Introduction to Probability

Jan Popiołek Warsaw University Białystok

Summary. Definitions of Elementary Event and Event in any sample space E are given. Next, the probability of an Event when E is finite is introduced and some properties of this function are investigated. Last part of the paper is devoted to the conditional probability and essential properties of this function (Bayes Theorem).

MML Identifier: RPR_1.

WWW: http://mizar.org/JFM/Vol2/rpr_1.html

The articles [8], [9], [4], [7], [6], [2], [5], [1], and [3] provide the notation and terminology for this paper.

For simplicity, we adopt the following convention: E denotes a non empty set, a denotes an element of E, A, B denote subsets of E, Y denotes a set, and p denotes a finite sequence.

Let E be a non empty set. Observe that there exists a subset of E which is non empty and trivial. Let us consider E. An elementary event of E is a non empty trivial subset of E. Next we state the proposition

(1) Let *e* be a non empty subset of *E*. Then *e* is an elementary event of *E* if and only if for every *Y* holds $Y \subseteq e$ iff $Y = \emptyset$ or Y = e.

Let us consider *E*. One can check that every elementary event of *E* is finite. In the sequel e, e_1, e_2 are elementary events of *E*. Next we state several propositions:

- (5)¹ If $e = A \cup B$ and $A \neq B$, then $A = \emptyset$ and B = e or A = e and $B = \emptyset$.
- (6) If $e = A \cup B$, then A = e and B = e or A = e and $B = \emptyset$ or $A = \emptyset$ and B = e.
- (7) $\{a\}$ is an elementary event of *E*.
- $(10)^2$ If $e_1 \subseteq e_2$, then $e_1 = e_2$.
- (11) There exists *a* such that $a \in E$ and $e = \{a\}$.
- (12) There exists e which is an elementary event of E.
- (14)³ There exists p such that p is a finite sequence of elements of E and rng p = e and len p = 1.

Let *E* be a set. An event of *E* is a subset of *E*. Next we state several propositions:

¹ The propositions (2)–(4) have been removed.

² The propositions (8) and (9) have been removed.

³ The proposition (13) has been removed.

- (22)⁴ Let *E* be a non empty set, *e* be an elementary event of *E*, and *A* be an event of *E*. Then *e* misses *A* or $e \cap A = e$.
- (25)⁵ For every non empty set *E* and for every event *A* of *E* such that $A \neq \emptyset$ there exists an elementary event *e* of *E* such that $e \subseteq A$.
- (26) Let *E* be a non empty set, *e* be an elementary event of *E*, and *A* be an event of *E*. If $e \subseteq A \cup A^c$, then $e \subseteq A$ or $e \subseteq A^c$.
- (27) $e_1 = e_2 \text{ or } e_1 \text{ misses } e_2.$
- $(34)^6$ $A \cap B$ misses $A \cap B^c$.

Let *E* be a finite non empty set and let *A* be an event of *E*. The functor P(A) yields a real number and is defined as follows:

 $(\text{Def. 4})^7 \quad P(A) = \frac{\text{card}A}{\text{card}E}.$

We now state a number of propositions:

- (38)⁸ For every finite non empty set *E* and for every elementary event *e* of *E* holds $P(e) = \frac{1}{\operatorname{card} E}$.
- (39) For every finite non empty set *E* holds $P(\Omega_E) = 1$.
- (40) For every finite non empty set *E* holds $P(\emptyset_E) = 0$.
- (41) For every finite non empty set *E* and for all events *A*, *B* of *E* such that *A* misses *B* holds $P(A \cap B) = 0$.
- (42) For every finite non empty set *E* and for every event *A* of *E* holds $P(A) \le 1$.
- (43) For every finite non empty set *E* and for every event *A* of *E* holds $0 \le P(A)$.
- (44) For every finite non empty set *E* and for all events *A*, *B* of *E* such that $A \subseteq B$ holds $P(A) \leq P(B)$.
- (46)⁹ For every finite non empty set *E* and for all events *A*, *B* of *E* holds $P(A \cup B) = (P(A) + P(B)) P(A \cap B)$.
- (47) For every finite non empty set *E* and for all events *A*, *B* of *E* such that *A* misses *B* holds $P(A \cup B) = P(A) + P(B)$.
- (48) For every finite non empty set *E* and for every event *A* of *E* holds $P(A) = 1 P(A^c)$ and $P(A^c) = 1 P(A)$.
- (49) For every finite non empty set *E* and for all events *A*, *B* of *E* holds $P(A \setminus B) = P(A) P(A \cap B)$.
- (50) For every finite non empty set *E* and for all events *A*, *B* of *E* such that $B \subseteq A$ holds $P(A \setminus B) = P(A) P(B)$.
- (51) For every finite non empty set *E* and for all events *A*, *B* of *E* holds $P(A \cup B) \le P(A) + P(B)$.
- (53)¹⁰ For every finite non empty set *E* and for all events *A*, *B* of *E* holds $P(A) = P(A \cap B) + P(A \cap B^c)$.

⁴ The propositions (15)–(21) have been removed.

⁵ The propositions (23) and (24) have been removed.

⁶ The propositions (28)–(33) have been removed.

⁷ The definitions (Def. 1)–(Def. 3) have been removed.

⁸ The propositions (35)–(37) have been removed.

⁹ The proposition (45) has been removed.

¹⁰ The proposition (52) has been removed.

- (54) For every finite non empty set *E* and for all events *A*, *B* of *E* holds $P(A) = P(A \cup B) P(B \setminus A)$.
- (55) For every finite non empty set *E* and for all events *A*, *B* of *E* holds $P(A) + P(A^c \cap B) = P(B) + P(B^c \cap A)$.
- (56) For every finite non empty set *E* and for all events *A*, *B*, *C* of *E* holds $P(A \cup B \cup C) = ((P(A) + P(B) + P(C)) (P(A \cap B) + P(A \cap C) + P(B \cap C))) + P(A \cap B \cap C).$
- (57) Let *E* be a finite non empty set and *A*, *B*, *C* be events of *E*. Suppose *A* misses *B* and *A* misses *C* and *B* misses *C*. Then $P(A \cup B \cup C) = P(A) + P(B) + P(C)$.
- (58) For every finite non empty set *E* and for all events *A*, *B* of *E* holds $P(A) P(B) \le P(A \setminus B)$.

Let *E* be a finite non empty set and let *B*, *A* be events of *E*. The functor P(A/B) yielding a real number is defined by:

(Def. 5) $P(A/B) = \frac{P(A \cap B)}{P(B)}$.

The following propositions are true:

- (60)¹¹ For every finite non empty set *E* and for all events *A*, *B* of *E* such that 0 < P(B) holds $P(A \cap B) = P(A/B) \cdot P(B)$.
- (61) For every finite non empty set *E* and for every event *A* of *E* holds $P(A/\Omega_E) = P(A)$.
- (62) For every finite non empty set *E* holds $P(\Omega_E / \Omega_E) = 1$.
- (63) For every finite non empty set *E* holds $P(\emptyset_E / \Omega_E) = 0$.
- (64) For every finite non empty set *E* and for all events *A*, *B* of *E* such that 0 < P(B) holds $P(A/B) \le 1$.
- (65) For every finite non empty set *E* and for all events *A*, *B* of *E* such that 0 < P(B) holds $0 \le P(A/B)$.
- (66) For every finite non empty set *E* and for all events *A*, *B* of *E* such that 0 < P(B) holds $P(A/B) = 1 \frac{P(B\setminus A)}{P(B)}$.
- (67) For every finite non empty set *E* and for all events *A*, *B* of *E* such that 0 < P(B) and $A \subseteq B$ holds $P(A/B) = \frac{P(A)}{P(B)}$.
- (68) For every finite non empty set *E* and for all events *A*, *B* of *E* such that *A* misses *B* holds P(A/B) = 0.
- (69) For every finite non empty set *E* and for all events *A*, *B* of *E* such that 0 < P(A) and 0 < P(B) holds $P(A) \cdot P(B/A) = P(B) \cdot P(A/B)$.
- (70) For every finite non empty set *E* and for all events *A*, *B* of *E* such that 0 < P(B) holds $P(A/B) = 1 P(A^c/B)$ and $P(A^c/B) = 1 P(A/B)$.
- (71) For every finite non empty set *E* and for all events *A*, *B* of *E* such that 0 < P(B) and $B \subseteq A$ holds P(A/B) = 1.
- (72) For every finite non empty set *E* and for every event *B* of *E* such that 0 < P(B) holds $P(\Omega_E/B) = 1$.
- (73) For every finite non empty set *E* and for every event *A* of *E* such that 0 < P(A) holds $P(A^c/A) = 0$.

¹¹ The proposition (59) has been removed.

- (74) For every finite non empty set *E* and for every event *A* of *E* such that P(A) < 1 holds $P(A/A^c) = 0$.
- (75) For every finite non empty set *E* and for all events *A*, *B* of *E* such that 0 < P(B) and *A* misses *B* holds $P(A^c/B) = 1$.
- (76) Let *E* be a finite non empty set and *A*, *B* be events of *E*. If 0 < P(A) and P(B) < 1 and *A* misses *B*, then $P(A/B^c) = \frac{P(A)}{1-P(B)}$.
- (77) Let *E* be a finite non empty set and *A*, *B* be events of *E*. If 0 < P(A) and P(B) < 1 and *A* misses *B*, then $P(A^c/B^c) = 1 \frac{P(A)}{1 P(B)}$.
- (78) For every finite non empty set *E* and for all events *A*, *B*, *C* of *E* such that $0 < P(B \cap C)$ and 0 < P(C) holds $P(A \cap B \cap C) = P(A/(B \cap C)) \cdot P(B/C) \cdot P(C)$.
- (79) For every finite non empty set *E* and for all events *A*, *B* of *E* such that 0 < P(B) and P(B) < 1 holds $P(A) = P(A/B) \cdot P(B) + P(A/B^c) \cdot P(B^c)$.
- (80) Let *E* be a finite non empty set and *A*, B_1 , B_2 be events of *E*. If $0 < P(B_1)$ and $0 < P(B_2)$ and $B_1 \cup B_2 = E$ and B_1 misses B_2 , then $P(A) = P(A/B_1) \cdot P(B_1) + P(A/B_2) \cdot P(B_2)$.
- (81) Let *E* be a finite non empty set and *A*, B_1 , B_2 , B_3 be events of *E*. Suppose $0 < P(B_1)$ and $0 < P(B_2)$ and $0 < P(B_3)$ and $B_1 \cup B_2 \cup B_3 = E$ and B_1 misses B_2 and B_1 misses B_3 and B_2 misses B_3 . Then $P(A) = P(A/B_1) \cdot P(B_1) + P(A/B_2) \cdot P(B_2) + P(A/B_3) \cdot P(B_3)$.
- (82) Let *E* be a finite non empty set and *A*, *B*₁, *B*₂ be events of *E*. Suppose $0 < P(B_1)$ and $0 < P(B_2)$ and $B_1 \cup B_2 = E$ and B_1 misses B_2 . Then $P(B_1/A) = \frac{P(A/B_1) \cdot P(B_1)}{P(A/B_1) \cdot P(B_1) + P(A/B_2) \cdot P(B_2)}$.
- (83) Let *E* be a finite non empty set and *A*, B_1 , B_2 , B_3 be events of *E*. Suppose $0 < P(B_1)$ and $0 < P(B_2)$ and $0 < P(B_3)$ and $B_1 \cup B_2 \cup B_3 = E$ and B_1 misses B_2 and B_1 misses B_3 and B_2 misses B_3 . Then $P(B_1/A) = \frac{P(A/B_1) \cdot P(B_1)}{P(A/B_1) \cdot P(B_1) + P(A/B_2) \cdot P(B_2) + P(A/B_3) \cdot P(B_3)}$.

Let E be a finite non empty set and let A, B be events of E. We say that A and B are independent if and only if:

(Def. 6) $P(A \cap B) = P(A) \cdot P(B)$.

- Let us note that the predicate *A* and *B* are independent is symmetric. Next we state four propositions:
 - $(86)^{12}$ Let *E* be a finite non empty set and *A*, *B* be events of *E*. If 0 < P(B) and *A* and *B* are independent, then P(A/B) = P(A).
 - (87) For every finite non empty set *E* and for all events *A*, *B* of *E* such that P(B) = 0 holds *A* and *B* are independent.
 - (88) Let *E* be a finite non empty set and *A*, *B* be events of *E*. If *A* and *B* are independent, then A^{c} and *B* are independent.
 - (89) Let *E* be a finite non empty set and *A*, *B* be events of *E*. If *A* misses *B* and *A* and *B* are independent, then P(A) = 0 or P(B) = 0.

¹² The propositions (84) and (85) have been removed.

References

- [1] Grzegorz Bancerek. Cardinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/card_1.html.
- [2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/finseq_1.html.
- [3] Józef Białas. Group and field definitions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/realset1.html.
- [4] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ funct_1.html.
- [5] Agata Darmochwał. Finite sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/finset_1.html.
- [6] Krzysztof Hryniewiecki. Basic properties of real numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Voll/real_1.html.
- [7] Andrzej Trybulec. Domains and their Cartesian products. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ domain_l.html.
- [8] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/ Axiomatics/tarski.html.
- [9] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.

Received June 13, 1990

Published January 2, 2004