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Summary. We prove some useful schemes of existence of real sequences, partial
functions from a domain into a domain, partial functions from a set to a set and functions
from a domain into a domain. At the beginning we prove some related auxiliary theorems
related to the article [1].

MML Identifier: SCHEME1.
WWW: http://mizar.org/JFM/Vol2/schemel.html

The articles|[8], [[5], [[10], [[9], L], [[11], 2], [12], [14], [[3], [[7], and[[B] provide the notation and
terminology for this paper.
We use the following conventiorx, y are setsn, mare natural numbers, amds a real number.
Next we state four propositions:

(1) For everynthere existsnsuch thah=2-morn=2-m+ 1.
(2) For everynthere existsnsuchthah=3-morn=3-m+1orn=3-m+2.
(3) Forevennthere existensuchthah=4-morn=4-m+lorn=4-m+2orn=4-m+3.

(4) Foreverynthere existsnsuchthah=5-morn=5-m+1orn=5-m+2orn=5-m+3
orn=5-m+4.

In this article we present several logical schemes. The sche®ealSubsedeals with a
sequenced of real numbers and a unary predicdteand states that:
There exists a sequengef real numbers such that
() qgisasubsequence df,
(i) for everynholds®[g(n)], and
(iii)  for every n such that for every such thar = 4(n) holds?[r] there existsn
such that4(n) = g(m)
provided the following condition is satisfied:
e For everyn there existsn such than < mand?[4(m)].
The scheméxRealSeq2ieals with two unary functor§ and G yielding real numbers, and
states that:
There exists a sequensef real numbers such that for evemholdss(2-n) = F(n)
ands(2-n+1) = G(n)
for all values of the parameter.
The schemd&xRealSeq8eals with three unary functorg, G, and A yielding real numbers,
and states that:
There exists a sequensef real numbers such that for evemholdss(3-n) = F(n)
ands(3-n+1) = G(n) ands(3-n+2) = #H(n)
for all values of the parameter.
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The schem&xRealSeqdeals with four unary functorg, G, #£, and! yielding real numbers,
and states that:
There exists a sequensef real numbers such that for evamholdss(4-n) = F (n)
ands(4-n+1) = G(n) ands(4-n+2) = #(n) ands(4-n+3) = I(n)
for all values of the parameter.
The schemé&xRealSeq8leals with five unary functorg, G, #, I, and 7 yielding real num-
bers, and states that:
There exists a sequensef real numbers such that for evamholds
s(5-n) = F(n) ands(5-n+1) = G(n) ands(5-n+2) = H(n) ands(5-n+3) =
I(n) ands(5-n+4) = 7(n)
for all values of the parameter.
The scheméPartFuncExD2deals with non empty setd, B, two unary functors¥ and G
yielding elements of3, and two unary predicate®, Q, and states that:
There exists a partial functiohfrom 4 to B such that
(i) forevery element of 4 holdsc € domf iff 2[c] or Q|c], and
(i) for every element of 4 such that € domf holds if P[c], thenf(c) = ¥ (c)
and if Q[c], thenf(c) = G(c)
provided the parameters meet the following condition:
e For every element of 4 such thatP|c| holds notQ|c].
The schemePartFuncExD2’deals with non empty setd, B, two unary functors? and G
yielding elements of3, and two unary predicate®, Q, and states that:
There exists a partial functiohfrom 4 to B such that
(i) for every element of 4 holdsc € domf iff 2[c] or Q|c]|, and
(i) for every element of 4 such that € domf holds if P[c], thenf(c) = 7 (c)
and if Q|c], thenf(c) = G(c)
provided the following condition is satisfied:
e For every element of 4 such thatP[c] andQ|c] holds ¥ (c) = G(c).
The schemdPartFuncExD2” deals with non empty setd, B, two unary functors¥ and G
yielding elements of3, and a unary predicatg, and states that:
There exists a partial functioh from 4 to B such thatf is total and for every
elementc of 4 such that € domf holds if P[], thenf(c) = ¥ (c) and if not?|c|,
thenf(c) = G(c)
for all values of the parameters.
The schem@artFuncExD3deals with non empty set8, B, three unary functor§, G, and#
yielding elements of3, and three unary predicatés Q, X, and states that:
There exists a partial functiohfrom 4 to B such that
(i) for every element of 4 holdsc € domf iff 2[c] or Q|c] or R [c], and
(i) for every element of 4 such that € domf holds if P[c], thenf(c) = F(c)
and if Q|c], thenf(c) = G(c) and if ® [c], thenf(c) = #(c)
provided the following condition is satisfied:
e For every element of 4 holds if P[c], then notQ|c] and if ?|c], then notg [c] and
if QJc], then notg [c].
The scheméartFuncExD3'deals with non empty set&, B, three unary functorg, G, and
H yielding elements of3, and three unary predicatés Q, R, and states that:
There exists a partial functiohfrom 4 to ‘B such that
(i) for every element of 4 holdsc € domf iff 2[c] or Q|c] or K [c], and
(i) for every element of 4 such that € domf holds if [c], thenf(c) = 7 (c)
and if Q|c], thenf(c) = G(c) and if R [c], thenf(c) = H(c)
provided the following condition is met:
e Letcbe anelementafi. Then
(i) if P[] andQ]c], thenF(c) = G(c),
(i) if P[c]andR]c], then¥ (c) = H(c), and
(i) if QJc]andR|c], thenG(c) = #H(c).
The schem@artFuncExD4deals with non empty set8, B, four unary functorsf, G, A, and
I yielding elements of8, and four unary predicateB, Q, R, S, and states that:
There exists a partial functiohfrom 4 to B such that
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(i) for every element of 4 holdsc € domf iff 2[c] or Q]c] or R [c] or S[c], and
(i) for every element of 4 such that € domf holds if P[c], thenf(c) = F (c)
and if Q|c], thenf(c) = G(c) and if R [c], thenf(c) = H(c) and if S[c], thenf(c) =
I(c)
provided the following requirement is met:
e Letcbe anelement afl. Then
(i) if P[c], then notQ]c],
(i) if P[c], then notR [c],
(iiiy if 2[c], then notS|c],
(iv) if QJc], then notR [c],
(v) if QJc], then notS|c], and
(vi) if ®[c], then notS|c].
The schem®artFuncExS2leals with sets1, B, two unary functorgF andg yielding sets, and
two unary predicate®, Q, and states that:
There exists a partial functiohfrom 2 to B such that
(i) for everyxholdsx € domf iff x € 4 but?[x] or Q|x], and
(if) for everyx such thax € domf holds if 2[x], thenf(x) = #(x) and if Q[x],
thenf(x) = G(X)
provided the parameters meet the following requirements:
e For everyx such tha € 4 holds if P[x], then notQ|x],
e For everyx such thak € 4 and?[x] holds F (x) € B, and
e For everyx such tha € 4 andQ|x] holds G(x) € B.
The scheméPartFuncExS3leals with sets, B, three unary functorg’, G, and # yielding
sets, and three unary predicai®sQ, R, and states that:
There exists a partial functiohfrom 4 to B such that
(i) foreveryxholdsx € domf iff x € 4 but?[x] or Q[X] or  [x], and
(if)  for everyx such thatx € domf holds if 2[x], thenf(x) = F(x) and if Q[X],
thenf(x) = G(x) and if R [X], thenf (x) = H(X)
provided the parameters meet the following requirements:
e For everyx such thaix € 4 holds if P[x], then notQ[x] and if 2[x], then notR [X|
and if Q[X], then notg [,
e For everyx such thak € 4 and®[x] holds ¥ (x) € B,
e For everyx such thak € 4 andQ|[x] holdsG(x) € B, and
e For everyx such thak € 4 and [x] holdsH (x) € B.
The scheméartFuncExS4leals with sets, B, four unary functorsf, G, #, and ! yielding
sets, and four unary predicat®s Q, R, S, and states that:
There exists a partial functiohfrom 4 to B such that
(i) foreveryxholdsx € domf iff x € 4 but?[x] or Q[X] or R [x] or S[x], and
(i) for everyx such thax € domf holds if ?[x], thenf(x) = F(x) and if Q|x],
thenf(x) = G(x) and if R [X], thenf(x) = H(x) and if S[x], thenf(x) = I(x)
provided the parameters satisfy the following conditions:
e Letgivenxsuchthak € 4. Then
(i) if P[x], then notQ|x],
(i) if P[x], then notR [x],
(i) if P[x], then notS[x],
(iv) if QJx], then notR [x],
(v) if Q[x], then notS[x], and
(vi) if R[x], then notS[x],
For everyx such thak € 4 and®[x] holds ¥ (x) € B,
For everyx such thak € 4 andQ x| holds G(x) € ‘B,
For everyx such tha € 2 and R [X] holds#(x) € B, and
For everyx such tha € 2 and$[x] holds I(x) € B.
The schem@artFuncExC D2leals with non empty set8, B, C, two binary functorsf andG
yielding elements of”, and two binary predicateB, Q, and states that:
There exists a partial functiohfrom [ 4, B to C such that
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(i) for every element of 4 and for every element of B holds(c, d} € domf
iff 2[c,d]or Q]c,d], and
(i) for every element of 4 and for every elememnt of B such thatc, d) € domf
holds if P[c,d], thenf({c, d)) = ¥ (c,d) and if Q|c,d], thenf({c,d)) = G(c,d)
provided the following requirement is met:
e For every element of 4 and for every elemerd of B such that?[c,d| holds not
Qle.d.
The scheméartFuncExC D3deals with non empty setg, B, C, three binary functorg, G,
and 4 yielding elements of’, and three binary predicatés Q, X, and states that:
There exists a partial functiohfrom [: 4, B to C such that
(i) for every element of 4 and for every elemerd of B holds(c, d) € domf
iff P[c,d] or Q]c,d] or % [c,d], and
(i) for every element of 4 and for every elememtof B such thafc, r) € domf
holds if 2[c,r], thenf({c,r)) = F(c,r) and if Q[c,r], thenf({c, r)) = G(c,r) and
if R[c,r], thenf({c,r))=H(c,r)
provided the following requirement is met:
e Letcbe an element ofl andsbe an element oB. Then
(i) if P[c,9, then notQ]c,d,
(i) if P[c,9], then notR [c,s], and
(i) if QJc,9, then not®[c,9.
The schemdPartFuncExC S2ieals with sets?, B, C, two binary functors¥ and G yielding
sets, and two binary predicat®s Q, and states that:
There exists a partial functiohfrom [ 4, B to C such that
(i) forall x,yholds(x, y) € domf iff xe 4 buty € B butP[x,y] or Q[x,y], and
(i) for all x, y such that(x, y} € domf holds if P[x,y], thenf({x,y)) = F(X,y)
and if Q[x.y], thenf ({x, y)) = G(xy)
provided the following conditions are satisfied:
e For allx, y such thak € 4 andy € B holds if P[x,y], then notQ][x, ],
e Forallx, ysuchthak € 4 andy € B and?[x,y] holds ¥ (x,y) € C, and
e Forallx, ysuchthak e 4 andy € B andQ]x,y] holdsG(x,y) € C.
The scheméPartFuncExC S3eals with setsq, B, C, three binary functorgf, G, and H
yielding sets, and three binary predicaf®sQ, X, and states that:
There exists a partial functiohfrom [ 4, B to C such that
(i) for all x, y holds(x, y) € domf iff x € 4 buty € B but P[x,y] or Q[x,y] or
R[xy], and
(i) forall x, y such that(x, y) € domf holds if P[x,y], thenf({x,y)) = F(X,y)
and if Q[x,y], thenf({x,y)) = G(x,y) and if R [x,y], thenf ({x, y)) = H(X,y)
provided the parameters meet the following requirements:
e For allx, y such tha € 4 andy € B holds if P[x,y], then notQ[x,y] and if P[x,y],
then notR [x,y] and if Q[x,y], then notR [x,y],
e For allx, y such thaik € 4 andy € B holds if P[x,y], thenF (x,y) € C,
e Forallx, ysuchthak € 4 andy € B holds if Q[x,y], thenG(x,y) € C, and
e For allx, y such thai € 2 andy € B holds if R [X,y], then#H (x,y) € C.
The scheméxFuncD3deals with non empty setd, B, three unary functorg, G, and #
yielding elements of3, and three unary predicatés Q, X, and states that:
There exists a functiofi from 4 into B such that for every elementof 4 holds
(i) if 2[c], thenf(c) = F(c),
(i) if QJc], thenf(c) = G(c), and
(i) if R|c], thenf(c)= H(c)
provided the parameters satisfy the following conditions:
e For every element of 4 holds if 2[c], then notQ|c| and if ?[c], then notR [c|] and
if Q[c], then notR [c], and
e For every element of 2 holds?|[c] or Q|c] or R [c].
The schemé&xFuncD4deals with non empty set8, B, four unary functorsf, G, H, and I
yielding elements of3, and four unary predicate®, Q, %, S, and states that:
There exists a functiofi from 4 into B such that for every elementof 4 holds
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(i) if 2[c], thenf(c) = F(c),
(i) if QJc], thenf(c)= G(c),
(i) if R[], thenf(c) = #(c), and
(iv) if S[c], thenf(c) = I(c)
provided the parameters satisfy the following conditions:
e Letchbe anelement ofl. Then
(i) if P[c], then notQ]c],
(i) if P[c], then notR [c],
(i) if 2[c], then notS|c],
(iv) if QJc], then notR c],
(v) if QJc], then notS|c], and
(vi) if R[c], then notS|c],
and
e For every element of 4 holds?|[c] or Q|c| or K [c] or S]c].
The schemé=uncExC D2deals with non empty setd, B, C, two binary functors¥ and G
yielding elements of”, and a binary predicat®, and states that:
There exists a functiofi from [:.4, B into C such that for every elemenbf 4 and
for every elemend of B holds
(i) if Plc,d], thenf({c,d)) = F(c,d), and
(i) if not 2[c,d], thenf((c,d)) = G(c,d)
for all values of the parameters.
The schemé&uncExC D3deals with non empty set8, B, C, three binary functors, G, and
H yielding elements of”, and three binary predicatgs Q, R, and states that:
There exists a functioh from [ 4, B into C such that
(i) for every element of 2 and for every elemert of B holds(c, d) € domf
iff P[c,d] or Q[c,d] or % [c,d], and
(i) for every element of 2 and for every element of B such thafc, d) € domf
holds if P[c,d], thenf ({c, d)) = ¥ (c,d) and if Q]c,d], thenf ({c, d}) = G(c,d) and
if ®[c,d], thenf({c,d)) = #(c,d)
provided the parameters meet the following requirements:
e Letchbe an element off andd be an element oB. Then
(i) if P[c,d], then notQ]c,d],
(i) if 2[c,d], then notR [c,d], and
(i) if QJc,d], then notg [c,d],
and
e For every element of 4 and for every elemerd of B holds P[c,d] or Q|c,d] or

R[c,d].
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