Definitions of Petri Net. Part III ## Waldemar Korczyński Pedagogical University Kielce **Summary.** The paper is dual counterpart of the paper [2]. MML Identifier: S_SIEC. WWW: http://mizar.org/JFM/Vol4/s_siec.html The articles [3], [1], [4], and [2] provide the notation and terminology for this paper. Let N be an E-net. We introduce $\operatorname{transitions}_s(N)$ as a synonym of $\operatorname{Places}_e(N)$. We introduce $\operatorname{places}_s(N)$ as a synonym of $\operatorname{Transitions}_e(N)$. We introduce $\operatorname{carrier}_s(N)$ as a synonym of $\operatorname{shore}_e(N)$. We introduce $\operatorname{exit}_s(N)$ as a synonym of $\operatorname{escape}_e(N)$. We introduce $\operatorname{prox}_s(N)$ as a synonym of $\operatorname{adjac}_e(N)$. In the sequel *N* is an E-net. Next we state the proposition (41)¹ ((The entrance of N) $\backslash \triangle_{\text{the carrier of }N}$) \subseteq [: Places_e(N), Transitions_e(N):] and ((the escape of N) $\backslash \triangle_{\text{the carrier of }N}$) \subseteq [: Places_e(N), Transitions_e(N):]. Let N be a G-net structure. The functor $pre_s(N)$ yields a binary relation and is defined by: (Def. 28)² $$\operatorname{pre}_{s}(N) = ((\text{the escape of } N) \setminus \triangle_{\text{the carrier of } N})^{\smile}.$$ The functor $post_s(N)$ yielding a binary relation is defined by: (Def. 29) $$\operatorname{post}_{s}(N) = ((\text{the entrance of } N) \setminus \triangle_{\text{the carrier of } N})^{\smile}.$$ One can prove the following proposition $$(43)^3$$ post_s $(N) \subseteq [:transitions_s(N), places_s(N):]$ and pre_s $(N) \subseteq [:transitions_s(N), places_s(N):]$. ## REFERENCES - Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/zfmisc_ 1.html. - [2] Waldemar Korczyński. Definitions of Petri net. Part II. Journal of Formalized Mathematics, 4, 1992. http://mizar.org/JFM/Vol4/e_siec.html. - [3] Andrzej Trybulec. Tarski Grothendieck set theory. *Journal of Formalized Mathematics*, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html. ¹ The propositions (1)–(40) have been removed. ² The definitions (Def. 1)–(Def. 27) have been removed. ³ The proposition (42) has been removed. [4] Edmund Woronowicz. Relations and their basic properties. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/relat_1.html. Received January 31, 1992 Published October 7, 2003