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Summary. Inthis article, subspace and the coset of subspace of real unitary space are
defined. And we discuss some of their fundamental properties.
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The articles|[6], [[3], [[11], [[8], [[7], [[1], T12], [[2], %], ([10], [[9], and[4] provide the notation and
terminology for this paper.

1. DEFINITION AND AXIOMS OF THE SUBSPACE OFREAL UNITARY SPACE

LetV be a real unitary space. A real unitary space is said to be a subspécé ibEatisfies the
conditions (Def. 1).

(Def. 1)()) The carrier of itC the carrier ol,
(ii) the zero of it=the zero ol,
(iii)  the addition of it= (the addition o) [ the carrier of it, the carrier of it:

(iv) the external multiplication of it (the external multiplication of ) [ R, the carrier of it],
and

(v) the scalar product of it (the scalar product &f ) || the carrier of it, the carrier of it:

We now state a number of propositions:

(1) LetV be areal unitary space, W» be subspaces &, andx be a set. Iik € Wy andW; is
a subspace afb, thenx € Wo.

(2) For every real unitary spateand for every subspad¥ of V and for every set such that
X € W holdsx e V.

(3) For every real unitary spateand for every subspad¥ of V holds every vector diV is a
vector ofV.

(4) For every real unitary spateand for every subspad¥ of V holds Qy = Oy.
(5) For every real unitary spateand for all subspacesh, W, of V holds Quy) = Oy,)-
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(6) LetV be areal unitary spacey be a subspace &f, u, v be vectors oW/, andwi, w, be
vectors ofW. If w; = vandw, = u, thenw; +w, = v+u.

(7) LetV be areal unitary spac®/ be a subspace df, v be a vector o¥/, w be a vector oW,
andabe a real number. v=v, thena-w=a-v.

(8) LetV be areal unitary spac®/ be a subspace &f, vy, v be vectors oV, andw;, wy be
vectors ofW. If wy = vi andw, = vp, then(wy|wa) = (vi|va).

(9) LetV be areal unitary spac®/ be a subspace &f, v be a vector o¥/, andw be a vector
of W. If w=v, then—v=—w.

(10) LetV be a real unitary spacky be a subspace &f, u, v be vectors oV, andwy, w, be
vectors ofW. If w; = vandw, = u, thenw; —w, = v—u.

(11) For every real unitary spaseand for every subspad#f of V holds @ € W.
(12) For every real unitary spateand for all subspacess, W of V holds Qy,) € Wa.
(13) For every real unitary spaveand for every subspad#f of V holds Qy € V.

(14) LetV be areal unitary space/ be a subspace df, andu, v be vectors o¥. If ue W and
veW, thenu+veWw.

(15) LetV be a real unitary spacky be a subspace &f, v be a vector o/, anda be a real
number. Ifv e W, thena-v e W.

(16) For every real unitary spateand for every subspad¥ of V and for every vectoy of V
such thawv € W holds—v e W.

(17) LetV be areal unitary space/ be a subspace df, andu, v be vectors o¥. If ue W and
veW, thenu—veW.

(18) LetV be areal unitary spack; be a subset df, D be a non empty setl; be an element
of D, Abe a binary operation o, M be a function fron{. R, D] into D, andSbe a function
from D, D] intoR. Suppose that

() Vi=D,
(i) di=0v,
(i) A= (the addition oV)[[ V41, V11,
(iv) M = (the external multiplication o¥ )[R, V1 ], and
(v) S=(the scalar product &f)[[Vi, V1.
Then(D,d;,A,M,S) is a subspace of.

(19) Every real unitary spadéis a subspace of.

(20) For all strict real unitary spac¥s X such thaw/ is a subspace of andX is a subspace of
V holdsV = X.

(21) LetV, X,Y be real unitary spaces. Suppadsés a subspace of andX is a subspace of.
ThenV is a subspace of.

(22) LetV be areal unitary space aid, W, be subspaces ®f. Suppose the carrier ¥, C the
carrier ofWo. ThenW, is a subspace &fb.

(23) LetV be areal unitary space akid, W, be subspaces ®. Suppose that for every vector
v of V such thaw € Wy holdsv € Wo. ThenW; is a subspace afb.

LetV be a real unitary space. Note that there exists a subspatwbich is strict.
Next we state several propositions:
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(24) LetV be areal unitary space aWd, W, be strict subspaces Wf. If the carrier o = the
carrier ofW,, thenW, = W5.

(25) LetV be a real unitary space ald, W, be strict subspaces bf. If for every vectorv of
V holdsv e W; iff veWs, thenWy =W,

(26) LetV be a strict real unitary space aWbbe a strict subspace ¥f If the carrier oW =the
carrier ofV, thenW =V.

(27) LetV be a strict real unitary space atlbe a strict subspace Wf. If for every vectorv of
V holdsv e W iff veV, thenW = V.

(28) LetV be areal unitary spacey be a subspace &f, andV; be a subset of. If the carrier
of W =V, thenV; is linearly closed.

(29) LetV be a real unitary spaciy be a subspace &f, andV; be a subset o¥. Suppose
V; # 0 andV; is linearly closed. Then there exists a strict subsiyda# V such thaw/; = the
carrier ofWw.

2. DEFINITION OF ZERO SUBSPACE ANDIMPROPERSUBSPACE OFREAL UNITARY SPACE

LetV be areal unitary space. The func@yryields a strict subspace Wfand is defined as follows:
(Def. 2) The carrier oby = {0y }.

Let V be a real unitary space. The functQy yielding a strict subspace &f is defined as
follows:

(Def. 3) Qv = the unitary space structure \¢f

3. THEOREMS OFZERO SUBSPACE ANDIMPROPERSUBSPACE
The following propositions are true:

(30) For every real unitary spavkand for every subspad® of V holdsOy = Oy.

(31) For every real unitary spateand for all subspacesh, W, of V holdsOyy, ) = Ow,)-

(32) For every real unitary spateand for every subspad¥ of V holdsOy is a subspace of.
(33) For every real unitary spateand for every subspad® of V holdsOy is a subspace &f/.

(34) For every real unitary spaveand for all subspacesh, W, of V holdsOy,) is a subspace
of Wo.

(35) Every strict real unitary spatéis a subspace dy .

4. THE COSETS OFSUBSPACE OFREAL UNITARY SPACE

LetV be a real unitary space, lebe a vector o¥/, and lebW be a subspace ®. The functov+W
yielding a subset d¥ is defined by:

(Def. 4) v+W = {v+u;uranges over vectors &f: uecW}.

LetV be areal unitary space and Wtbe a subspace df. A subset ol is called a coset oV
if:

(Def. 5) There exists a vectorof V such that it= v+W.
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5. THEOREMS OF THECOSETS
One can prove the following propositions:

(36) LetV be areal unitary spacé/ be a subspace df, andvbe a vector of/. Then @ € v+W
if and only if ve W.

(37) For every real unitary spateand for every subspad¥ of V and for every vectoy of V
holdsv e v+W.

(38) For every real unitary spatkand for every subspad¥ of V holds @, + W = the carrier
of W.

(39) For every real unitary spaveand for every vectov of V holdsv+ 0y = {v}.
(40) For every real unitary spateand for every vectov of V holdsv+ Qy = the carrier oiV.

(41) LetV be areal unitary spacd/ be a subspace df, andv be a vector of/. Then ¢ € v+W
if and only if v+W = the carrier ofw.

(42) LetV be areal unitary spac®/ be a subspace df, andv be a vector oV/. Thenv e W if
and only ifv+W = the carrier ofW.

(43) LetV be a real unitary spacky be a subspace &f, v be a vector oV, anda be a real
number. Ifv e W, thena-v-+W = the carrier ofVV.

(44) LetV be a real unitary spacky be a subspace &f, v be a vector o/, anda be a real
number. Ifa+# 0 anda-v+W = the carrier ofV, thenv € W.

(45) LetV be areal unitary spac®/ be a subspace &, andv be a vector o¥/. Thenv e W if
and only if —v+W = the carrier ofV.

(46) LetV be a real unitary space/ be a subspace &, andu, v be vectors o¥/. Thenu e W
if and only if v+W = v+u+W.

(47) LetV be areal unitary space/ be a subspace &, andu, v be vectors o¥/. Thenu e W
if and only if v+-W = (v —u) +W.

(48) LetV be a real unitary spac®y be a subspace of, andu, v be vectors ofV. Then
veu+Wifandonly ifu+W =v+W.

(49) LetV be areal unitary spac®/ be a subspace &, andv be a vector o¥/. Thenv+W =
—v+W if and only if v e W.

(50) LetV be a real unitary spac®y be a subspace of, andu, vi, v» be vectors olV. If
uevy+Wandue v, +W, thenvy +W = vo +W.

(51) LetV be areal unitary spacé/ be a subspace &f, andu, v be vectors oV/. If ue v+W
andu € —v+W, thenv e W.

(52) LetV be a real unitary spacky be a subspace &f, v be a vector o/, anda be a real
number. Ifa# 1 anda-v e v+W, thenv e W.

(53) LetV be a real unitary spack®/ be a subspace &f, v be a vector ol/, anda be a real
number. Ifve W, thena-ve v+W.

(54) LetV be a real unitary spac/ be a subspace &f, andv be a vector ol/. Then—v e
v+ W if and only if v e W.

(55) LetV be a real unitary spac®y be a subspace of, andu, v be vectors ofV. Then
u+vev+Wifandonly ifueW.
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(56) LetV be a real unitary spac®y be a subspace of, andu, v be vectors ofV. Then
v—uev+W ifand only ifue W.

(57) LetV be a real unitary spac®y be a subspace of, andu, v be vectors ofV. Then
u e v+W if and only if there exists a vectat of V such thatv; € W andu = v+ v.

(58) LetV be a real unitary spacd®y be a subspace af, andu, v be vectors oV. Then
u e v+W if and only if there exists a vectat of V such that; e W andu=v—v;.

(59) LetV be areal unitary spacey be a subspace ®f, andvy, v, be vectors oV/. Then there
exists a vectov of V such that; € v+W andv, € v+W if and only if v — v, € W.

(60) LetV be areal unitary spack/ be a subspace f, andu, v be vectors oV. If v+W =
u-+W, then there exists a vecter of V such that;, € W andv+v; = u.

(61) LetV be areal unitary spack/ be a subspace &f, andu, v be vectors oV/. If v+W =
u-+W, then there exists a vecter of V such that;, € W andv—v; = u.

(62) LetV be areal unitary space, W, be strict subspaces ¥9f, andv be a vector o¥/. Then
v+W, = v+Ws if and only if Wy =Ws.

(63) LetV be areal unitary space/;, Ws be strict subspaces bf, andu, v be vectors o¥/. If
V+W = u+Ws, thenW, = Ws.

(64) LetV be a real unitary spac®#/ be a subspace &f, andC be a coset oW. ThenC is
linearly closed if and only i€ = the carrier ofW.

(65) LetV be areal unitary spacd/, W, be strict subspaces ¥f, C; be a coset oiVy, andC;
be a coset di\.. If C; = Cy, thenWy =W,

(66) LetV be a real unitary spac®/ be a subspace &f, C be a coset ofV, andv be a vector
of V. Then{v} is a coset oDy .

(67) LetV be areal unitary space/ be a subspace &f, V; be a subset of, andv be a vector
of V. If V1 is a coset oDy, then there exists a vecteof V such tha; = {v}.

(68) For every real unitary spateand for every subspad¥ of V holds the carrier ofV is a
coset ofw.

(69) For every real unitary spavtholds the carrier o¥ is a coset ofdy.

(70) LetV be a real unitary spacky be a subspace &f, andV; be a subset o¥. If Vy is a
coset ofQy, thenV; = the carrier oV.

(71) LetV be areal unitary spac®/ be a subspace &f, andC be a coset o¥W. Then @ € C
if and only if C = the carrier ofW.

(72) LetV be areal unitary spac®/ be a subspace &f, C be a coset 0¥/, andu be a vector
of V. Thenue Cifand only ifC=u+W.

(73) LetV be areal unitary spac®/ be a subspace &f, C be a coset d#V, andu, v be vectors
of V. If ue C andv € C, then there exists a vecter of V such that, e W andu+v; = v.

(74) LetV be areal unitary spac®/ be a subspace &f, C be a coset d#V, andu, v be vectors
of V. If ue C andv € C, then there exists a vecter of V such that; e W andu—v; = v.

(75) LetV be areal unitary spacey be a subspace &, andvy, v, be vectors o¥/. Then there
exists a coset of W such thatr; € C andv, € Cif and only if vi —vp € W.

(76) LetV be areal unitary spac®/ be a subspace &f, u be a vector o¥, andB, C be cosets
of W. If ue Bandu € C, thenB =C.
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