Schemes of Existence of Some Types of Functions

Jarosław Kotowicz
Warsaw University
Białystok

Abstract

Summary. We prove some useful schemes of existence of real sequences, partial functions from a domain into a domain, partial functions from a set to a set and functions from a domain into a domain. At the beginning we prove some related auxiliary theorems related to the article [1].

MML Identifier: SCHEME1.
WWW:http://mizar.org/JFM/Vol2/scheme1.html

The articles [8], [5], [10], [9], [1], [11], [2], [12], [4], [3], [7], and [6] provide the notation and terminology for this paper.

We use the following convention: x, y are sets, n, m are natural numbers, and r is a real number.
Next we state four propositions:
(1) For every n there exists m such that $n=2 \cdot m$ or $n=2 \cdot m+1$.
(2) For every n there exists m such that $n=3 \cdot m$ or $n=3 \cdot m+1$ or $n=3 \cdot m+2$.
(3) For every n there exists m such that $n=4 \cdot m$ or $n=4 \cdot m+1$ or $n=4 \cdot m+2$ or $n=4 \cdot m+3$.
(4) For every n there exists m such that $n=5 \cdot m$ or $n=5 \cdot m+1$ or $n=5 \cdot m+2$ or $n=5 \cdot m+3$ or $n=5 \cdot m+4$.

In this article we present several logical schemes. The scheme ExRealSubseq deals with a sequence \mathcal{A} of real numbers and a unary predicate \mathcal{P}, and states that:

There exists a sequence q of real numbers such that
(i) q is a subsequence of \mathcal{A},
(ii) for every n holds $\mathcal{P}[q(n)]$, and
(iii) for every n such that for every r such that $r=\mathcal{A}(n)$ holds $\mathscr{P}[r]$ there exists m such that $\mathcal{A}(n)=q(m)$
provided the following condition is satisfied:

- For every n there exists m such that $n \leq m$ and $\mathscr{P}[\mathcal{A}(m)]$.

The scheme ExRealSeq 2 deals with two unary functors \mathcal{F} and \mathcal{G} yielding real numbers, and states that:

There exists a sequence s of real numbers such that for every n holds $s(2 \cdot n)=\mathcal{F}(n)$ and $s(2 \cdot n+1)=\mathcal{G}(n)$
for all values of the parameter.
The scheme ExRealSeq 3 deals with three unary functors \mathcal{F}, \mathcal{G}, and \mathcal{H} yielding real numbers, and states that:

There exists a sequence s of real numbers such that for every n holds $s(3 \cdot n)=\mathcal{F}(n)$ and $s(3 \cdot n+1)=\mathcal{G}(n)$ and $s(3 \cdot n+2)=\mathcal{H}(n)$
for all values of the parameter.

The scheme ExRealSeq4 deals with four unary functors $\mathcal{F}, \mathcal{G}, \mathcal{H}$, and I yielding real numbers, and states that:

There exists a sequence s of real numbers such that for every n holds $s(4 \cdot n)=\mathcal{F}(n)$ and $s(4 \cdot n+1)=\mathcal{G}(n)$ and $s(4 \cdot n+2)=\mathcal{H}(n)$ and $s(4 \cdot n+3)=I(n)$ for all values of the parameter.

The scheme ExRealSeq 5 deals with five unary functors $\mathcal{F}, \mathcal{G}, \mathcal{H}, I$, and \mathcal{I} yielding real numbers, and states that:

There exists a sequence s of real numbers such that for every n holds
$s(5 \cdot n)=\mathcal{F}(n)$ and $s(5 \cdot n+1)=\mathcal{G}(n)$ and $s(5 \cdot n+2)=\mathcal{H}(n)$ and $s(5 \cdot n+3)=$
$I(n)$ and $s(5 \cdot n+4)=\mathcal{I}(n)$
for all values of the parameter.
The scheme PartFuncExD2 deals with non empty sets \mathcal{A}, \mathcal{B}, two unary functors \mathcal{F} and \mathcal{G} yielding elements of \mathcal{B}, and two unary predicates \mathcal{P}, Q, and states that:

There exists a partial function f from \mathcal{A} to \mathcal{B} such that
(i) for every element c of \mathscr{A} holds $c \in \operatorname{dom} f$ iff $\mathcal{P}[c]$ or $Q[c]$, and
(ii) for every element c of \mathcal{A} such that $c \in \operatorname{dom} f$ holds if $\mathcal{P}[c]$, then $f(c)=\mathcal{F}(c)$
and if $Q[c]$, then $f(c)=\mathcal{G}(c)$
provided the parameters meet the following condition:

- For every element c of \mathcal{A} such that $\mathcal{P}[c]$ holds not $Q[c]$.

The scheme PartFuncExD2' deals with non empty sets \mathcal{A}, \mathcal{B}, two unary functors \mathcal{F} and \mathcal{G} yielding elements of \mathcal{B}, and two unary predicates \mathcal{P}, Q, and states that:

There exists a partial function f from \mathcal{A} to \mathcal{B} such that
(i) for every element c of \mathscr{A} holds $c \in \operatorname{dom} f$ iff $\mathcal{P}[c]$ or $Q[c]$, and
(ii) for every element c of \mathcal{A} such that $c \in \operatorname{dom} f$ holds if $\mathcal{P}[c]$, then $f(c)=\mathcal{F}(c)$
and if $Q[c]$, then $f(c)=\mathcal{G}(c)$
provided the following condition is satisfied:

- For every element c of \mathcal{A} such that $\mathcal{P}[c]$ and $Q[c]$ holds $\mathcal{F}(c)=\mathcal{G}(c)$.

The scheme PartFuncExD2" deals with non empty sets \mathcal{A}, \mathcal{B}, two unary functors \mathcal{F} and \mathcal{G} yielding elements of \mathcal{B}, and a unary predicate \mathcal{P}, and states that:

There exists a partial function f from \mathcal{A} to \mathcal{B} such that f is total and for every
element c of \mathcal{A} such that $c \in \operatorname{dom} f$ holds if $\mathcal{P}[c]$, then $f(c)=\mathcal{F}(c)$ and if not $\mathcal{P}[c]$,
then $f(c)=\mathcal{G}(c)$
for all values of the parameters.
The scheme PartFuncExD3 deals with non empty sets \mathcal{A}, \mathcal{B}, three unary functors \mathcal{F}, \mathcal{G}, and \mathcal{H} yielding elements of \mathcal{B}, and three unary predicates $\mathcal{P}, Q, \mathcal{R}$, and states that:

There exists a partial function f from \mathcal{A} to \mathcal{B} such that
(i) for every element c of \mathcal{A} holds $c \in \operatorname{dom} f$ iff $\mathcal{P}[c]$ or $Q[c]$ or $\mathcal{R}[c]$, and
(ii) for every element c of \mathcal{A} such that $c \in \operatorname{dom} f$ holds if $\mathcal{P}[c]$, then $f(c)=\mathcal{F}(c)$
and if $Q[c]$, then $f(c)=\mathcal{G}(c)$ and if $\mathcal{R}[c]$, then $f(c)=\mathcal{H}(c)$
provided the following condition is satisfied:

- For every element c of \mathcal{A} holds if $\mathcal{P}[c]$, then not $Q[c]$ and if $\mathcal{P}[c]$, then not $\mathcal{R}[c]$ and if $Q[c]$, then not $\mathcal{R}[c]$.
The scheme PartFuncExD3' deals with non empty sets \mathcal{A}, \mathcal{B}, three unary functors \mathcal{F}, \mathcal{G}, and \mathcal{H} yielding elements of \mathcal{B}, and three unary predicates $\mathcal{P}, Q, \mathcal{R}$, and states that:

There exists a partial function f from \mathcal{A} to \mathcal{B} such that
(i) for every element c of \mathcal{A} holds $c \in \operatorname{dom} f$ iff $\mathcal{P}[c]$ or $Q[c]$ or $\mathcal{R}[c]$, and
(ii) for every element c of \mathcal{A} such that $c \in \operatorname{dom} f$ holds if $\mathcal{P}[c]$, then $f(c)=\mathcal{F}(c)$
and if $Q[c]$, then $f(c)=\mathcal{G}(c)$ and if $\mathcal{R}[c]$, then $f(c)=\mathcal{H}(c)$
provided the following condition is met:

- Let c be an element of \mathcal{A}. Then
(i) if $\mathcal{P}[c]$ and $Q[c]$, then $\mathcal{F}(c)=\mathcal{G}(c)$,
(ii) if $\mathcal{P}[c]$ and $\mathcal{R}[c]$, then $\mathcal{F}(c)=\mathcal{H}(c)$, and
(iii) if $Q[c]$ and $\mathcal{R}[c]$, then $\mathcal{G}(c)=\mathcal{H}(c)$.

The scheme PartFuncExD4 deals with non empty sets \mathcal{A}, \mathcal{B}, four unary functors $\mathcal{F}, \mathcal{G}, \mathcal{H}$, and I yielding elements of \mathcal{B}, and four unary predicates $\mathcal{P}, Q, \mathcal{R}, \mathcal{S}$, and states that:

There exists a partial function f from \mathcal{A} to \mathcal{B} such that
(i) for every element c of \mathcal{A} holds $c \in \operatorname{dom} f$ iff $\mathcal{P}[c]$ or $Q[c]$ or $\mathcal{R}[c]$ or $\mathcal{S}[c]$, and
(ii) for every element c of \mathcal{A} such that $c \in \operatorname{dom} f$ holds if $\mathcal{P}[c]$, then $f(c)=\mathcal{F}(c)$ and if $Q[c]$, then $f(c)=\mathcal{G}(c)$ and if $\mathcal{R}[c]$, then $f(c)=\mathcal{H}(c)$ and if $\mathcal{S}[c]$, then $f(c)=$ $I(c)$
provided the following requirement is met:

- Let c be an element of \mathcal{A}. Then
(i) if $\mathcal{P}[c]$, then not $Q[c]$,
(ii) if $\mathcal{P}[c]$, then not $\mathcal{R}[c]$,
(iii) if $\mathcal{P}[c]$, then not $\mathcal{S}[c]$,
(iv) if $Q[c]$, then not $\mathcal{R}[c]$,
(v) if $Q[c]$, then not $S[c]$, and
(vi) if $\mathcal{R}[c]$, then not $\mathcal{S}[c]$.

The scheme PartFuncExS2 deals with sets \mathcal{A}, \mathcal{B}, two unary functors \mathcal{F} and \mathcal{G} yielding sets, and two unary predicates \mathcal{P}, Q, and states that:

There exists a partial function f from \mathcal{A} to \mathcal{B} such that
(i) for every x holds $x \in \operatorname{dom} f$ iff $x \in \mathcal{A}$ but $\mathcal{P}[x]$ or $Q[x]$, and
(ii) for every x such that $x \in \operatorname{dom} f$ holds if $\mathscr{P}[x]$, then $f(x)=\mathcal{F}(x)$ and if $Q[x]$, then $f(x)=\mathcal{G}(x)$
provided the parameters meet the following requirements:

- For every x such that $x \in \mathcal{A}$ holds if $\mathcal{P}[x]$, then not $Q[x]$,
- For every x such that $x \in \mathcal{A}$ and $\mathcal{P}[x]$ holds $\mathcal{F}(x) \in \mathcal{B}$, and
- For every x such that $x \in \mathcal{A}$ and $Q[x]$ holds $\mathcal{G}(x) \in \mathcal{B}$.

The scheme PartFuncExS3 deals with sets \mathcal{A}, \mathcal{B}, three unary functors \mathcal{F}, \mathcal{G}, and \mathcal{H} yielding sets, and three unary predicates $\mathcal{P}, Q, \mathcal{R}$, and states that:

There exists a partial function f from \mathcal{A} to \mathcal{B} such that
(i) for every x holds $x \in \operatorname{dom} f$ iff $x \in \mathcal{A}$ but $\mathcal{P}[x]$ or $Q[x]$ or $\mathcal{R}[x]$, and
(ii) for every x such that $x \in \operatorname{dom} f$ holds if $\mathscr{P}[x]$, then $f(x)=\mathcal{F}(x)$ and if $Q[x]$, then $f(x)=\mathcal{G}(x)$ and if $\mathcal{R}[x]$, then $f(x)=\mathcal{H}(x)$
provided the parameters meet the following requirements:

- For every x such that $x \in \mathcal{A}$ holds if $\mathcal{P}[x]$, then not $Q[x]$ and if $\mathcal{P}[x]$, then not $\mathcal{R}[x]$ and if $Q[x]$, then not $\mathcal{R}[x]$,
- For every x such that $x \in \mathcal{A}$ and $\mathscr{P}[x]$ holds $\mathcal{F}(x) \in \mathcal{B}$,
- For every x such that $x \in \mathcal{A}$ and $Q[x]$ holds $\mathcal{G}(x) \in \mathcal{B}$, and
- For every x such that $x \in \mathcal{A}$ and $\mathcal{R}[x]$ holds $\mathcal{H}(x) \in \mathcal{B}$.

The scheme PartFuncExS4 deals with sets \mathcal{A}, \mathcal{B}, four unary functors $\mathcal{F}, \mathcal{G}, \mathcal{H}$, and I yielding sets, and four unary predicates $\mathcal{P}, Q, \mathcal{R}, \mathcal{S}$, and states that:

There exists a partial function f from \mathcal{A} to \mathcal{B} such that
(i) for every x holds $x \in \operatorname{dom} f$ iff $x \in \mathcal{A}$ but $\mathcal{P}[x]$ or $\mathcal{Q}[x]$ or $\mathcal{R}[x]$ or $\mathcal{S}[x]$, and
(ii) for every x such that $x \in \operatorname{dom} f$ holds if $\mathscr{P}[x]$, then $f(x)=\mathcal{F}(x)$ and if $Q[x]$, then $f(x)=\mathcal{G}(x)$ and if $\mathcal{R}[x]$, then $f(x)=\mathcal{H}(x)$ and if $\mathcal{S}[x]$, then $f(x)=I(x)$
provided the parameters satisfy the following conditions:

- Let given x such that $x \in \mathcal{A}$. Then
(i) if $\mathcal{P}[x]$, then not $Q[x]$,
(ii) if $\mathcal{P}[x]$, then not $\mathcal{R}[x]$,
(iii) if $\mathcal{P}[x]$, then not $\mathcal{S}[x]$,
(iv) if $Q[x]$, then not $\mathcal{R}[x]$,
(v) if $Q[x]$, then not $\mathcal{S}[x]$, and
(vi) if $\mathcal{R}[x]$, then not $\mathcal{S}[x]$,
- For every x such that $x \in \mathcal{A}$ and $\mathcal{P}[x]$ holds $\mathcal{F}(x) \in \mathcal{B}$,
- For every x such that $x \in \mathcal{A}$ and $Q[x]$ holds $\mathcal{G}(x) \in \mathcal{B}$,
- For every x such that $x \in \mathcal{A}$ and $\mathcal{R}[x]$ holds $\mathcal{H}(x) \in \mathcal{B}$, and
- For every x such that $x \in \mathcal{A}$ and $\mathcal{S}[x]$ holds $I(x) \in \mathcal{B}$.

The scheme PartFuncExC D2 deals with non empty sets $\mathcal{A}, \mathcal{B}, \mathcal{C}$, two binary functors \mathcal{F} and \mathcal{G} yielding elements of \mathcal{C}, and two binary predicates \mathcal{P}, Q, and states that:

There exists a partial function f from $[: \mathcal{A}, \mathcal{B}:]$ to \mathcal{C} such that
(i) for every element c of \mathcal{A} and for every element d of \mathcal{B} holds $\langle c, d\rangle \in \operatorname{dom} f$ iff $\mathcal{P}[c, d]$ or $Q[c, d]$, and
(ii) for every element c of \mathcal{A} and for every element d of \mathcal{B} such that $\langle c, d\rangle \in \operatorname{dom} f$ holds if $\mathcal{P}[c, d]$, then $f(\langle c, d\rangle)=\mathcal{F}(c, d)$ and if $Q[c, d]$, then $f(\langle c, d\rangle)=\mathcal{G}(c, d)$ provided the following requirement is met:

- For every element c of \mathcal{A} and for every element d of \mathcal{B} such that $\mathcal{P}[c, d]$ holds not $Q[c, d]$.
The scheme PartFuncExC D3 deals with non empty sets $\mathcal{A}, \mathcal{B}, \mathcal{C}$, three binary functors \mathcal{F}, \mathcal{G}, and \mathcal{H} yielding elements of \mathcal{C}, and three binary predicates $\mathcal{P}, Q, \mathcal{R}$, and states that:

There exists a partial function f from $[: \mathcal{A}, \mathcal{B}:]$ to \mathcal{C} such that
(i) for every element c of \mathcal{A} and for every element d of \mathcal{B} holds $\langle c, d\rangle \in \operatorname{dom} f$ iff $\mathcal{P}[c, d]$ or $Q[c, d]$ or $\mathcal{R}[c, d]$, and
(ii) for every element c of \mathcal{A} and for every element r of \mathcal{B} such that $\langle c, r\rangle \in \operatorname{dom} f$ holds if $\mathcal{P}[c, r]$, then $f(\langle c, r\rangle)=\mathcal{F}(c, r)$ and if $Q[c, r]$, then $f(\langle c, r\rangle)=\mathcal{G}(c, r)$ and if $\mathcal{R}[c, r]$, then $f(\langle c, r\rangle)=\mathcal{H}(c, r)$
provided the following requirement is met:

- Let c be an element of \mathcal{A} and s be an element of \mathcal{B}. Then
(i) if $\mathcal{P}[c, s]$, then not $Q[c, s]$,
(ii) if $\mathcal{P}[c, s]$, then not $\mathcal{R}[c, s]$, and
(iii) if $Q[c, s]$, then not $\mathcal{R}[c, s]$.

The scheme PartFuncExC $S 2$ deals with sets $\mathcal{A}, \mathcal{B}, \mathcal{C}$, two binary functors \mathcal{F} and \mathcal{G} yielding sets, and two binary predicates \mathcal{P}, Q, and states that:

There exists a partial function f from $[: \mathcal{A}, \mathcal{B}:]$ to \mathcal{C} such that
(i) for all x, y holds $\langle x, y\rangle \in \operatorname{dom} f$ iff $x \in \mathcal{A}$ but $y \in \mathcal{B}$ but $\mathcal{P}[x, y]$ or $Q[x, y]$, and
(ii) for all x, y such that $\langle x, y\rangle \in \operatorname{dom} f$ holds if $\mathscr{P}[x, y]$, then $f(\langle x, y\rangle)=\mathcal{F}(x, y)$ and if $Q[x, y]$, then $f(\langle x, y\rangle)=\mathcal{G}(x, y)$
provided the following conditions are satisfied:

- For all x, y such that $x \in \mathcal{A}$ and $y \in \mathcal{B}$ holds if $\mathcal{P}[x, y]$, then not $Q[x, y]$,
- For all x, y such that $x \in \mathcal{A}$ and $y \in \mathcal{B}$ and $\mathcal{P}[x, y]$ holds $\mathcal{F}(x, y) \in \mathcal{C}$, and
- For all x, y such that $x \in \mathcal{A}$ and $y \in \mathcal{B}$ and $Q[x, y]$ holds $\mathcal{G}(x, y) \in \mathcal{C}$.

The scheme PartFuncExC $S 3$ deals with sets $\mathcal{A}, \mathcal{B}, \mathcal{C}$, three binary functors \mathcal{F}, \mathcal{G}, and \mathcal{H} yielding sets, and three binary predicates $\mathcal{P}, Q, \mathcal{R}$, and states that:

There exists a partial function f from $[: \mathcal{A}, \mathcal{B}:]$ to \mathcal{C} such that
(i) for all x, y holds $\langle x, y\rangle \in \operatorname{dom} f$ iff $x \in \mathcal{A}$ but $y \in \mathcal{B}$ but $\mathcal{P}[x, y]$ or $Q[x, y]$ or $\mathcal{R}[x, y]$, and
(ii) for all x, y such that $\langle x, y\rangle \in \operatorname{dom} f$ holds if $\mathcal{P}[x, y]$, then $f(\langle x, y\rangle)=\mathcal{F}(x, y)$ and if $Q[x, y]$, then $f(\langle x, y\rangle)=\mathcal{G}(x, y)$ and if $\mathcal{R}[x, y]$, then $f(\langle x, y\rangle)=\mathcal{H}(x, y)$
provided the parameters meet the following requirements:

- For all x, y such that $x \in \mathcal{A}$ and $y \in \mathcal{B}$ holds if $\mathcal{P}[x, y]$, then not $Q[x, y]$ and if $\mathcal{P}[x, y]$, then not $\mathcal{R}[x, y]$ and if $Q[x, y]$, then not $\mathcal{R}[x, y]$,
- For all x, y such that $x \in \mathcal{A}$ and $y \in \mathcal{B}$ holds if $\mathcal{P}[x, y]$, then $\mathcal{F}(x, y) \in \mathcal{C}$,
- For all x, y such that $x \in \mathcal{A}$ and $y \in \mathcal{B}$ holds if $Q[x, y]$, then $\mathcal{G}(x, y) \in \mathcal{C}$, and
- For all x, y such that $x \in \mathcal{A}$ and $y \in \mathcal{B}$ holds if $\mathcal{R}[x, y]$, then $\mathcal{H}(x, y) \in \mathcal{C}$.

The scheme ExFuncD3 deals with non empty sets \mathcal{A}, \mathcal{B}, three unary functors \mathcal{F}, \mathcal{G}, and \mathcal{H} yielding elements of \mathcal{B}, and three unary predicates $\mathcal{P}, \mathcal{Q}, \mathcal{R}$, and states that:

There exists a function f from \mathcal{A} into \mathcal{B} such that for every element c of \mathcal{A} holds
(i) if $\mathcal{P}[c]$, then $f(c)=\mathcal{F}(c)$,
(ii) if $Q[c]$, then $f(c)=\mathcal{G}(c)$, and
(iii) if $\mathcal{R}[c]$, then $f(c)=\mathcal{H}(c)$
provided the parameters satisfy the following conditions:

- For every element c of \mathcal{A} holds if $\mathcal{P}[c]$, then not $Q[c]$ and if $\mathcal{P}[c]$, then not $\mathcal{R}[c]$ and if $Q[c]$, then not $\mathcal{R}[c]$, and
- For every element c of \mathcal{A} holds $\mathcal{P}[c]$ or $Q[c]$ or $\mathcal{R}[c]$.

The scheme ExFuncD4 deals with non empty sets \mathcal{A}, \mathcal{B}, four unary functors $\mathcal{F}, \mathcal{G}, \mathcal{H}$, and I yielding elements of \mathcal{B}, and four unary predicates $\mathcal{P}, \mathcal{Q}, \mathcal{R}, \mathcal{S}$, and states that:

There exists a function f from \mathcal{A} into \mathcal{B} such that for every element c of \mathcal{A} holds
(i) if $\mathcal{P}[c]$, then $f(c)=\mathcal{F}(c)$,
(ii) if $Q[c]$, then $f(c)=\mathcal{G}(c)$,
(iii) if $\mathcal{R}[c]$, then $f(c)=\mathcal{H}(c)$, and
(iv) if $\mathcal{S}[c]$, then $f(c)=I(c)$
provided the parameters satisfy the following conditions:

- Let c be an element of \mathcal{A}. Then
(i) if $\mathcal{P}[c]$, then not $Q[c]$,
(ii) if $\mathcal{P}[c]$, then not $\mathcal{R}[c]$,
(iii) if $\mathcal{P}[c]$, then not $\mathcal{S}[c]$,
(iv) if $Q[c]$, then not $\mathcal{R}[c]$,
(v) if $Q[c]$, then not $S[c]$, and
(vi) if $\mathcal{R}[c]$, then not $\mathcal{S}[c]$,
and
- For every element c of \mathcal{A} holds $\mathcal{P}[c]$ or $Q[c]$ or $\mathcal{R}[c]$ or $\mathcal{S}[c]$.

The scheme FuncExC D2 deals with non empty sets $\mathcal{A}, \mathcal{B}, \mathcal{C}$, two binary functors \mathcal{F} and \mathcal{G} yielding elements of \mathcal{C}, and a binary predicate \mathcal{P}, and states that:

There exists a function f from $[: \mathcal{A}, \mathcal{B}$:] into \mathcal{C} such that for every element c of \mathcal{A} and for every element d of \mathcal{B} holds
(i) if $\mathcal{P}[c, d]$, then $f(\langle c, d\rangle)=\mathcal{F}(c, d)$, and
(ii) if not $\mathcal{P}[c, d]$, then $f(\langle c, d\rangle)=\mathcal{G}(c, d)$
for all values of the parameters.
The scheme FuncExC D3 deals with non empty sets $\mathcal{A}, \mathcal{B}, \mathcal{C}$, three binary functors \mathcal{F}, \mathcal{G}, and \mathcal{H} yielding elements of \mathcal{C}, and three binary predicates $\mathcal{P}, \mathcal{Q}, \mathcal{R}$, and states that:

There exists a function f from $[: \mathcal{A}, \mathcal{B}:]$ into \mathcal{C} such that
(i) for every element c of \mathcal{A} and for every element d of \mathcal{B} holds $\langle c, d\rangle \in \operatorname{dom} f$ iff $\mathcal{P}[c, d]$ or $Q[c, d]$ or $\mathcal{R}[c, d]$, and
(ii) for every element c of \mathcal{A} and for every element d of \mathcal{B} such that $\langle c, d\rangle \in \operatorname{dom} f$ holds if $\mathcal{P}[c, d]$, then $f(\langle c, d\rangle)=\mathcal{F}(c, d)$ and if $Q[c, d]$, then $f(\langle c, d\rangle)=\mathcal{G}(c, d)$ and if $\mathcal{R}[c, d]$, then $f(\langle c, d\rangle)=\mathcal{H}(c, d)$
provided the parameters meet the following requirements:

- Let c be an element of \mathcal{A} and d be an element of \mathcal{B}. Then
(i) if $\mathcal{P}[c, d]$, then not $Q[c, d]$,
(ii) if $\mathcal{P}[c, d]$, then not $\mathcal{R}[c, d]$, and
(iii) if $Q[c, d]$, then not $\mathcal{R}[c, d]$,
and
- For every element c of \mathcal{A} and for every element d of \mathcal{B} holds $\mathcal{P}[c, d]$ or $Q[c, d]$ or $\mathcal{R}[c, d]$.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar. org/JFM/Vol1/nat_1.html
[2] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/ funct_1.html
[3] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_ 2.html
[4] Czesław Byliński. Partial functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/part fun1.html.
[5] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/ zfmisc_1.html
[6] Jarosław Kotowicz. Monotone real sequences. Subsequences. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Vol1/seqm_3.html
[7] Jarosław Kotowicz. Real sequences and basic operations on them. Journal of Formalized Mathematics, 1, 1989. http: //mizar. org/ JFM/Vol1/seq_1.html
[8] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/ Axiomatics/tarski.html
[9] Andrzej Trybulec. Subsets of real numbers. Journal of Formalized Mathematics, Addenda, 2003. http://mizar.org/JFM/Addenda/ numbers.html
[10] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html
[11] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Voll/relat_1.html
[12] Edmund Woronowicz. Relations defined on sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/ relset_1.html

Received September 21, 1990
Published January 2, 2004

