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Summary. Definitions of Elementary Event and Event in any sample spaceE are
given. Next, the probability of an Event whenE is finite is introduced and some properties of
this function are investigated. Last part of the paper is devoted to the conditional probability
and essential properties of this function (Bayes Theorem).
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The articles [8], [9], [4], [7], [6], [2], [5], [1], and [3] provide the notation and terminology for this
paper.

For simplicity, we adopt the following convention:E denotes a non empty set,a denotes an
element ofE, A, B denote subsets ofE, Y denotes a set, andp denotes a finite sequence.

Let E be a non empty set. Observe that there exists a subset ofE which is non empty and trivial.
Let us considerE. An elementary event ofE is a non empty trivial subset ofE.
Next we state the proposition

(1) Let e be a non empty subset ofE. Thene is an elementary event ofE if and only if for
everyY holdsY ⊆ e iff Y = /0 or Y = e.

Let us considerE. One can check that every elementary event ofE is finite.
In the sequele, e1, e2 are elementary events ofE.
Next we state several propositions:

(5)1 If e= A∪B andA 6= B, thenA = /0 andB = eor A = eandB = /0.

(6) If e= A∪B, thenA = eandB = eor A = eandB = /0 or A = /0 andB = e.

(7) {a} is an elementary event ofE.

(10)2 If e1 ⊆ e2, thene1 = e2.

(11) There existsa such thata∈ E ande= {a}.

(12) There existsewhich is an elementary event ofE.

(14)3 There existsp such thatp is a finite sequence of elements ofE and rngp= eand lenp= 1.

Let E be a set. An event ofE is a subset ofE.
Next we state several propositions:

1 The propositions (2)–(4) have been removed.
2 The propositions (8) and (9) have been removed.
3 The proposition (13) has been removed.
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(22)4 Let E be a non empty set,e be an elementary event ofE, andA be an event ofE. Thene
missesA or e∩A = e.

(25)5 For every non empty setE and for every eventA of E such thatA 6= /0 there exists an
elementary eventeof E such thate⊆ A.

(26) Let E be a non empty set,e be an elementary event ofE, andA be an event ofE. If
e⊆ A∪Ac, thene⊆ A or e⊆ Ac.

(27) e1 = e2 or e1 missese2.

(34)6 A∩B missesA∩Bc.

Let E be a finite non empty set and letA be an event ofE. The functor P(A) yields a real number
and is defined as follows:

(Def. 4)7 P(A) = cardA
cardE .

We now state a number of propositions:

(38)8 For every finite non empty setE and for every elementary eventeof E holds P(e) = 1
cardE .

(39) For every finite non empty setE holds P(ΩE) = 1.

(40) For every finite non empty setE holds P( /0E) = 0.

(41) For every finite non empty setE and for all eventsA, B of E such thatA missesB holds
P(A∩B) = 0.

(42) For every finite non empty setE and for every eventA of E holds P(A)≤ 1.

(43) For every finite non empty setE and for every eventA of E holds 0≤ P(A).

(44) For every finite non empty setE and for all eventsA, B of E such thatA⊆ B holds P(A)≤
P(B).

(46)9 For every finite non empty setE and for all eventsA, B of E holds P(A∪B) = (P(A)+
P(B))−P(A∩B).

(47) For every finite non empty setE and for all eventsA, B of E such thatA missesB holds
P(A∪B) = P(A)+P(B).

(48) For every finite non empty setE and for every eventA of E holds P(A) = 1−P(Ac) and
P(Ac) = 1−P(A).

(49) For every finite non empty setE and for all eventsA, B of E holds P(A\B) = P(A)−P(A∩
B).

(50) For every finite non empty setE and for all eventsA, B of E such thatB⊆ A holds P(A\
B) = P(A)−P(B).

(51) For every finite non empty setE and for all eventsA, B of E holds P(A∪B)≤P(A)+P(B).

(53)10 For every finite non empty setE and for all eventsA, B of E holds P(A) = P(A∩B)+
P(A∩Bc).

4 The propositions (15)–(21) have been removed.
5 The propositions (23) and (24) have been removed.
6 The propositions (28)–(33) have been removed.
7 The definitions (Def. 1)–(Def. 3) have been removed.
8 The propositions (35)–(37) have been removed.
9 The proposition (45) has been removed.

10 The proposition (52) has been removed.
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(54) For every finite non empty setE and for all eventsA, B of E holds P(A) = P(A∪B)−P(B\
A).

(55) For every finite non empty setE and for all eventsA, B of E holds P(A) + P(Ac∩B) =
P(B)+P(Bc∩A).

(56) For every finite non empty setE and for all eventsA, B, C of E holds P(A∪B∪C) =
((P(A)+P(B)+P(C))− (P(A∩B)+P(A∩C)+P(B∩C)))+P(A∩B∩C).

(57) Let E be a finite non empty set andA, B, C be events ofE. SupposeA missesB andA
missesC andB missesC. Then P(A∪B∪C) = P(A)+P(B)+P(C).

(58) For every finite non empty setE and for all eventsA, B of E holds P(A)−P(B)≤ P(A\B).

Let E be a finite non empty set and letB, A be events ofE. The functor P(A/B) yielding a real
number is defined by:

(Def. 5) P(A/B) = P(A∩B)
P(B) .

The following propositions are true:

(60)11 For every finite non empty setE and for all eventsA, B of E such that 0< P(B) holds
P(A∩B) = P(A/B) ·P(B).

(61) For every finite non empty setE and for every eventA of E holds P(A/ΩE) = P(A).

(62) For every finite non empty setE holds P(ΩE/ΩE) = 1.

(63) For every finite non empty setE holds P( /0E/ΩE) = 0.

(64) For every finite non empty setE and for all eventsA, B of E such that 0< P(B) holds
P(A/B)≤ 1.

(65) For every finite non empty setE and for all eventsA, B of E such that 0< P(B) holds
0≤ P(A/B).

(66) For every finite non empty setE and for all eventsA, B of E such that 0< P(B) holds

P(A/B) = 1− P(B\A)
P(B) .

(67) For every finite non empty setE and for all eventsA, B of E such that 0< P(B) andA⊆ B

holds P(A/B) = P(A)
P(B) .

(68) For every finite non empty setE and for all eventsA, B of E such thatA missesB holds
P(A/B) = 0.

(69) For every finite non empty setE and for all eventsA, B of E such that 0< P(A) and
0 < P(B) holds P(A) ·P(B/A) = P(B) ·P(A/B).

(70) For every finite non empty setE and for all eventsA, B of E such that 0< P(B) holds
P(A/B) = 1−P(Ac/B) and P(Ac/B) = 1−P(A/B).

(71) For every finite non empty setE and for all eventsA, B of E such that 0< P(B) andB⊆ A
holds P(A/B) = 1.

(72) For every finite non empty setE and for every eventB of E such that 0< P(B) holds
P(ΩE/B) = 1.

(73) For every finite non empty setE and for every eventA of E such that 0< P(A) holds
P(Ac/A) = 0.

11 The proposition (59) has been removed.
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(74) For every finite non empty setE and for every eventA of E such that P(A) < 1 holds
P(A/Ac) = 0.

(75) For every finite non empty setE and for all eventsA, B of E such that 0< P(B) andA
missesB holds P(Ac/B) = 1.

(76) LetE be a finite non empty set andA, B be events ofE. If 0 < P(A) and P(B) < 1 andA

missesB, then P(A/Bc) = P(A)
1−P(B) .

(77) LetE be a finite non empty set andA, B be events ofE. If 0 < P(A) and P(B) < 1 andA

missesB, then P(Ac/Bc) = 1− P(A)
1−P(B) .

(78) For every finite non empty setE and for all eventsA, B, C of E such that 0< P(B∩C) and
0 < P(C) holds P(A∩B∩C) = P(A/(B∩C)) ·P(B/C) ·P(C).

(79) For every finite non empty setE and for all eventsA, B of E such that 0< P(B) and
P(B) < 1 holds P(A) = P(A/B) ·P(B)+P(A/Bc) ·P(Bc).

(80) LetE be a finite non empty set andA, B1, B2 be events ofE. If 0 < P(B1) and 0< P(B2)
andB1∪B2 = E andB1 missesB2, then P(A) = P(A/B1) ·P(B1)+P(A/B2) ·P(B2).

(81) LetE be a finite non empty set andA, B1, B2, B3 be events ofE. Suppose 0< P(B1) and
0 < P(B2) and 0< P(B3) andB1∪B2∪B3 = E andB1 missesB2 andB1 missesB3 andB2

missesB3. Then P(A) = P(A/B1) ·P(B1)+P(A/B2) ·P(B2)+P(A/B3) ·P(B3).

(82) Let E be a finite non empty set andA, B1, B2 be events ofE. Suppose 0< P(B1) and

0 < P(B2) andB1∪B2 = E andB1 missesB2. Then P(B1/A) = P(A/B1)·P(B1)
P(A/B1)·P(B1)+P(A/B2)·P(B2) .

(83) LetE be a finite non empty set andA, B1, B2, B3 be events ofE. Suppose 0< P(B1) and
0 < P(B2) and 0< P(B3) andB1∪B2∪B3 = E andB1 missesB2 andB1 missesB3 andB2

missesB3. Then P(B1/A) = P(A/B1)·P(B1)
P(A/B1)·P(B1)+P(A/B2)·P(B2)+P(A/B3)·P(B3) .

Let E be a finite non empty set and letA, B be events ofE. We say thatA andB are independent
if and only if:

(Def. 6) P(A∩B) = P(A) ·P(B).

Let us note that the predicateA andB are independent is symmetric.
Next we state four propositions:

(86)12 Let E be a finite non empty set andA, B be events ofE. If 0 < P(B) andA andB are
independent, then P(A/B) = P(A).

(87) For every finite non empty setE and for all eventsA, B of E such that P(B) = 0 holdsA
andB are independent.

(88) LetE be a finite non empty set andA, B be events ofE. If A andB are independent, then
Ac andB are independent.

(89) Let E be a finite non empty set andA, B be events ofE. If A missesB andA andB are
independent, then P(A) = 0 or P(B) = 0.

12 The propositions (84) and (85) have been removed.
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