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Summary. In this article, we extend an operation of real linear space to real unitary
space. We show theorems proved.ih [8] on real unitary space.

MML Identifier: RUSUB_2.

WWW: http://mizar.org/JFM/Voll4/rusub_2.html

The articles([7], [[3], [[10], ([11], [[2], [TL], ([18], [[1R], 6], 9], [[5], and.[4] provide the notation and
terminology for this paper.

1. DEFINITIONS OF SUM AND INTERSECTION OFSUBSPACES

LetV be a real unitary space and &, W, be subspaces ®. The functoM} +W, yields a strict
subspace of and is defined as follows:

(Def. 1) The carrier ofM, +W, = {v+ u;Vv ranges over vectors &f, u ranges over vectors &f:
veWr A ueWo}.

LetV be a real unitary space and 8%, W, be subspaces ®. The functo; "W, yielding a
strict subspace of is defined as follows:

(Def. 2) The carrier of\y "W, = (the carrier oM\ N (the carrier of\b).

2. THEOREMS OFSUM AND INTERSECTON OFSUBSPACES
The following propositions are true:

(1) LetV be areal unitary spac, Wo be subspaces &, andx be a set. Ther € Wy +W,
if and only if there exist vectorg, v, of V such thatr; € Wy andv, € Wo andX = vy + Va.

(2) LetV be a real unitary spac®j, W be subspaces o, andv be a vector oV. If ve W,
orveW,, thenve W) +Ws.

(3) LetV be areal unitary spac®;, Wo be subspaces of, andx be a set. Therm € Wy NW,
if and only if x € Wy andx € W.

(4) For every real unitary spatkand for every strict subspaté of V holdswW +W =W.
(5) For every real unitary spateand for all subspacésh, W, of V holdsWy +Wo =W, +Wj.
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(6) For every real unitary spa&é and for all subspaces), Wo, W5 of V holdsWj + (W, +
Ws) = (W +Wa) +W5.

(7) LetV be a real unitary space aWd, W be subspaces &f. ThenW; is a subspace of
Wi +Ws andWs is a subspace i +Ws.

(8) LetV be a real unitary spacky; be a subspace &f, andW, be a strict subspace df.
ThenW, is a subspace & if and only if Wy +Wo = Ws.

(9) For every real unitary spatkand for every strict subspa®é of V holds0, +W =W and
W +0y =W.

(10) LetV be areal unitary space. Thép + Qy = the unitary space structure ¥fandQy +
Oy = the unitary space structure \¢f

(11) LetV be areal unitary space akidbe a subspace &. ThenQy +W = the unitary space
structure oV andW + Qy = the unitary space structure ¢f

(12) For every strict real unitary spa@eholdsQy + Qy = V.
(13) For every real unitary spastand for every strict subspaté of V holdswW nW =W.
(14) For every real unitary spateand for all subspaceés, W, of V holdsWy NWo =Wo N

(15) For every real unitary spa¥eand for all subspacé$;, W, W5 of V holdsWy N (Wo W) =
(Wl ﬂVVz) NW5.

(16) LetV be areal unitary space aild, W, be subspaces . ThenWj "W, is a subspace of
W, andWy "W is a subspace ofb.

(17) LetV be a real unitary spack¥\, be a subspace &f, andW; be a strict subspace df.
ThenW, is a subspace af if and only if Wi N"Ws = Wj.

(18) For every real unitary spadé and for every subspad®' of V holdsOy "W = Oy and
WnOoy =0y.

(19) For every real unitary spaseholdsOy NQy = Oy andQy N0y = Oy.

(20) For every real unitary spaveand for every strict subspa¥é of V holdsQy "W =W and
WNQy =W.

(21) For every strict real unitary spadeholdsQy NQy = V.

(22) For every real unitary spa®eand for all subspacé®;, W, of V holdswWj NW is a subspace
of Wi +Wb.

(23) For every real unitary spaveand for every subspat® of V and for every strict subspace
W5 of V holdsW) "W, +Wo = Ws.

(24) For every real unitary spaveand for every subspad® of V and for every strict subspace
W, of V holdsWo N (WL +Wq) = Wo.

(25) For every real unitary spateand for all subspacésh, Wo, W5 of V holdsWi N"Ws +Wo N
W5 is a subspace &fb N (Wh +W5).

(26) LetV be areal unitary space ad, Wo, W5 be subspaces &f. If W, is a subspace &b,
thenWo N (W1 +W5) = Wi NWo +Wo NWA.

(27) For every real unitary spateand for all subspacedy, Wb, W5 of V holdsWs +Wj; N5
is a subspace aiM, +Wo) N (W +W5).

(28) LetV be areal unitary space akig, W», W5 be subspaces &f. If Wy is a subspace &b,
thenWs + Wi NW5 = (Wi +Wa) N (Wa +W5).
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(29) LetV be areal unitary space alg, W,, W5 be subspaces ®f. If W, is a strict subspace
of Ws, thenW) +Wo N5 = (Wi +Wo) NWA.

(30) For every real unitary spattand for all strict subspac®¥;, W of V holdsWy +Ws =W,
iff Wi NWL =W,

(31) LetV be areal unitary spacey; be a subspace &f, andW,, W5 be strict subspaces bf.
If W is a subspace &b, thenW; +W5 is a subspace &b +Ws.

(32) LetV be areal unitary space alid, W, be subspaces &f. Then there exists a subspace
W of V such that the carrier & = (the carrier ofVy) U (the carrier of\b) if and only if Wy
is a subspace &b or W, is a subspace af4.

3. INTRODUCTION OF ASET OF SUBSPACES OFREAL UNITARY SPACE

LetV be a real unitary space. The functor Subspslcgiglding a set is defined as follows:
(Def. 3) For every set holdsx € Subspaces iff x is a strict subspace &f.

LetV be a real unitary space. Note that Subsp&ds:non empty.
The following proposition is true

(33) For every strict real unitary spa@eholdsV € Subspaceg.

4. DEFINITION OF THEDIRECT SUM AND LINEAR COMPLEMENT OF SUBSPACES

LetV be a real unitary space and &, W, be subspaces &. We say thaV is the direct sum of
W, andW, if and only if:

(Def. 4) The unitary space structure\6f=Wj +W, andWy "W, = Oy.

LetV be a real unitary space and W&tbe a subspace &f. A subspace o¥ is called a linear
complement oWV if:

(Def. 5) V is the direct sum of it an@v.

LetV be a real unitary space and st be a subspace &f. Observe that there exists a linear
complement otV which is strict.
The following two propositions are true:

(34) LetV be areal unitary space a4, W, be subspaces &f. Supposé/ is the direct sum
of Wi andW,. ThenWs is a linear complement a4 .

(35) LetV be a real unitary spac®/ be a subspace &f, andL be a linear complement &f.
ThenV is the direct sum of andW and the direct sum o andL.

5. THEOREMSCONCERNING THESUM, LINEAR COMPLEMENT AND COSET OFSUBSPACE
One can prove the following propositions:

(36) LetV be areal unitary spacey be a subspace &f, andL be a linear complement &Y.
ThenW + L = the unitary space structure éfandL +W = the unitary space structure 6t

(87) LetV be a real unitary spac®/ be a subspace &f, andL be a linear complement &f.
ThenWNL =0y andLNW = 0y.

(38) LetV be areal unitary space alid, W» be subspaces &f. If V is the direct sum of\y
andWb, thenV is the direct sum o\, andW.

(39) Every real unitary spadé is the direct sum 06, andQy and the direct sum ay and

Ov.
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(40) LetV be a real unitary spacey be a subspace &f, andL be a linear complement &Y.
ThenW is a linear complement df.

(41) For every real unitary spateholdsOy is a linear complement dy andQy is a linear
complement of,.

(42) LetV be areal unitary spacey;, W» be subspaces &f, C; be a coset ofV;, andC, be a
coset oMb If C; meetL,, thenC; NC; is a coset oV, NW..

(43) LetV be areal unitary space ald, W, be subspaces &f. ThenV is the direct sum of
W, andW if and only if for every cose€; of Wy and for every coset, of W, there exists a
vectorv of V such thaC; NCy = {v}.

6. DECOMPOSITION OF AVECTOR OFREAL UNITARY SPACE

Next we state three propositions:

(44) LetV be areal unitary space allgd, W, be subspaces &. ThenW;, +W, = the unitary
space structure of if and only if for every vectow of V there exist vectors;, v» of V such

thatv, € Wy andvo € Wo andv = vy + Vs.

(45) LetV be areal unitary spac®/, W, be subspaces &, andv, vi, V2, Uz, Uz be vectors of
V. Suppos¢/ is the direct sum ofV; andWs andv = vi + v andv = u; + Uz andv; € Wy
andu; € Wy andv, € W, andu, € Wo. Thenvy = up andv, = Us.

(46) LetV be areal unitary space ald, W, be subspaces &f. Suppose that

i V=W +W,, and
(i) there exists a vector of V such that for all vectores, v, up, up of V such thav = v1 +v»
andv = u; + up andvy € Wy andu; € Wy andv, € Wo andu, € Wo holdsvy = up andvs = up.

ThenV is the direct sum of\; andWs.

LetV be a real unitary space, letbe a vector oV, and letW;, W, be subspaces &f. Let us
assume tha¥ is the direct sum ofV; and\Ws. The functorv(wlwz) yields an element dfthe carrier

of V, the carrier ol ] and is defined as follows:
(Def. 6) V= (V(WLVVZ) )1 + (V(Wl-,Wz) )2 and(v<WLWz> )1 eW, and(v<W17W2) )2 eWb.
One can prove the following propositions:

(47) LetV be areal unitary spacebe a vector o¥/, andWy, W, be subspaces &f. If V is the
direct sum of\; andWs, then(v(Wl_Wz) )1= (V(vvz.wl))z'

(48) LetV be areal unitary spacebe a vector o¥/, andWy, W, be subspaces &f. If V is the
direct sum oV, andWb, then(v(Wl_WZ) )2 = (v<W2_W1))1.

(49) LetV be areal unitary spac®y be a subspace ™, L be a linear complement &Y, v be
a vector ofV, andt be an element ofthe carrier oV, the carrier oV J. If t; +t; = vand
t1 e Wandt; € L, thent = v<W L)

(50) LetV be areal unitary spacé/ be a subspace ®f, L be a linear complement &¥, andv
be a vector oV. Then(v<W L))l + (V(w L))Z =V

(51) LetV be areal unitary spac®/ be a subspace df, L be a linear complement &Y, andv
be a vector o¥. Then(v<W L))l ew and(v(W‘L))z eL.

(52) LetV be areal unitary spac@/ be a subspace &f, L be a linear complement &Y, andv
be a vector oV. Then(v(W_L))l = (V(L.W))Z'

(53) LetV be areal unitary spacé/ be a subspace &, L be a linear complement &¥, andv
be a vector oV. Then(v(W L))g = (V(L_W))l'
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7. INTRODUCTION OFOPERATIONS ONSET OF SUBSPACES

LetV be a real unitary space. The functor SubJbirielding a binary operation on Subspaveis
defined as follows:

(Def. 7) For all elementdy, A, of Subspaceg and for all subspacésh, W of V such thaidh; =Wy
andA; =W, holds(SubJoitV)(Ag, Az) =Wj +Ws.

LetV be areal unitary space. The functor SubMégtelding a binary operation on Subspaves
is defined by:

(Def. 8) For all elementsy, A, of Subspaceé and for all subspacé¥y, Ws of V such thaty; =W
andA; =W, holds(SubMeeV) (A1, Ap) = WL NWL.

8. THEOREMS OFFUNCTIONS SUBJOIN, SUBMEET
One can prove the following proposition
(54) For every real unitary spabdeholds(Subspaceg, SubJoirV, SubMeeV) is a lattice.

LetV be areal unitary space. One can check {Babspaces, SubJoirV, SubMeeV) is lattice-
like.

The following propositions are true:

(55) For every real unitary spacé holds (Subspaceg SubJoirV,SubMeeV) is lower-
bounded.

(56) For every real unitary spacé holds (Subspaceg, SubJoirV, SubMeeV) is upper-
bounded.

(57) Forevery real unitary spa¥eholds(Subspaces, SubJoiV, SubMeeV) is a bound lattice.
(58) For every real unitary spadeholds(Subspaceg, SubJoirV, SubMeeV) is modular.

(59) For every real unitary spacé holds (Subspaceg SubJoiV,SubMeeV) is comple-
mented.

Let V be a real unitary space. Observe tli8ubspaceg SubJoirV, SubMeeV) is lower-
bounded, upper-bounded, modular, and complemented.
We now state the proposition

(60) LetV be a real unitary space akg, W,, W5 be strict subspaces ®f. If W, is a subspace
of W, thenWy N5 is a subspace &b N\Ws.
9. AUXILIARY THEOREMS INREAL UNITARY SPACE

One can prove the following propositions:

(61) LetV be areal unitary space aidbe a strict subspace ¥f Suppose that for every vector
v of V holdsv € W. ThenW = the unitary space structure ¢f

(62) LetV be a real unitary spack/ be a subspace &f, andv be a vector oV. Then there
exists a coset of W such thaw € C.

(63) LetV be areal unitary spac®/ be a subspace ®f, v be a vector o¥/, andxbe a set. Then
x € v+ W if and only if there exists a vectarof V such thau € W andx = v+ u.
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