose $\mathbf{IC}_{(\text{Computation}(s))(k)} = \mathbf{i}_n$ and $s(\mathbf{i}_n) = \text{Divide}(a, b)$ and $a \neq b$. Then
 - (i) $\mathbf{IC}_{(Computation(s))(k+1)} = \mathbf{i}_{n+1}$,
- (ii) (Computation(s)) $(k+1)(a) = (Computation(s))(k)(a) \div (Computation(s))(k)(b)$,
- (iii) (Computation(s))(k+1)(b) = (Computation(s))(k)(a) mod (Computation(s))(k)(b), and
- (iv) for every data-location d such that $d \neq a$ and $d \neq b$ holds (Computation(s))(k+1)(d) = (Computation(s))(k)(d).
- (23) Let k, n be natural numbers, s be a state of **SCM**, and i_1 be an instruction-location of **SCM**. Suppose $\mathbf{IC}_{(Computation(s))(k)} = \mathbf{i}_n$ and $s(\mathbf{i}_n) = \text{goto } i_1$. Then $\mathbf{IC}_{(Computation(s))(k+1)} = i_1$ and for every data-location d holds (Computation(s))(k+1)(d) = (Computation(s))(k)(d).
- (24) Let k, n be natural numbers, s be a state of **SCM**, a be a data-location, and i_1 be an instruction-location of **SCM**. Suppose $\mathbf{IC}_{(Computation(s))(k)} = \mathbf{i}_n$ and $s(\mathbf{i}_n) = \mathbf{if} \ a = 0$ goto i_1 . Then
 - (i) if (Computation(s))(k)(a) = 0, then $IC_{(Computation(s))(k+1)} = i_1$,
- (ii) if $(Computation(s))(k)(a) \neq 0$, then $IC_{(Computation(s))(k+1)} = \mathbf{i}_{n+1}$, and
- (iii) for every data-location d holds (Computation(s))(k+1)(d) = (Computation(s))(k)(d).
- (25) Let k, n be natural numbers, s be a state of **SCM**, a be a data-location, and i_1 be an instruction-location of **SCM**. Suppose $\mathbf{IC}_{(Computation(s))(k)} = \mathbf{i}_n$ and $s(\mathbf{i}_n) = \mathbf{i}\mathbf{f}$ a > 0 **goto** i_1 . Then
 - (i) if (Computation(s))(k)(a) > 0, then $IC_{(Computation(s))(k+1)} = i_1$,
- (ii) if $(Computation(s))(k)(a) \le 0$, then $IC_{(Computation(s))(k+1)} = \mathbf{i}_{n+1}$, and
- (iii) for every data-location d holds (Computation(s))(k+1)(d) = (Computation(s))(k)(d).
- (26) $(\mathbf{halt_{SCM}})_1 = 0$ and for all data-locations a, b holds $(a:=b)_1 = 1$ and for all data-locations a, b holds $(\mathrm{AddTo}(a,b))_1 = 2$ and for all data-locations a, b holds $(\mathrm{SubFrom}(a,b))_1 = 3$ and for all data-locations a, b holds $(\mathrm{MultBy}(a,b))_1 = 4$ and for all data-locations a, b holds $(\mathrm{Divide}(a,b))_1 = 5$ and for every instruction-location i of **SCM** holds $(\mathbf{goto}\ i)_1 = 6$ and for every data-location a and for every instruction-location a of **SCM** holds $(\mathbf{if}\ a = 0\ \mathbf{goto}\ i)_1 = 6$ and for every data-location a and for every instruction-location a and for every data-location a and for every instruction-location a and a holds $(\mathbf{if}\ a > 0\ \mathbf{goto}\ i)_1 = 8$.
- (27) Let N be a non empty set with non empty elements, S be an IC-Ins-separated definite halting non empty non void AMI over N, s be a state of S, and m be a natural number. Then s is halting if and only if (Computation(s))(m) is halting.

- (28) Let s_1 , s_2 be states of **SCM** and k, c be natural numbers. Suppose $s_2 = (\text{Computation}(s_1))(k)$ and the complexity of $s_2 = c$ and s_2 is halting and 0 < c. Then the complexity of $s_1 = k + c$.
- (29) For all states s_1 , s_2 of **SCM** and for every natural number k such that $s_2 = (\text{Computation}(s_1))(k)$ and s_2 is halting holds $\text{Result}(s_2) = \text{Result}(s_1)$.
- (30) Let I_1 , I_2 , I_3 , I_4 , I_5 , I_6 , I_7 , I_8 , I_9 be instructions of **SCM**, i_2 , i_3 , i_4 , i_5 be integers, i_1 be a natural number, and s be a state of **SCM**. Suppose that $\mathbf{IC}_s = \mathbf{i}_{(i_1)}$ and $s(\mathbf{i}_0) = I_1$ and $s(\mathbf{i}_1) = I_2$ and $s(\mathbf{i}_2) = I_3$ and $s(\mathbf{i}_3) = I_4$ and $s(\mathbf{i}_4) = I_5$ and $s(\mathbf{i}_5) = I_6$ and $s(\mathbf{i}_6) = I_7$ and $s(\mathbf{i}_7) = I_8$ and $s(\mathbf{i}_8) = I_9$ and $s(\mathbf{d}_0) = i_2$ and $s(\mathbf{d}_1) = i_3$ and $s(\mathbf{d}_2) = i_4$ and $s(\mathbf{d}_3) = i_5$. Then s is a state with instruction counter on i_1 , with $\langle I_1 \rangle \cap \langle I_2 \rangle \cap \langle I_3 \rangle \cap \langle I_4 \rangle \cap \langle I_5 \rangle \cap \langle I_6 \rangle \cap \langle I_7 \rangle \cap \langle I_8 \rangle \cap \langle I_9 \rangle$ located from 0, and $\langle i_2 \rangle \cap \langle i_3 \rangle \cap \langle i_4 \rangle \cap \langle i_5 \rangle$ from 0.
- (31) Let s be a state with instruction counter on 0, with $\langle \mathbf{halt_{SCM}} \rangle$ located from 0, and $\epsilon_{\mathbb{Z}}$ from 0. Then s is halting and the complexity of s = 0 and Result(s) = s.
- (32) Let i_2 , i_3 be integers and s be a state with instruction counter on 0, with $\langle \mathbf{d}_0 := \mathbf{d}_1 \rangle \cap \langle \mathbf{halt}_{SCM} \rangle$ located from 0, and $\langle i_2 \rangle \cap \langle i_3 \rangle$ from 0. Then
 - (i) s is halting,
- (ii) the complexity of s = 1,
- (iii) $(Result(s))(\mathbf{d}_0) = i_3$, and
- (iv) for every data-location d such that $d \neq \mathbf{d}_0$ holds (Result(s))(d) = s(d).
- (33) Let i_2 , i_3 be integers and s be a state with instruction counter on 0, with $\langle \text{AddTo}(\mathbf{d}_0, \mathbf{d}_1) \rangle \cap \langle \text{halt}_{SCM} \rangle$ located from 0, and $\langle i_2 \rangle \cap \langle i_3 \rangle$ from 0. Then
 - (i) s is halting,
- (ii) the complexity of s = 1,
- (iii) $(\text{Result}(s))(\mathbf{d}_0) = i_2 + i_3$, and
- (iv) for every data-location d such that $d \neq \mathbf{d}_0$ holds (Result(s))(d) = s(d).
- (34) Let i_2 , i_3 be integers and s be a state with instruction counter on 0, with $\langle \text{SubFrom}(\mathbf{d}_0, \mathbf{d}_1) \rangle \cap \langle \mathbf{halt_{SCM}} \rangle$ located from 0, and $\langle i_2 \rangle \cap \langle i_3 \rangle$ from 0. Then
 - (i) s is halting,
- (ii) the complexity of s = 1,
- (iii) $(\text{Result}(s))(\mathbf{d}_0) = i_2 i_3$, and
- (iv) for every data-location d such that $d \neq \mathbf{d}_0$ holds (Result(s))(d) = s(d).
- (35) Let i_2 , i_3 be integers and s be a state with instruction counter on 0, with $\langle \text{MultBy}(\mathbf{d}_0, \mathbf{d}_1) \rangle \cap \langle \text{halt}_{\mathbf{SCM}} \rangle$ located from 0, and $\langle i_2 \rangle \cap \langle i_3 \rangle$ from 0. Then
 - (i) s is halting,
- (ii) the complexity of s = 1,
- (iii) $(\text{Result}(s))(\mathbf{d}_0) = i_2 \cdot i_3$, and
- (iv) for every data-location d such that $d \neq \mathbf{d}_0$ holds (Result(s))(d) = s(d).
- (36) Let i_2 , i_3 be integers and s be a state with instruction counter on 0, with $\langle \text{Divide}(\mathbf{d}_0, \mathbf{d}_1) \rangle \cap \langle \text{halt}_{SCM} \rangle$ located from 0, and $\langle i_2 \rangle \cap \langle i_3 \rangle$ from 0. Then
 - (i) s is halting,
- (ii) the complexity of s = 1,
- (iii) $(\operatorname{Result}(s))(\mathbf{d}_0) = i_2 \div i_3,$
- (iv) $(\text{Result}(s))(\mathbf{d}_1) = i_2 \mod i_3$, and
- (v) for every data-location d such that $d \neq \mathbf{d}_0$ and $d \neq \mathbf{d}_1$ holds (Result(s))(d) = s(d).

- (37) Let i_2 , i_3 be integers and s be a state with instruction counter on 0, with $\langle \text{goto } (\mathbf{i}_1) \rangle \cap \langle \text{halt}_{\mathbf{SCM}} \rangle$ located from 0, and $\langle i_2 \rangle \cap \langle i_3 \rangle$ from 0. Then s is halting and the complexity of s = 1 and for every data-location d holds (Result(s))(d) = s(d).
- (38) Let i_2 , i_3 be integers and s be a state with instruction counter on 0, with $\langle \mathbf{if} \ \mathbf{d}_0 = 0 \ \mathbf{goto} \ \mathbf{i}_1 \rangle \cap \langle \mathbf{halt_{SCM}} \rangle$ located from 0, and $\langle i_2 \rangle \cap \langle i_3 \rangle$ from 0. Then s is halting and the complexity of s = 1 and for every data-location d holds $(\operatorname{Result}(s))(d) = s(d)$.
- (39) Let i_2 , i_3 be integers and s be a state with instruction counter on 0, with $\langle \mathbf{if} \ \mathbf{d}_0 > 0 \ \mathbf{goto} \ \mathbf{i}_1 \rangle \cap \langle \mathbf{halt_{SCM}} \rangle$ located from 0, and $\langle i_2 \rangle \cap \langle i_3 \rangle$ from 0. Then s is halting and the complexity of s = 1 and for every data-location d holds (Result(s))(d) = s(d).

REFERENCES

- Grzegorz Bancerek. The fundamental properties of natural numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/nat_1.html.
- [2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/finseg_1.html.
- [3] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funct_1.html.
- [4] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_ 2 html
- [5] Yatsuka Nakamura and Andrzej Trybulec. A mathematical model of CPU. Journal of Formalized Mathematics, 4, 1992. http://mizar.org/JFM/Vol4/ami_1.html.
- [6] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/ Axiomatics/tarski.html.
- [7] Andrzej Trybulec. Tuples, projections and Cartesian products. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/ Vol1/mcart_1.html.
- [8] Andrzej Trybulec. Subsets of real numbers. Journal of Formalized Mathematics, Addenda, 2003. http://mizar.org/JFM/Addenda/numbers.html.
- [9] Andrzej Trybulec and Yatsuka Nakamura. Some remarks on the simple concrete model of computer. *Journal of Formalized Mathematics*, 5, 1993. http://mizar.org/JFM/Vol5/ami_3.html.
- [10] Michał J. Trybulec. Integers. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/int_1.html.
- [11] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.
- [12] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relat_1.html.

Received October 8, 1993

Published January 2, 2004