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Summary. The article is a continuation of [15]. As the example of real linear spaces,
we introduce the arithmetic addition in the set of real sequences and also introduce the multi-
plication. This set has the arithmetic structure which depends on these arithmetic operations.
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The articles [12], [16], [6], [1], [13], [7], [17], [3], [5], [4], [15], [14], [10], [9], [8], [11], and [2]
provide the notation and terminology for this paper.

The non empty set the set of real sequences is defined by:

(Def. 1) For every setx holdsx∈ the set of real sequences iffx is a sequence of real numbers.

Let a be a set. Let us assume thata∈ the set of real sequences. The functor idseq(a) yielding a
sequence of real numbers is defined by:

(Def. 2) idseq(a) = a.

Let a be a set. Let us assume thata∈ R. The functor idR(a) yields a real number and is defined
as follows:

(Def. 3) idR(a) = a.

Next we state two propositions:

(1) There exists a binary operationA1 on the set of real sequences such that for all elementsa,
b of the set of real sequences holdsA1(a, b) = idseq(a)+ idseq(b) andA1 is commutative and
associative.

(2) There exists a functionf from [:R, the set of real sequences:] into the set of real se-
quences such that for all setsr, x if r ∈ R and x ∈ the set of real sequences, then f (〈〈r,
x〉〉) = idR(r) idseq(x).

The binary operation addseqon the set of real sequences is defined by:

(Def. 4) For all elementsa, b of the set of real sequences holds addseq(a, b) = idseq(a)+ idseq(b).

The function multseqfrom [:R, the set of real sequences:] into the set of real sequences is defined
by:
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(Def. 5) For all setsr, x such thatr ∈ R andx ∈ the set of real sequences holds multseq(〈〈r, x〉〉) =
idR(r) idseq(x).

The element Zeroseq of the set of real sequences is defined by:

(Def. 6) For every natural numbern holds(idseq(Zeroseq))(n) = 0.

The following propositions are true:

(3) For every sequencex of real numbers holds idseq(x) = x.

(4) For all vectorsv, w of 〈the set of real sequences,Zeroseq,addseq,multseq〉 holdsv+ w =
idseq(v)+ idseq(w).

(5) For every real numberr and for every vectorvof 〈the set of real sequences,Zeroseq,addseq,multseq〉
holdsr ·v = r idseq(v).

Let us mention that〈the set of real sequences,Zeroseq,addseq,multseq〉 is Abelian.
The following propositions are true:

(6) For all vectorsu, v, w of 〈the set of real sequences,Zeroseq,addseq,multseq〉 holds(u+v)+
w = u+(v+w).

(7) For every vectorv of 〈the set of real sequences,Zeroseq,addseq,multseq〉 holds v +
0〈the set of real sequences,Zeroseq,addseq,multseq〉 = v.

(8) Let v be a vector of〈the set of real sequences,Zeroseq,addseq,multseq〉. Then there ex-
ists a vectorw of 〈the set of real sequences,Zeroseq,addseq,multseq〉 such thatv + w =
0〈the set of real sequences,Zeroseq,addseq,multseq〉.

(9) For every real numberaand for all vectorsv, wof 〈the set of real sequences,Zeroseq,addseq,multseq〉
holdsa· (v+w) = a·v+a·w.

(10) For all real numbersa, band for every vectorvof 〈the set of real sequences,Zeroseq,addseq,multseq〉
holds(a+b) ·v = a·v+b·v.

(11) For all real numbersa, band for every vectorvof 〈the set of real sequences,Zeroseq,addseq,multseq〉
holds(a·b) ·v = a· (b·v).

(12) For every vectorv of 〈the set of real sequences,Zeroseq,addseq,multseq〉 holds 1·v = v.

The real linear space the linear space of real sequences is defined by:

(Def. 7) The linear space of real sequences= 〈the set of real sequences,Zeroseq,addseq,multseq〉.

Let X be a real linear space and letX1 be a subset ofX. Let us assume thatX1 is linearly closed
and non empty. The functor Add(X1,X) yields a binary operation onX1 and is defined as follows:

(Def. 8) Add (X1,X) = (the addition ofX)�[:X1, X1 :].

Let X be a real linear space and letX1 be a subset ofX. Let us assume thatX1 is linearly closed
and non empty. The functor Mult(X1,X) yields a function from[:R, X1 :] into X1 and is defined by:

(Def. 9) Mult (X1,X) = (the external multiplication ofX)�[:R, X1 :].

Let X be a real linear space and letX1 be a subset ofX. Let us assume thatX1 is linearly closed
and non empty. The functor Zero(X1,X) yields an element ofX1 and is defined by:

(Def. 10) Zero(X1,X) = 0X.

The following proposition is true

(13) LetV be a real linear space andV1 be a subset ofV. SupposeV1 is linearly closed and non
empty. Then〈V1,Zero (V1,V),Add (V1,V),Mult (V1,V)〉 is a subspace ofV.
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The subset the set of l2-real sequences of the linear space of real sequences is defined by the
conditions (Def. 11).

(Def. 11)(i) The set of l2-real sequences is non empty, and

(ii) for every setx holdsx∈ the set of l2-real sequences iffx∈ the set of real sequences and
idseq(x) idseq(x) is summable.

One can prove the following propositions:

(14) The set of l2-real sequences is linearly closed and the set of l2-real sequences is non empty.

(15) 〈the set of l2-real sequences,Zero (the set of l2-real sequences, the linear space of real
sequences),Add (the set of l2-real sequences, the linear space of real sequences),Mult (the
set of l2-real sequences, the linear space of real sequences)〉 is a subspace of the linear space
of real sequences.

(16) 〈the set of l2-real sequences,Zero (the set of l2-real sequences, the linear space of real
sequences),Add (the set of l2-real sequences, the linear space of real sequences),Mult (the
set of l2-real sequences, the linear space of real sequences)〉 is a real linear space.

(17)(i) The carrier of the linear space of real sequences= the set of real sequences,

(ii) for every setx holdsx is an element of the linear space of real sequences iffx is a sequence
of real numbers,

(iii) for every setx holdsx is a vector of the linear space of real sequences iffx is a sequence
of real numbers,

(iv) for every vectoru of the linear space of real sequences holdsu = idseq(u),
(v) for all vectorsu, v of the linear space of real sequences holdsu+ v = idseq(u)+ idseq(v),

and

(vi) for every real numberr and for every vectoru of the linear space of real sequences holds
r ·u = r idseq(u).

(18) There exists a functionf from [: the set of l2-real sequences, the set of l2-real sequences:]
into R such that for all setsx, y if x∈ the set of l2-real sequences andy∈ the set of l2-real
sequences, then f (〈〈x, y〉〉) = ∑(idseq(x) idseq(y)).

The function scalarseq from [: the set of l2-real sequences, the set of l2-real sequences:] into R is
defined by the condition (Def. 12).

(Def. 12) Letx, y be sets. Supposex∈ the set of l2-real sequences andy∈ the set of l2-real sequences.
Then scalarseq(〈〈x, y〉〉) = ∑(idseq(x) idseq(y)).

Let us note that〈the set of l2-real sequences,Zero (the set of l2-real sequences, the linear space
of real sequences),Add (the set of l2-real sequences, the linear space of real sequences),Mult (the
set of l2-real sequences, the linear space of real sequences),scalarseq〉 is non empty.

The non empty unitary space structure l2-Space is defined by the condition (Def. 13).

(Def. 13) l2-Space= 〈the set of l2-real sequences,Zero (the set of l2-real sequences, the lin-
ear space of real sequences),Add (the set of l2-real sequences, the linear space of real
sequences),Mult (the set of l2-real sequences, the linear space of real sequences),scalarseq〉.

One can prove the following propositions:

(19) Let l be a unitary space structure. Suppose〈the carrier ofl , the zero ofl , the addition ofl ,
the external multiplication ofl〉 is a real linear space. Thenl is a real linear space.

(20) Let r1 be a sequence of real numbers. If for every natural numbern holdsr1(n) = 0, then
r1 is summable and∑ r1 = 0.

(21) Letr1 be a sequence of real numbers. Suppose for every natural numbern holds 0≤ r1(n)
andr1 is summable and∑ r1 = 0. Let n be a natural number. Thenr1(n) = 0.

Let us note that l2-Space is Abelian, add-associative, right zeroed, right complementable, and
real linear space-like.
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