Schemes of Existence of Some Types of Functions

Jarosław Kotowicz Warsaw University Białystok

Summary. We prove some useful schemes of existence of real sequences, partial functions from a domain into a domain, partial functions from a set to a set and functions from a domain into a domain. At the beginning we prove some related auxiliary theorems related to the article [1].

MML Identifier: SCHEME1.

WWW: http://mizar.org/JFM/Vol2/scheme1.html

The articles [8], [5], [10], [9], [1], [11], [2], [12], [4], [3], [7], and [6] provide the notation and terminology for this paper.

We use the following convention: x, y are sets, n, m are natural numbers, and r is a real number. Next we state four propositions:

- (1) For every *n* there exists *m* such that $n = 2 \cdot m$ or $n = 2 \cdot m + 1$.
- (2) For every *n* there exists *m* such that $n = 3 \cdot m$ or $n = 3 \cdot m + 1$ or $n = 3 \cdot m + 2$.
- (3) For every *n* there exists *m* such that $n = 4 \cdot m$ or $n = 4 \cdot m + 1$ or $n = 4 \cdot m + 2$ or $n = 4 \cdot m + 3$.
- (4) For every *n* there exists *m* such that $n = 5 \cdot m$ or $n = 5 \cdot m + 1$ or $n = 5 \cdot m + 2$ or $n = 5 \cdot m + 3$ or $n = 5 \cdot m + 4$.

In this article we present several logical schemes. The scheme *ExRealSubseq* deals with a sequence \mathcal{A} of real numbers and a unary predicate \mathcal{P} , and states that:

There exists a sequence q of real numbers such that

- (i) q is a subsequence of \mathcal{A} ,
- (ii) for every *n* holds $\mathcal{P}[q(n)]$, and

(iii) for every *n* such that for every *r* such that $r = \mathcal{A}(n)$ holds $\mathcal{P}[r]$ there exists *m*

such that $\mathcal{A}(n) = q(m)$

provided the following condition is satisfied:

• For every *n* there exists *m* such that $n \leq m$ and $\mathcal{P}[\mathcal{A}(m)]$.

The scheme *ExRealSeq2* deals with two unary functors \mathcal{F} and \mathcal{G} yielding real numbers, and states that:

There exists a sequence *s* of real numbers such that for every *n* holds $s(2 \cdot n) = \mathcal{F}(n)$

and $s(2 \cdot n + 1) = \mathcal{G}(n)$ for all values of the parameter.

The scheme *ExRealSeq3* deals with three unary functors \mathcal{F} , \mathcal{G} , and \mathcal{H} yielding real numbers, and states that:

There exists a sequence *s* of real numbers such that for every *n* holds $s(3 \cdot n) = \mathcal{F}(n)$

and $s(3 \cdot n + 1) = \mathcal{G}(n)$ and $s(3 \cdot n + 2) = \mathcal{H}(n)$

for all values of the parameter.

The scheme *ExRealSeq4* deals with four unary functors \mathcal{F} , \mathcal{G} , \mathcal{H} , and I yielding real numbers, and states that:

There exists a sequence *s* of real numbers such that for every *n* holds $s(4 \cdot n) = \mathcal{F}(n)$ and $s(4 \cdot n + 1) = \mathcal{G}(n)$ and $s(4 \cdot n + 2) = \mathcal{H}(n)$ and $s(4 \cdot n + 3) = I(n)$ for all values of the parameter.

The scheme *ExRealSeq5* deals with five unary functors \mathcal{F} , \mathcal{G} , \mathcal{H} , I, and \mathcal{I} yielding real numbers, and states that:

There exists a sequence s of real numbers such that for every n holds

 $s(5 \cdot n) = \mathcal{F}(n)$ and $s(5 \cdot n + 1) = \mathcal{G}(n)$ and $s(5 \cdot n + 2) = \mathcal{H}(n)$ and $s(5 \cdot n + 3) = \mathcal{H}(n)$

I(n) and $s(5 \cdot n + 4) = \mathcal{J}(n)$

for all values of the parameter.

The scheme *PartFuncExD2* deals with non empty sets \mathcal{A} , \mathcal{B} , two unary functors \mathcal{F} and \mathcal{G} yielding elements of \mathcal{B} , and two unary predicates \mathcal{P} , Q, and states that:

There exists a partial function f from \mathcal{A} to \mathcal{B} such that

(i) for every element c of \mathcal{A} holds $c \in \text{dom } f$ iff $\mathcal{P}[c]$ or $\mathcal{Q}[c]$, and

(ii) for every element c of \mathcal{A} such that $c \in \text{dom } f$ holds if $\mathcal{P}[c]$, then $f(c) = \mathcal{F}(c)$

and if Q[c], then $f(c) = \mathcal{G}(c)$

provided the parameters meet the following condition:

• For every element c of \mathcal{A} such that $\mathcal{P}[c]$ holds not Q[c].

The scheme *PartFuncExD2*' deals with non empty sets \mathcal{A} , \mathcal{B} , two unary functors \mathcal{F} and \mathcal{G} yielding elements of \mathcal{B} , and two unary predicates \mathcal{P} , Q, and states that:

There exists a partial function f from \mathcal{A} to \mathcal{B} such that

(i) for every element c of \mathcal{A} holds $c \in \text{dom } f$ iff $\mathcal{P}[c]$ or Q[c], and

(ii) for every element c of \mathcal{A} such that $c \in \text{dom } f$ holds if $\mathcal{P}[c]$, then $f(c) = \mathcal{F}(c)$

and if Q[c], then f(c) = G(c)

provided the following condition is satisfied:

• For every element *c* of \mathcal{A} such that $\mathcal{P}[c]$ and Q[c] holds $\mathcal{F}(c) = \mathcal{G}(c)$.

The scheme *PartFuncExD2*" deals with non empty sets \mathcal{A} , \mathcal{B} , two unary functors \mathcal{F} and \mathcal{G} yielding elements of \mathcal{B} , and a unary predicate \mathcal{P} , and states that:

There exists a partial function f from \mathcal{A} to \mathcal{B} such that f is total and for every element c of \mathcal{A} such that $c \in \text{dom } f$ holds if $\mathcal{P}[c]$, then $f(c) = \mathcal{F}(c)$ and if not $\mathcal{P}[c]$,

then $f(c) = \mathcal{G}(c)$

for all values of the parameters.

The scheme *PartFuncExD3* deals with non empty sets \mathcal{A} , \mathcal{B} , three unary functors \mathcal{F} , \mathcal{G} , and \mathcal{H} yielding elements of \mathcal{B} , and three unary predicates \mathcal{P} , Q, \mathcal{R} , and states that:

There exists a partial function f from \mathcal{A} to \mathcal{B} such that

(i) for every element *c* of \mathcal{A} holds $c \in \text{dom } f$ iff $\mathcal{P}[c]$ or $\mathcal{Q}[c]$ or $\mathcal{R}[c]$, and

(ii) for every element c of \mathcal{A} such that $c \in \text{dom } f$ holds if $\mathcal{P}[c]$, then $f(c) = \mathcal{F}(c)$

and if Q[c], then f(c) = G(c) and if $\mathcal{R}[c]$, then $f(c) = \mathcal{H}(c)$

provided the following condition is satisfied:

For every element c of A holds if P[c], then not Q[c] and if P[c], then not R[c] and if Q[c], then not R[c].

The scheme *PartFuncExD3*' deals with non empty sets \mathcal{A} , \mathcal{B} , three unary functors \mathcal{F} , \mathcal{G} , and \mathcal{H} yielding elements of \mathcal{B} , and three unary predicates \mathcal{P} , \mathcal{Q} , \mathcal{R} , and states that:

There exists a partial function f from \mathcal{A} to \mathcal{B} such that

(i) for every element c of \mathcal{A} holds $c \in \text{dom } f$ iff $\mathcal{P}[c]$ or $\mathcal{Q}[c]$ or $\mathcal{R}[c]$, and

(ii) for every element c of \mathcal{A} such that $c \in \operatorname{dom} f$ holds if $\mathcal{P}[c]$, then $f(c) = \mathcal{F}(c)$

and if Q[c], then f(c) = G(c) and if $\mathcal{R}[c]$, then $f(c) = \mathcal{H}(c)$

provided the following condition is met:

• Let c be an element of \mathcal{A} . Then

- (i) if $\mathcal{P}[c]$ and $\mathcal{Q}[c]$, then $\mathcal{F}(c) = \mathcal{G}(c)$,
- (ii) if $\mathcal{P}[c]$ and $\mathcal{R}[c]$, then $\mathcal{F}(c) = \mathcal{H}(c)$, and
- (iii) if Q[c] and $\mathcal{R}[c]$, then $\mathcal{G}(c) = \mathcal{H}(c)$.

The scheme *PartFuncExD4* deals with non empty sets \mathcal{A} , \mathcal{B} , four unary functors \mathcal{F} , \mathcal{G} , \mathcal{H} , and *I* yielding elements of \mathcal{B} , and four unary predicates \mathcal{P} , \mathcal{Q} , \mathcal{R} , \mathcal{S} , and states that:

There exists a partial function f from \mathcal{A} to \mathcal{B} such that

(i) for every element *c* of \mathcal{A} holds $c \in \text{dom } f$ iff $\mathcal{P}[c]$ or $\mathcal{Q}[c]$ or $\mathcal{R}[c]$ or $\mathcal{S}[c]$, and

(ii) for every element c of \mathcal{A} such that $c \in \text{dom } f$ holds if $\mathcal{P}[c]$, then $f(c) = \mathcal{F}(c)$ and if Q[c], then $f(c) = \mathcal{G}(c)$ and if $\mathcal{R}[c]$, then $f(c) = \mathcal{H}(c)$ and if $\mathcal{S}[c]$, then f(c) = I(c)

provided the following requirement is met:

- Let c be an element of \mathcal{A} . Then
 - (i) if $\mathcal{P}[c]$, then not Q[c],
 - (ii) if $\mathcal{P}[c]$, then not $\mathcal{R}[c]$,
 - (iii) if $\mathcal{P}[c]$, then not $\mathcal{S}[c]$,
 - (iv) if Q[c], then not $\mathcal{R}[c]$,
 - (v) if Q[c], then not S[c], and
 - (vi) if $\mathcal{R}[c]$, then not $\mathcal{S}[c]$.

The scheme *PartFuncExS2* deals with sets \mathcal{A} , \mathcal{B} , two unary functors \mathcal{F} and \mathcal{G} yielding sets, and two unary predicates \mathcal{P} , \mathcal{Q} , and states that:

There exists a partial function f from \mathcal{A} to \mathcal{B} such that

(i) for every *x* holds $x \in \text{dom } f$ iff $x \in \mathcal{A}$ but $\mathcal{P}[x]$ or $\mathcal{Q}[x]$, and

(ii) for every x such that $x \in \text{dom } f$ holds if $\mathcal{P}[x]$, then $f(x) = \mathcal{F}(x)$ and if Q[x],

then $f(x) = \mathcal{G}(x)$

provided the parameters meet the following requirements:

- For every *x* such that $x \in \mathcal{A}$ holds if $\mathcal{P}[x]$, then not Q[x],
- For every *x* such that $x \in \mathcal{A}$ and $\mathcal{P}[x]$ holds $\mathcal{F}(x) \in \mathcal{B}$, and
- For every *x* such that $x \in \mathcal{A}$ and Q[x] holds $G(x) \in \mathcal{B}$.

The scheme *PartFuncExS3* deals with sets \mathcal{A} , \mathcal{B} , three unary functors \mathcal{F} , \mathcal{G} , and \mathcal{H} yielding sets, and three unary predicates \mathcal{P} , \mathcal{Q} , \mathcal{R} , and states that:

There exists a partial function f from \mathcal{A} to \mathcal{B} such that

(i) for every *x* holds $x \in \text{dom } f$ iff $x \in \mathcal{A}$ but $\mathcal{P}[x]$ or $\mathcal{Q}[x]$ or $\mathcal{R}[x]$, and

(ii) for every x such that $x \in \text{dom } f$ holds if $\mathcal{P}[x]$, then $f(x) = \mathcal{F}(x)$ and if Q[x],

then $f(x) = \mathcal{G}(x)$ and if $\mathcal{R}[x]$, then $f(x) = \mathcal{H}(x)$

provided the parameters meet the following requirements:

- For every x such that $x \in \mathcal{A}$ holds if $\mathcal{P}[x]$, then not Q[x] and if $\mathcal{P}[x]$, then not $\mathcal{R}[x]$ and if Q[x], then not $\mathcal{R}[x]$,
- For every *x* such that $x \in \mathcal{A}$ and $\mathcal{P}[x]$ holds $\mathcal{F}(x) \in \mathcal{B}$,
- For every *x* such that $x \in \mathcal{A}$ and Q[x] holds $G(x) \in \mathcal{B}$, and
- For every *x* such that $x \in \mathcal{A}$ and $\mathcal{R}[x]$ holds $\mathcal{H}(x) \in \mathcal{B}$.

The scheme *PartFuncExS4* deals with sets \mathcal{A} , \mathcal{B} , four unary functors \mathcal{F} , \mathcal{G} , \mathcal{H} , and I yielding sets, and four unary predicates \mathcal{P} , \mathcal{Q} , \mathcal{R} , \mathcal{S} , and states that:

There exists a partial function f from \mathcal{A} to \mathcal{B} such that

- (i) for every *x* holds $x \in \text{dom } f$ iff $x \in \mathcal{A}$ but $\mathcal{P}[x]$ or $\mathcal{Q}[x]$ or $\mathcal{R}[x]$ or $\mathcal{S}[x]$, and
- (ii) for every x such that $x \in \text{dom } f$ holds if $\mathcal{P}[x]$, then $f(x) = \mathcal{F}(x)$ and if Q[x],
- then $f(x) = \mathcal{G}(x)$ and if $\mathcal{R}[x]$, then $f(x) = \mathcal{H}(x)$ and if $\mathcal{S}[x]$, then f(x) = I(x)
- provided the parameters satisfy the following conditions:
 - Let given *x* such that $x \in \mathcal{A}$. Then
 - (i) if $\mathcal{P}[x]$, then not Q[x],
 - (ii) if $\mathcal{P}[x]$, then not $\mathcal{R}[x]$,
 - (iii) if $\mathcal{P}[x]$, then not $\mathcal{S}[x]$,
 - (iv) if Q[x], then not $\mathcal{R}[x]$,
 - (v) if Q[x], then not S[x], and
 - (vi) if $\mathcal{R}[x]$, then not $\mathcal{S}[x]$,
 - For every *x* such that $x \in \mathcal{A}$ and $\mathcal{P}[x]$ holds $\mathcal{F}(x) \in \mathcal{B}$,
 - For every *x* such that $x \in \mathcal{A}$ and Q[x] holds $G(x) \in \mathcal{B}$,
 - For every *x* such that $x \in \mathcal{A}$ and $\mathcal{R}[x]$ holds $\mathcal{H}(x) \in \mathcal{B}$, and
 - For every *x* such that $x \in \mathcal{A}$ and $\mathcal{S}[x]$ holds $I(x) \in \mathcal{B}$.

The scheme *PartFuncExC D2* deals with non empty sets $\mathcal{A}, \mathcal{B}, \mathcal{C}$, two binary functors \mathcal{F} and \mathcal{G} yielding elements of \mathcal{C} , and two binary predicates \mathcal{P}, Q , and states that:

There exists a partial function f from $[:\mathcal{A}, \mathcal{B}:]$ to \mathcal{C} such that

(i) for every element c of A and for every element d of B holds $(c, d) \in \text{dom } f$ iff $\mathcal{P}[c,d]$ or Q[c,d], and

(ii) for every element c of A and for every element d of B such that $\langle c, d \rangle \in \text{dom } f$ holds if $\mathcal{P}[c,d]$, then $f(\langle c,d \rangle) = \mathcal{F}(c,d)$ and if Q[c,d], then $f(\langle c,d \rangle) = G(c,d)$ provided the following requirement is met:

• For every element c of A and for every element d of B such that $\mathcal{P}[c,d]$ holds not Q[c,d].

The scheme PartFuncExC D3 deals with non empty sets $\mathcal{A}, \mathcal{B}, \mathcal{C}$, three binary functors \mathcal{F}, \mathcal{G} , and \mathcal{H} yielding elements of \mathcal{C} , and three binary predicates \mathcal{P} , \mathcal{Q} , \mathcal{R} , and states that:

There exists a partial function f from $[:\mathcal{A}, \mathcal{B}:]$ to \mathcal{C} such that

(i) for every element c of A and for every element d of B holds $(c, d) \in \text{dom } f$ iff $\mathcal{P}[c,d]$ or $\mathcal{Q}[c,d]$ or $\mathcal{R}[c,d]$, and

(ii) for every element *c* of \mathcal{A} and for every element *r* of \mathcal{B} such that $\langle c, r \rangle \in \text{dom } f$ holds if $\mathcal{P}[c,r]$, then $f(\langle c,r \rangle) = \mathcal{F}(c,r)$ and if Q[c,r], then $f(\langle c,r \rangle) = \mathcal{G}(c,r)$ and if $\mathcal{R}[c,r]$, then $f(\langle c,r \rangle) = \mathcal{H}(c,r)$

provided the following requirement is met:

• Let *c* be an element of \mathcal{A} and *s* be an element of \mathcal{B} . Then

- (i) if $\mathcal{P}[c,s]$, then not Q[c,s],
- (ii) if $\mathcal{P}[c,s]$, then not $\mathcal{R}[c,s]$, and
- (iii) if Q[c,s], then not $\mathcal{R}[c,s]$.

The scheme PartFuncExC S2 deals with sets $\mathcal{A}, \mathcal{B}, \mathcal{C}$, two binary functors \mathcal{F} and \mathcal{G} yielding sets, and two binary predicates \mathcal{P} , Q, and states that:

There exists a partial function f from $[:\mathcal{A}, \mathcal{B}:]$ to C such that

(i) for all x, y holds $\langle x, y \rangle \in \text{dom } f$ iff $x \in \mathcal{A}$ but $y \in \mathcal{B}$ but $\mathcal{P}[x, y]$ or $\mathcal{Q}[x, y]$, and

for all x, y such that $\langle x, y \rangle \in \text{dom } f$ holds if $\mathcal{P}[x, y]$, then $f(\langle x, y \rangle) = \mathcal{F}(x, y)$ (ii)

and if Q[x,y], then $f(\langle x, y \rangle) = G(x,y)$

provided the following conditions are satisfied:

- For all *x*, *y* such that $x \in \mathcal{A}$ and $y \in \mathcal{B}$ holds if $\mathcal{P}[x, y]$, then not Q[x, y],
- For all *x*, *y* such that $x \in \mathcal{A}$ and $y \in \mathcal{B}$ and $\mathcal{P}[x, y]$ holds $\mathcal{F}(x, y) \in \mathcal{C}$, and
- For all *x*, *y* such that $x \in \mathcal{A}$ and $y \in \mathcal{B}$ and Q[x, y] holds $G(x, y) \in C$.

The scheme PartFuncExC S3 deals with sets $\mathcal{A}, \mathcal{B}, \mathcal{C}$, three binary functors \mathcal{F}, \mathcal{G} , and \mathcal{H} yielding sets, and three binary predicates \mathcal{P} , Q, \mathcal{R} , and states that:

There exists a partial function f from $[:\mathcal{A}, \mathcal{B}:]$ to \mathcal{C} such that

for all x, y holds $\langle x, y \rangle \in \text{dom } f$ iff $x \in \mathcal{A}$ but $y \in \mathcal{B}$ but $\mathcal{P}[x, y]$ or Q[x, y] or (i) $\mathcal{R}[x, y]$, and

(ii) for all x, y such that $\langle x, y \rangle \in \text{dom } f$ holds if $\mathcal{P}[x, y]$, then $f(\langle x, y \rangle) = \mathcal{F}(x, y)$

and if Q[x,y], then $f(\langle x,y \rangle) = G(x,y)$ and if $\mathcal{R}[x,y]$, then $f(\langle x,y \rangle) = \mathcal{H}(x,y)$ provided the parameters meet the following requirements:

• For all x, y such that $x \in \mathcal{A}$ and $y \in \mathcal{B}$ holds if $\mathcal{P}[x, y]$, then not Q[x, y] and if $\mathcal{P}[x, y]$, then not $\mathcal{R}[x, y]$ and if Q[x, y], then not $\mathcal{R}[x, y]$,

- For all x, y such that $x \in \mathcal{A}$ and $y \in \mathcal{B}$ holds if $\mathcal{P}[x, y]$, then $\mathcal{F}(x, y) \in \mathcal{C}$,
- For all x, y such that $x \in \mathcal{A}$ and $y \in \mathcal{B}$ holds if Q[x, y], then $G(x, y) \in \mathcal{C}$, and
- For all *x*, *y* such that $x \in \mathcal{A}$ and $y \in \mathcal{B}$ holds if $\mathcal{R}[x, y]$, then $\mathcal{H}(x, y) \in \mathcal{C}$.

The scheme *ExFuncD3* deals with non empty sets \mathcal{A}, \mathcal{B} , three unary functors \mathcal{F}, \mathcal{G} , and \mathcal{H} yielding elements of \mathcal{B} , and three unary predicates \mathcal{P} , Q, \mathcal{R} , and states that:

There exists a function f from \mathcal{A} into \mathcal{B} such that for every element c of \mathcal{A} holds

- (i) if $\mathcal{P}[c]$, then $f(c) = \mathcal{F}(c)$,
- if Q[c], then f(c) = G(c), and (ii)
- (iii) if $\mathcal{R}[c]$, then $f(c) = \mathcal{H}(c)$

provided the parameters satisfy the following conditions:

• For every element c of A holds if $\mathcal{P}[c]$, then not Q[c] and if $\mathcal{P}[c]$, then not $\mathcal{R}[c]$ and if Q[c], then not $\mathcal{R}[c]$, and

• For every element c of \mathcal{A} holds $\mathcal{P}[c]$ or $\mathcal{Q}[c]$ or $\mathcal{R}[c]$.

The scheme *ExFuncD4* deals with non empty sets \mathcal{A} , \mathcal{B} , four unary functors \mathcal{F} , \mathcal{G} , \mathcal{H} , and Iyielding elements of \mathcal{B} , and four unary predicates \mathcal{P} , Q, \mathcal{R} , \mathcal{S} , and states that:

There exists a function f from \mathcal{A} into \mathcal{B} such that for every element c of \mathcal{A} holds

- (i) if $\mathcal{P}[c]$, then $f(c) = \mathcal{F}(c)$,
- (ii) if Q[c], then $f(c) = \mathcal{G}(c)$,
- (iii) if $\mathcal{R}[c]$, then $f(c) = \mathcal{H}(c)$, and
- (iv) if S[c], then f(c) = I(c)

provided the parameters satisfy the following conditions:

- Let c be an element of \mathcal{A} . Then
 - (i) if $\mathcal{P}[c]$, then not Q[c],
 - (ii) if $\mathcal{P}[c]$, then not $\mathcal{R}[c]$,
 - (iii) if $\mathcal{P}[c]$, then not $\mathcal{S}[c]$,
 - (iv) if Q[c], then not $\mathcal{R}[c]$,
 - (v) if Q[c], then not S[c], and
 - (vi) if $\mathcal{R}[c]$, then not $\mathcal{S}[c]$,

and

• For every element c of \mathcal{A} holds $\mathcal{P}[c]$ or $\mathcal{Q}[c]$ or $\mathcal{R}[c]$ or $\mathcal{S}[c]$.

The scheme *FuncExC D2* deals with non empty sets \mathcal{A} , \mathcal{B} , \mathcal{C} , two binary functors \mathcal{F} and \mathcal{G} yielding elements of \mathcal{C} , and a binary predicate \mathcal{P} , and states that:

There exists a function f from $[:\mathcal{A}, \mathcal{B}:]$ into \mathcal{C} such that for every element c of \mathcal{A} and

for every element d of \mathcal{B} holds

(i) if $\mathcal{P}[c,d]$, then $f(\langle c,d \rangle) = \mathcal{F}(c,d)$, and

(ii) if not $\mathcal{P}[c,d]$, then $f(\langle c,d\rangle) = \mathcal{G}(c,d)$

for all values of the parameters.

The scheme *FuncExC D3* deals with non empty sets \mathcal{A} , \mathcal{B} , \mathcal{C} , three binary functors \mathcal{F} , \mathcal{G} , and \mathcal{H} yielding elements of \mathcal{C} , and three binary predicates \mathcal{P} , \mathcal{Q} , \mathcal{R} , and states that:

There exists a function f from $[:\mathcal{A}, \mathcal{B}:]$ into \mathcal{C} such that

(i) for every element c of \mathcal{A} and for every element d of \mathcal{B} holds $\langle c, d \rangle \in \text{dom } f$ iff $\mathcal{P}[c,d]$ or $\mathcal{Q}[c,d]$ or $\mathcal{R}[c,d]$, and

(ii) for every element *c* of \mathcal{A} and for every element *d* of \mathcal{B} such that $\langle c, d \rangle \in \text{dom } f$ holds if $\mathcal{P}[c,d]$, then $f(\langle c, d \rangle) = \mathcal{F}(c,d)$ and if Q[c,d], then $f(\langle c, d \rangle) = \mathcal{G}(c,d)$ and if $\mathcal{P}[c,d]$ then $f(\langle c, d \rangle) = \mathcal{G}(c,d)$

if $\mathcal{R}[c,d]$, then $f(\langle c,d \rangle) = \mathcal{H}(c,d)$

provided the parameters meet the following requirements:

- Let c be an element of \mathcal{A} and d be an element of \mathcal{B} . Then
 - (i) if $\mathcal{P}[c,d]$, then not Q[c,d],
 - (ii) if $\mathcal{P}[c,d]$, then not $\mathcal{R}[c,d]$, and
 - (iii) if Q[c,d], then not $\mathcal{R}[c,d]$,

and

• For every element c of A and for every element d of B holds $\mathcal{P}[c,d]$ or $\mathcal{Q}[c,d]$ or $\mathcal{R}[c,d]$.

REFERENCES

- Grzegorz Bancerek. The fundamental properties of natural numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/nat_1.html.
- [2] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funct_1.html.
- [3] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funct_ 2.html.
- [4] Czesław Byliński. Partial functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/partfun1.html.
- [5] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ zfmisc_1.html.
- [6] Jarosław Kotowicz. Monotone real sequences. Subsequences. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Vol1/seqm_3.html.
- [7] Jarosław Kotowicz. Real sequences and basic operations on them. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/ JFM/Voll/seq_1.html.
- [8] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/ Axiomatics/tarski.html.

- [9] Andrzej Trybulec. Subsets of real numbers. Journal of Formalized Mathematics, Addenda, 2003. http://mizar.org/JFM/Addenda/ numbers.html.
- [10] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/subset_1.html.
- [11] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Voll/relat_1.html.
- [12] Edmund Woronowicz. Relations defined on sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ relset_1.html.

Received September 21, 1990

Published January 2, 2004