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The articles [6], [3], [11], [8], [7], [1], [12], [2], [5], [10], [9], and [4] provide the notation and
terminology for this paper.

1. DEFINITION AND AXIOMS OF THE SUBSPACE OFREAL UNITARY SPACE

Let V be a real unitary space. A real unitary space is said to be a subspace ofV if it satisfies the
conditions (Def. 1).

(Def. 1)(i) The carrier of it⊆ the carrier ofV,

(ii) the zero of it= the zero ofV,

(iii) the addition of it= (the addition ofV)�[: the carrier of it, the carrier of it :],

(iv) the external multiplication of it= (the external multiplication ofV)�[:R, the carrier of it :],
and

(v) the scalar product of it= (the scalar product ofV)�[: the carrier of it, the carrier of it :].

We now state a number of propositions:

(1) LetV be a real unitary space,W1, W2 be subspaces ofV, andx be a set. Ifx∈W1 andW1 is
a subspace ofW2, thenx∈W2.

(2) For every real unitary spaceV and for every subspaceW of V and for every setx such that
x∈W holdsx∈V.

(3) For every real unitary spaceV and for every subspaceW of V holds every vector ofW is a
vector ofV.

(4) For every real unitary spaceV and for every subspaceW of V holds 0W = 0V .

(5) For every real unitary spaceV and for all subspacesW1, W2 of V holds 0(W1) = 0(W2).
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(6) LetV be a real unitary space,W be a subspace ofV, u, v be vectors ofV, andw1, w2 be
vectors ofW. If w1 = v andw2 = u, thenw1 +w2 = v+u.

(7) LetV be a real unitary space,W be a subspace ofV, v be a vector ofV, w be a vector ofW,
anda be a real number. Ifw = v, thena·w = a·v.

(8) LetV be a real unitary space,W be a subspace ofV, v1, v2 be vectors ofV, andw1, w2 be
vectors ofW. If w1 = v1 andw2 = v2, then(w1|w2) = (v1|v2).

(9) LetV be a real unitary space,W be a subspace ofV, v be a vector ofV, andw be a vector
of W. If w = v, then−v =−w.

(10) LetV be a real unitary space,W be a subspace ofV, u, v be vectors ofV, andw1, w2 be
vectors ofW. If w1 = v andw2 = u, thenw1−w2 = v−u.

(11) For every real unitary spaceV and for every subspaceW of V holds 0V ∈W.

(12) For every real unitary spaceV and for all subspacesW1, W2 of V holds 0(W1) ∈W2.

(13) For every real unitary spaceV and for every subspaceW of V holds 0W ∈V.

(14) LetV be a real unitary space,W be a subspace ofV, andu, v be vectors ofV. If u∈W and
v∈W, thenu+v∈W.

(15) LetV be a real unitary space,W be a subspace ofV, v be a vector ofV, anda be a real
number. Ifv∈W, thena·v∈W.

(16) For every real unitary spaceV and for every subspaceW of V and for every vectorv of V
such thatv∈W holds−v∈W.

(17) LetV be a real unitary space,W be a subspace ofV, andu, v be vectors ofV. If u∈W and
v∈W, thenu−v∈W.

(18) LetV be a real unitary space,V1 be a subset ofV, D be a non empty set,d1 be an element
of D, A be a binary operation onD, M be a function from[:R, D :] into D, andSbe a function
from [:D, D :] into R. Suppose that

(i) V1 = D,

(ii) d1 = 0V ,

(iii) A = (the addition ofV)�[:V1, V1 :],

(iv) M = (the external multiplication ofV)�[:R, V1 :], and

(v) S= (the scalar product ofV)�[:V1, V1 :].

Then〈D,d1,A,M,S〉 is a subspace ofV.

(19) Every real unitary spaceV is a subspace ofV.

(20) For all strict real unitary spacesV, X such thatV is a subspace ofX andX is a subspace of
V holdsV = X.

(21) LetV, X, Y be real unitary spaces. SupposeV is a subspace ofX andX is a subspace ofY.
ThenV is a subspace ofY.

(22) LetV be a real unitary space andW1, W2 be subspaces ofV. Suppose the carrier ofW1 ⊆ the
carrier ofW2. ThenW1 is a subspace ofW2.

(23) LetV be a real unitary space andW1, W2 be subspaces ofV. Suppose that for every vector
v of V such thatv∈W1 holdsv∈W2. ThenW1 is a subspace ofW2.

Let V be a real unitary space. Note that there exists a subspace ofV which is strict.
Next we state several propositions:
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(24) LetV be a real unitary space andW1, W2 be strict subspaces ofV. If the carrier ofW1 = the
carrier ofW2, thenW1 = W2.

(25) LetV be a real unitary space andW1, W2 be strict subspaces ofV. If for every vectorv of
V holdsv∈W1 iff v∈W2, thenW1 = W2.

(26) LetV be a strict real unitary space andW be a strict subspace ofV. If the carrier ofW = the
carrier ofV, thenW = V.

(27) LetV be a strict real unitary space andW be a strict subspace ofV. If for every vectorv of
V holdsv∈W iff v∈V, thenW = V.

(28) LetV be a real unitary space,W be a subspace ofV, andV1 be a subset ofV. If the carrier
of W = V1, thenV1 is linearly closed.

(29) LetV be a real unitary space,W be a subspace ofV, andV1 be a subset ofV. Suppose
V1 6= /0 andV1 is linearly closed. Then there exists a strict subspaceW of V such thatV1 = the
carrier ofW.

2. DEFINITION OF ZERO SUBSPACE AND IMPROPERSUBSPACE OFREAL UNITARY SPACE

LetV be a real unitary space. The functor0V yields a strict subspace ofV and is defined as follows:

(Def. 2) The carrier of0V = {0V}.

Let V be a real unitary space. The functorΩV yielding a strict subspace ofV is defined as
follows:

(Def. 3) ΩV = the unitary space structure ofV.

3. THEOREMS OFZERO SUBSPACE AND IMPROPERSUBSPACE

The following propositions are true:

(30) For every real unitary spaceV and for every subspaceW of V holds0W = 0V .

(31) For every real unitary spaceV and for all subspacesW1, W2 of V holds0(W1) = 0(W2).

(32) For every real unitary spaceV and for every subspaceW of V holds0W is a subspace ofV.

(33) For every real unitary spaceV and for every subspaceW of V holds0V is a subspace ofW.

(34) For every real unitary spaceV and for all subspacesW1, W2 of V holds0(W1) is a subspace
of W2.

(35) Every strict real unitary spaceV is a subspace ofΩV .

4. THE COSETS OFSUBSPACE OFREAL UNITARY SPACE

LetV be a real unitary space, letv be a vector ofV, and letW be a subspace ofV. The functorv+W
yielding a subset ofV is defined by:

(Def. 4) v+W = {v+u;u ranges over vectors ofV: u∈W}.

Let V be a real unitary space and letW be a subspace ofV. A subset ofV is called a coset ofW
if:

(Def. 5) There exists a vectorv of V such that it= v+W.
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5. THEOREMS OF THECOSETS

One can prove the following propositions:

(36) LetV be a real unitary space,W be a subspace ofV, andv be a vector ofV. Then 0V ∈ v+W
if and only if v∈W.

(37) For every real unitary spaceV and for every subspaceW of V and for every vectorv of V
holdsv∈ v+W.

(38) For every real unitary spaceV and for every subspaceW of V holds 0V +W = the carrier
of W.

(39) For every real unitary spaceV and for every vectorv of V holdsv+0V = {v}.

(40) For every real unitary spaceV and for every vectorv of V holdsv+ΩV = the carrier ofV.

(41) LetV be a real unitary space,W be a subspace ofV, andv be a vector ofV. Then 0V ∈ v+W
if and only if v+W = the carrier ofW.

(42) LetV be a real unitary space,W be a subspace ofV, andv be a vector ofV. Thenv∈W if
and only ifv+W = the carrier ofW.

(43) LetV be a real unitary space,W be a subspace ofV, v be a vector ofV, anda be a real
number. Ifv∈W, thena·v+W = the carrier ofW.

(44) LetV be a real unitary space,W be a subspace ofV, v be a vector ofV, anda be a real
number. Ifa 6= 0 anda·v+W = the carrier ofW, thenv∈W.

(45) LetV be a real unitary space,W be a subspace ofV, andv be a vector ofV. Thenv∈W if
and only if−v+W = the carrier ofW.

(46) LetV be a real unitary space,W be a subspace ofV, andu, v be vectors ofV. Thenu∈W
if and only if v+W = v+u+W.

(47) LetV be a real unitary space,W be a subspace ofV, andu, v be vectors ofV. Thenu∈W
if and only if v+W = (v−u)+W.

(48) Let V be a real unitary space,W be a subspace ofV, andu, v be vectors ofV. Then
v∈ u+W if and only if u+W = v+W.

(49) LetV be a real unitary space,W be a subspace ofV, andv be a vector ofV. Thenv+W =
−v+W if and only if v∈W.

(50) LetV be a real unitary space,W be a subspace ofV, andu, v1, v2 be vectors ofV. If
u∈ v1 +W andu∈ v2 +W, thenv1 +W = v2 +W.

(51) LetV be a real unitary space,W be a subspace ofV, andu, v be vectors ofV. If u∈ v+W
andu∈ −v+W, thenv∈W.

(52) LetV be a real unitary space,W be a subspace ofV, v be a vector ofV, anda be a real
number. Ifa 6= 1 anda·v∈ v+W, thenv∈W.

(53) LetV be a real unitary space,W be a subspace ofV, v be a vector ofV, anda be a real
number. Ifv∈W, thena·v∈ v+W.

(54) LetV be a real unitary space,W be a subspace ofV, andv be a vector ofV. Then−v∈
v+W if and only if v∈W.

(55) Let V be a real unitary space,W be a subspace ofV, andu, v be vectors ofV. Then
u+v∈ v+W if and only if u∈W.
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(56) Let V be a real unitary space,W be a subspace ofV, andu, v be vectors ofV. Then
v−u∈ v+W if and only if u∈W.

(57) Let V be a real unitary space,W be a subspace ofV, andu, v be vectors ofV. Then
u∈ v+W if and only if there exists a vectorv1 of V such thatv1 ∈W andu = v+v1.

(58) Let V be a real unitary space,W be a subspace ofV, andu, v be vectors ofV. Then
u∈ v+W if and only if there exists a vectorv1 of V such thatv1 ∈W andu = v−v1.

(59) LetV be a real unitary space,W be a subspace ofV, andv1, v2 be vectors ofV. Then there
exists a vectorv of V such thatv1 ∈ v+W andv2 ∈ v+W if and only if v1−v2 ∈W.

(60) LetV be a real unitary space,W be a subspace ofV, andu, v be vectors ofV. If v+W =
u+W, then there exists a vectorv1 of V such thatv1 ∈W andv+v1 = u.

(61) LetV be a real unitary space,W be a subspace ofV, andu, v be vectors ofV. If v+W =
u+W, then there exists a vectorv1 of V such thatv1 ∈W andv−v1 = u.

(62) LetV be a real unitary space,W1, W2 be strict subspaces ofV, andv be a vector ofV. Then
v+W1 = v+W2 if and only if W1 = W2.

(63) LetV be a real unitary space,W1, W2 be strict subspaces ofV, andu, v be vectors ofV. If
v+W1 = u+W2, thenW1 = W2.

(64) LetV be a real unitary space,W be a subspace ofV, andC be a coset ofW. ThenC is
linearly closed if and only ifC = the carrier ofW.

(65) LetV be a real unitary space,W1, W2 be strict subspaces ofV, C1 be a coset ofW1, andC2

be a coset ofW2. If C1 = C2, thenW1 = W2.

(66) LetV be a real unitary space,W be a subspace ofV, C be a coset ofW, andv be a vector
of V. Then{v} is a coset of0V .

(67) LetV be a real unitary space,W be a subspace ofV, V1 be a subset ofV, andv be a vector
of V. If V1 is a coset of0V , then there exists a vectorv of V such thatV1 = {v}.

(68) For every real unitary spaceV and for every subspaceW of V holds the carrier ofW is a
coset ofW.

(69) For every real unitary spaceV holds the carrier ofV is a coset ofΩV .

(70) LetV be a real unitary space,W be a subspace ofV, andV1 be a subset ofV. If V1 is a
coset ofΩV , thenV1 = the carrier ofV.

(71) LetV be a real unitary space,W be a subspace ofV, andC be a coset ofW. Then 0V ∈C
if and only if C = the carrier ofW.

(72) LetV be a real unitary space,W be a subspace ofV, C be a coset ofW, andu be a vector
of V. Thenu∈C if and only if C = u+W.

(73) LetV be a real unitary space,W be a subspace ofV, C be a coset ofW, andu, v be vectors
of V. If u∈C andv∈C, then there exists a vectorv1 of V such thatv1 ∈W andu+v1 = v.

(74) LetV be a real unitary space,W be a subspace ofV, C be a coset ofW, andu, v be vectors
of V. If u∈C andv∈C, then there exists a vectorv1 of V such thatv1 ∈W andu−v1 = v.

(75) LetV be a real unitary space,W be a subspace ofV, andv1, v2 be vectors ofV. Then there
exists a cosetC of W such thatv1 ∈C andv2 ∈C if and only if v1−v2 ∈W.

(76) LetV be a real unitary space,W be a subspace ofV, u be a vector ofV, andB, C be cosets
of W. If u∈ B andu∈C, thenB = C.
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