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Summary. We present basic concepts concerning rough set theory. We define toler-
ance and approximation spaces and rough membership function. Different rough inclusions
as well as the predicate of rough equality of sets are also introduced.
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381, [14], [15], [6], [4], [L6], [24], [23], [17], [LE€], and [12] provide the notation and terminology
for this paper.

1. PRELIMINARIES

Let Abe a set. Observe th&, ida) is discrete.
We now state the proposition

(1) For every seK such thatly C idx holdsX is trivial.
Let A be a relational structure. We say tlais diagonal if and only if:
(Def. 1) The internal relation oA C idihe carrier ofA-

Let Abe a non trivial set. Observe thgh, [a) is non diagonal.
Next we state the proposition

(2) For every reflexive relational structurénolds idne carrier o C the internal relation of.

One can check that every reflexive relational structure which is non discrete is also non trivial
and every relational structure which is reflexive and trivial is also discrete.
We now state the proposition

(3) For every seK and for every total reflexive binary relatiégton X holds idk C R.

Let us observe that every relational structure which is discrete is also diagonal and every rela-
tional structure which is non diagonal is also non discrete.

Let us note that there exists a relational structure which is non diagonal and non empty.

We now state three propositions:
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(4) LetAbe anon diagonal non empty relational structure. Then there exist elexngsA
such thak # y and(x, y) € the internal relation oA.

(5) For every seb and for all finite sequences g of elements oD holds(p~qg) =U pU
Ua.

(6) For all functionsp, g such thag is disjoint valued angb C g holdsp is disjoint valued.

Let us note that every function which is empty is also disjoint valued.

Let A be a set. One can verify that there exists a finite sequence of elemefta/luith is
disjoint valued.

Let A be a non empty set. Note that there exists a finite sequence of eleménighath is non
empty and disjoint valued.

Let A be a set, leX be a finite sequence of elements 6f and letn be a natural number. Then
X(n) is a subset oA.

Let A be a set and leX be a finite sequence of elements 8f Then(J X is a subset oA.

Let A be a finite set and Id® be a binary relation oA. Observe thatA R) is finite.

One can prove the following proposition

(7) Forall setsX, x, y and for every toleranc€ of X such thax < [y]; holdsy € [X];.

2. TOLERANCE AND APPROXIMATION SPACES

Let P be a relational structure. We say tifahas equivalence relation if and only if:
(Def. 2) The internal relation d® is an equivalence relation of the carrierfof

We say thaP has tolerance relation if and only if:
(Def. 3) The internal relation d? is a tolerance of the carrier &f

Let us note that every relational structure which has equivalence relation has also tolerance
relation.

Let A be a set. Observe thé, ida) has equivalence relation.

Let us observe that there exists a relational structure which is discrete, finite, and non empty and
has equivalence relation and there exists a relational structure which is non diagonal, finite, and non
empty and has equivalence relation.

An approximation space is a non empty relational structure with equivalence relation. A toler-
ance space is a hon empty relational structure with tolerance relation.

Let A be a tolerance space. One can check that the internal relatidvisdbtal, reflexive, and
symmetric.

Let A be an approximation space. One can verify that the internal relatidrisafransitive.

Let A be a tolerance space and ¥ebe a subset oA. The functor LAgX) yields a subset oA
and is defined by:

(Def. 4) LAp(X) = {x;x ranges over elements Af [x] CX}.

the internal relation oA =
The functor UAgX) yields a subset oA and is defined as follows:

(Def. 5) UAp(X) = {x;xranges over elements Af X ¢ internal relation oa MeELSX}.

Let A be atolerance space and Yebe a subset oA. The functor BndApX) yields a subset of
Aand is defined by:

(Def. 6) BndApX) = UAp(X) \ LAp(X).
Let A be a tolerance space and}be a subset oA. We say thaX is rough if and only if:

(Def.7) BndAgX) # 0.
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We introduceX is exact as an antonym &fis rough.
In the sequeh is a tolerance space axgdY are subsets .
Next we state a number of propositions:

(8) For every sex such that € LAp(X) holds[x] CcX.

the internal relation oA =

(9) For every element of A such thafx] C X holdsx € LAp(X).

the internal relation oA =

(10) For every sex such that € UAp(X) holds|x] a MeetsX.

the internal relation o

(11) For every elementof A such thafx] a meetsX holdsx € UAp(X).

(12) LAp(X) X

the internal relation o

(13) X C UAp(X).

(14) LAP(X) C UAP(X).

(15) X s exact iff LAp(X) = X.

(16) X is exactiff UAp(X) = X

(17) X =LAp(X) iff X = UAp(X).
(18) LAP(0a) =

(19) UApP(0n) =

(20) LAp(Qa) =

(21) UAp(Qa) =

(22) LAp(XNY)=LAp(X)NLAp(Y).
(23) UAp(XUY) = UAp(X) UUApP(Y).
(24) IfX CY,then LApX) C LAp(Y).
(25) IfX CY, then UAQX) C UAp(Y).
(26) LAp(X)ULAp(Y) CLAp(XUY).
(27) UAp(XNY) C UAp(X) NUAP(Y).
(28) LAp(X®) = (UAp(X))®.

(29) UAp(X) = (LAp(X))®.

(30) UAp(LAp(UAP(X))) = UAp(X).
(31) LAp(UAp(LAp(X))) = LAp(X).
(32) BndApX) = BndAp(X°).

In the sequeh is an approximation space aXds a subset oA.
The following propositions are true:

(33) LAp(LAp(X)) =LAp(X)
(34) LAp(LAp(X)) = UAp(LAp(X))
(35)  UApP(UAp(X)) = UAp(X)

)

(36) UAp(UAp(X
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Let A be an approximation space. Observe that there exists a sulfsetoth is exact.

Let A be an approximation space andXebe a subset oA. Observe that LAPX) is exact and
UAp(X) is exact.

The following proposition is true

(37) LetAbe an approximation spack,be a subset oA, andx, y be sets. Ik € UAp(X) and
(x,y) € the internal relation of, theny € UAp(X).

Let A be a non diagonal approximation space. Observe that there exists a subsetioh is
rough.
Let A be an approximation space andXebe a subset oA. Rough set oK is defined by:

(Def. 8) It=(LAp(X), UAp(X)).

3. MEMBERSHIPFUNCTION

Let A be a finite tolerance space andxdie an element oA. Note that car({x|
iS non empty.

Let A be a finite tolerance space and ¥tbe a subset oA. The functor MemberFuriX, A)
yielding a function from the carrier & into R is defined by:

the internal relation oA)

card XN(x|
card[x|

the internal relation ofA)

(Def. 9) For every elementof A holds(MemberFun€X,A))(x) =

the internal relation ofA

In the sequelA denotes a finite tolerance spacé,denotes a subset @&, andx denotes an
element ofA.
We now state two propositions:

(38) 0< (MemberFun¢X,A))(x) and(MemberFun¢X,A))(x) < 1.
(39) (MemberFun¢X,A))(x) € [0,1].

In the sequeR denotes a finite approximation spa¥e,Y denote subsets &f, andx denotes an
element ofA.
Next we state four propositions:

(40) (MemberFun¢X,A))(x) = 1iff x € LAp(X).

(41) (MemberFun¢X,A))(x) =0 iff x e (UAp(X))°®.

(42) 0< (MemberFun¢X,A))(x) and(MemberFunéX,A))(x) < 1iff x € BndAp(X).
(43) For every discrete approximation spdckolds every subset & is exact.

Let A be a discrete approximation space. Note that every subgeisaxact.
We now state several propositions:

(44) For every discrete finite approximation spakeand for every subseX of A holds
MemberFun(:X,A) = XX,the carrier ofA-

(45) LetA be a finite approximation spack¥,be a subset o, andx, y be sets. If{x, y) € the
internal relation ofA, then(MemberFun€X; A))(x) = (MemberFunéX, A))(y).

(46) (MemberFun¢X® A))(x) = 1— (MemberFunéX, A))(x).

(47) If X CY, then(MemberFun¢X,A))(x) < (MemberFungy,A))(x).

(48) (MemberFun¢X UY,A))(x) > (MemberFun¢X,A))(x).

(49) (MemberFun¢XNY,A))(x) < (MemberFun¢X,A))(x).

(50) (MemberFun¢X UY,A))(x) > max((MemberFun¢X,A))(x), (MemberFungY,A))(x)).
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(51) If X misses Y, then (MemberFun¢X U Y,A))(x) = (MemberFunéX,A))(x) +
(MemberFun¢y,A))(x).

(52) (MemberFun¢XnNY,A))(x) < min((MemberFun€X,A))(x), (MemberFuncY,A))(x)).

Let A be a finite tolerance space, Ktbe a finite sequence of elements &f23a"er oA gand let
x be an element ofA. The functor FinSeglk, X) yielding a finite sequence of elementskfis
defined by:

(Def. 10) domFinSeqik,X) = domX and for every natural numbersuch thatn € domX holds
(FinSegMx, X))(n) = (MemberFun¢X(n),A))(X).

The following propositions are true:

(53) Let X be a finite sequence of elements ofe2amero x pe an element ofA,
andy be an element of 2 camer oA - Then FinSeqNi, X ~ (y)) = (FinSegMx, X)) ~
((MemberFun¢y, A))(X)).

(54) (MemberFun@a,A))(x) = 0.

(55) For every disjoint valued finite sequencé of elements of e carieroA holds
(MemberFun@J X, A))(x) = S FinSeqMx, X).

(56) LAp(X) = {x;xranges over elements &f (MemberFun¢X,A))(x) = 1}.

(57) UAp(X) = {x;xranges over elements Af (MemberFun¢X,A))(x) > 0}.

(58) BndApX) = {x;x ranges over elements ofA: 0 < (MemberFun¢X,A))(x) A
(MemberFunéX, A))(x) < 1}.

4. ROUGHINCLUSION

In the sequeR denotes a tolerance space atdr, Z denote subsets @f.
Let A be a tolerance space and}etY be subsets oA. The predicatX C,. Y is defined by:

(Def. 11) LAp(X) C LAp(Y).
The predicateX C* Y is defined as follows:
(Def. 12) UApPX) C UAp(Y).
Let A be a tolerance space and XetY be subsets 0. The predicatX C; Y is defined by:
(Def. 13) X C,YandX C*V.
One can prove the following three propositions:
(59) IfXC,YandYC,Z thenXC, Z.
(60) IfX C*Y andY C* Z, thenX C* Z.
(61) IFXCiYandY C:Z thenX Cf Z.

5. ROUGHEQUALITY OF SETS

Let A be a tolerance space andXetY be subsets oA. The predicatX =, Y is defined as follows:
(Def. 14) LAp(X) = LAp(Y).

Let us notice that the predicaxe=, Y is reflexive and symmetric. The predicate=*Y is defined
as follows:

(Def. 15) UAp(X) = UAP(Y).
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Let us notice that the predicaxe="Y is reflexive and symmetric. The predicate=} Y is defined
as follows:

(Def. 16) LAp(X) = LAp(Y) and UAp(X) = UAp(Y).

Let us notice that the predicaxe=}Y is reflexive and symmetric.

if:

Let A be a tolerance space and YetY be subsets oA. Let us observe thaf =, Y if and only

(Def. 17) X C,YandY C, X.

Let us observe that =* Y if and only if:

(Def. 18) X C*Y andY C* X.

Let us observe that =} Y if and only if:

(Def. 19) X =,Y andX ="Y.
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